Tennessee Manufacturing Extension Partnership

UT CIS helps companies and communities succeed, grow and create high quality jobs by providing consulting, training and connecting services across the state. Whether you want to improve productivity on the plant floor, comply with safety or environmental regulations, navigate the federal procurement process, introduce a new product, or improve your economic development potential, CIS has the expertise to help you succeed.

In addition to having a skilled and experienced staff who can help you define and solve your most pressing problems, CIS can connect you with the knowledge and expertise of Tennessee universities, federal laboratory scientists, state government partners, the NIST Manufacturing Extension Partnership, the US Economic Development Association, the Southeastern OSHA Training Education Institute or Procurement Technical Assistance Center, and other industry professionals.

CIS has staff of professional employees located in 6 offices across the state of Tennessee. Tennessee business and industry are assisted daily by CIS engineering and professional staff in improving their economic competitiveness on a national and global level.

CONTACT US
193 Polk Ave, Suite C
University of Tennessee Center for Industrial Services
Nashville, TN 37210
(615)532-8657
www.cis.tennessee.edu

ECONOMIC IMPACT

MEP Center impacts are based on clients surveyed in FY2017

$274.9 Million
Total Increased/Retained Sales

1,273
Total Increased/Retained Jobs

$22.2 Million
New Client Investments

$30 Million
Cost Savings

WWW.NIST.GOV/MEP.1-800-MEP-4MFG
U.S. DEPARTMENT OF COMMERCE. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. MANUFACTURING EXTENSION PARTNERSHIP
"iLight truly appreciates and supports the program, it has been a great resource, especially in defined areas that need special research and abilities. By conferring with the University professors they are able to take our issue and run scenarios which greatly assist iLight in improvements and development of new products."

Jim Cuppini, Chief Operations Officer

RESULTS

$190,000 increased/retained sales

$15,000 in new products

SUCCESS STORY

ILIGHT TECHNOLOGIES

Tennessee Manufacturing Extension Partnership

ABOUT. iLight Technologies, Inc., headquartered in Chicago, Illinois with manufacturing facilities in Cookeville, Tennessee, is a pioneer and leader in innovative LED illumination solutions that transform, excite, and energize corporate identities and architectural environments worldwide. LEDs are the fastest growing segment of the light industry today, and in five to ten years promise to bring the lighting world various new options to replace older and less energy-efficient technologies. iLight’s products blend the benefits of LEDs with patented application systems that create lighting products that have high brightness with a smooth even glow. The company employs approximately 20 people.

THE CHALLENGE. Due to some LED strips failing in the field, iLight expressed an interest in determining the effects of solar exposure and reflection from a wall on a string of LED lights. The project included modeling the thermal output of an encapsulated array of LED lights.

MEP’S ROLE. As a program of the University of Tennessee Center for Industrial Services (UT CIS), TMEP (a NIST MEP affiliate) utilizes its network of colleges, universities and technical schools to connect small businesses that could not otherwise afford the level of services needed to explore opportunities, address challenges or take a chance on a new idea to engineering, with the research and development services available through faculty projects. Through an agreement with Tennessee Tech University (TTU), TMEP works with TTU to match faculty resource expertise and provide assistance to business and industry. Two faculty members from the Electrical and Computer Engineering and the Mechanical Engineering Departments worked together on this project. The professors used simulation software to determine the effects of solar reflection. Thermal distributions around a string of LEDs and circuit components embedded within polyurethane potting were obtained to find maximum temperatures in the vicinity of the LEDs. Several variables were introduced and analyzed including but not limited to the composition of the wall material, the reflectivity of the wall, distance of the string of lights from the wall and exposure angle of the sunlight.