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Code Probability Distributions of AID
Converters with Random Input Noise

T. Michael Souders, Fellow, IEEE

Abstract- The specific architecture of an AID converter influ-
ences the code probability distributions that result from random
input noise. In particular, the output codes of successive ap-
proximation AID converters have a spiked distribution, and its
variance is half that of the corresponding input noise. In addition,
the distribution has a small bias. These and other related results
are derived, and are qualitatively supported by measurement data
on a real 16-bit AID converter.

Index Terms-Analog~igital conversion, codes, noise, proba-
bility, successive approximation.
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I. INTRODUCTION

ARCHITECTURE-OEPENOENT effects are generally ig-
nored when considering NO converter noise models [I].

In most analyzes, both the equivalent input noise and the
corresponding digital output codes are assumed to be nonnally
distributed. However, the influence of a converter's specific
architecture on the noise-related probability distribution of
output codes can be quite significant, especially when the
equivalent input noise exceeds a least significant bit (LSB)
or so. As will be seen, the consequences of these effects
can be important. In a closely related area, much work has
been reported on quantization of dithered signals (see, for
example, [2] and its references); however, in those studies
the dither signal is usually added directly to the input sigrial,
external to the NO converter (Le., presampler noise). These
analyzes ignore the effects of postsampler noise, internal to
the converter.

Architecture dependent effects are particularly striking for
successive approximation NO converters, as is illustrated in
Fig. 1. Fig. I(a) shows a recording of the output noise from
a 16-bit successive approximation NO converter [3] that has
approximately 6 LSB's of internal noise (1- (7), and Fig. I(b)
shows the probability distribution function (POF) of the output
codes. (We will use POF here to mean probability distribution
function, rather than probability density function, since we will
be dealing primarily with the probability of occurrence of code
words that are discrete random variables.) It is readily apparent
that the POF differs significantly from that of a nonnal
distribution (see overlaid curve), and is characterized by sharp
spikes. This behavior is the result of post-sampling noise, Le.,
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Fig. 1. (a) Output noise from a 16-bit successive approximation AID con-
verter. (b) Probability distribution of output codes from data of Fig. 1(a). A
normal distribution is overlaid for comparison.

noise that appears at the comparator inptit and varies during the
successive approximation process. By modeling this process,
the resu.ltingPOF is easily computed in closed fonn, as will be
described later. Two significant consequences of this behavior
are: I) the variance of the output value is actually on average
about 50% smaller than that of the input noise, regardless
of noise level and 2) the process produces a small signal-
dependent bias. For Gaussian input noise, this bias limits the
improvement that averaging or digital filtering can achieve
to about 5.7 effective bits. This is in contrast to presampling
noise or dither that can improve the effective bits without
limit, given enough averaging [2]. For postsampling noise
having a unifonn distribution, the improvement in effective
bits is yet smaller. While the bias is sufficiently small to
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Fig. 2. Successive approximation decision tree, showing probabilities for Gaussian input noise with (1 = 0.2.

be insignificant for most applications, the variance reduction
could be important.

II. SUCCESSIVEApPROXIMATIONNOISE MODEL

Successive approximation AID converters perform an N-
step sequential, binary search to encode the signal value [4].
The process begins with a reference level set to the mid-
level of the input signal range. At each step, the reference
level is incremented or decremented by 2-(i+1)FSR, where
i is the step index ranging from 1 to N, and FSR is the
full scale range of the converter. The decision to increment
or to decrement is determined by a comparator that decides
if the input signal is .greater than (output = 1) or less than
(output = 0) the reference level at that step in the process.

The result of this process is a decision tree as illustrated in
Fig. 2, that gives 2N unique classification intervals, each of
which is assigned a binary code. The ith bit in the binary code
is given by the ith output of the comparator. (This process
results in a mid-riser transfer characteristic in which the
midrange occurs at a code-transition; offsetting the process by
-0.5 LSB gives the more common mid-tread characteristic.)
When noise is present at either of the comparator inputs, its
decision at each step becomes a stochastic process. If the
noise distribution is known, the probabilities of occurrence
of each decision in the tree can be readily computed, and the
probability of occurrence of each output code is the product
of the conditional probabilities of the N decisions that led
to that code. Fig. 2 illustrates the decision tree for a 3-bit
AID converter with the input signal level set at 0.5 (midscale)
and with added Gaussiannoise having zero mean (J-L)and a
standard deviation ((]")of 0.2. The probability of occurrence of
each decision and of each output code is included in the figure
for this particular signal and noise distribution; the POF for
ideally quantized presampler Gaussian noise is also included.

(The probabilities for the first and last codes do not include the
significant probabilities of under and overflow that this large
amount of noise causes.)

Having calculated the POF, p(k), of output codes, the mean
and variance of the output code distribution are given as

2N 1

I' = t [k ~~.5 P(kJ]k=O

and
2N -1 2

u2 = L [k ~~.5 - ,,] p(k)k=O

where k is the code word index, ranging from 0-2N - 1.

III. RESULTS

Fig. 3 shows the calculated POF of output codes of an
8-bit successive approximation AID converter with an input
signal range of 0-1. The input noise is centered with both
Gaussian and uniform distributions shown. In both plots,
the POF of the input noise is laid over the POF of output
codes, for comparison. Note that the output distributions are
narrower than the input distributions. The tails of the input
distributions are suppressed because each time an intermediate
decision causes an excursion into the tails, the next ,decision
almost certainly brings the excursion back toward the center.
However, this same process tends to favor some moderate
excursions, causing the sharp spikes that show up in these
plots. Note that these processes produce an output POF for
the uniform distribution that is similar in appearance to that
of the Gaussian distribution. In the case of Gaussian noise,
the ratio of the variances of output codes to input noise is
0.43; for uniform noise, the ratio is 0.48. In both cases, the
bias, Le., the mean of the output distribution minus the mean
of the input signal-plus-noise, is zero, since for these cases
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Fig. 3. (a) POF of output codes with Gaussian input noise
(It = 0.5, (T = 0.05). For comparison. the POF of the input noise is overlaid.
(b) POF of output codes with unifonn input noise (It = 0.5, (T = 0.05). For
comparison. the POF of the input noise is overlaid.

the distributions are symmetrical. When the input signal is
offset from midscale, the output distribution becomes skewed
as shown in Fig. 4 (an offset of 0.05), and the bias is nonzero.
In this example, the offset is -13 LSB' s or -0.05078, and the
bias is discussed below. The bias varies cyclically with offset
as shown in Fig. 5. Thus, as the input offset is swept through a
range of 2x, where x = int[10g2(40')] and int[*] designates the
integer part of [*],the bias goes through one cycle. From this, it
is apparent that the cycle width is approximately proportional
to a, and is not dependent on the number of digitized bits, so
long as a is significantly greater than one LSB.

The functional curve describing a cycle however, varies
according to the remainder part of [log2(40')]. In Fig. 5, the
bias, normalized by the standard deviation of the input noise,
is plotted versus offset (ranging from -64 to +64 LSB's), for
Gaussian input noise for ten values of a ranging from 0.031 25
to 0.0625. The maximum and minimum values of the mean
error (normalized by a) vary between :l::0.028and :l::0.032,
while the rms value of the normalized bias varies between
0.017 and 0.021. Over this same range, the ratio of variances
(output code divided by input noise) ranged from 0.42 to 0.56.
For the specific case shown in Fig. 4, with Gaussian noise the
normalized bias is 0.025, and for the uniform noise case, it
is 0.073. The ratios of variances for the two distributions are
0.53 and 0.61, respectively.

0.1 ~ m..'_
-.-.------

~0.08 .:c
,g 0.08e
0.. 0.04

0.02

o.
64 160128

Coded Index

(a)

19296

Uniform Distribution
0.14.

0.12 .1 ;-.--.............--...-..----......-...--.........------..-.--------.

~ 0.1
:E 0.08ca
.g 0.08...0..0.04

i

r--~-~--R.-..-.---.

.......-.......-.-......-..-

............................--..

~ i_ __ _._ .-.-.-0.02

o
64 96 128

Code Index

(b)

160 192

Fig. 4. (a) POF of output codes with Gaussian input noise
(/1 = 0.45. (T = 0.05). For comparison. the POF of the input
noise is overlaid. (b) POF of output codes with unifonn input noise
CJl = 0.45, a = 0.05). For comparison. the POF of the input noise is
overlaid.
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Fig. 5. Nonnalized bias versus offset. The input noise is Gaussian with (T
ranging from 0.03125 to 0.0625.

From the data in Fig. 5, we can compute the maximum
increase in effective bits that can be achieved for such a

converter, by averaging its output data. The effective bits, E,
of a converter is given by [5]

(
FSR

)E = 10 .
g2 rmsnoise. J12
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Assuming that the input noise is greater than one LSB so that
quantizationerror can be neglected.and that FSR = 1, this
expression can be rewritten in terms of the normalized bias as

E = -log2 JL(a) - log2(a. Vi2)

where JL(a) is the rms value (over all offset values) of the
normalized bias for input noise a. The first term in this
expression is the amount by which the effective bits can be
improved with unlimited averaging. For Gaussian noise, this
amount ranges from 5.6 to 5.9 bits depending on a, i.e., on
which of the traces in Fig. 5 is appropriate. Averaged over
all values of a (all of the data in Fig. 5), the improvement
is 5.74 bits.

It is interesting to note that the application of external
(presampler) dither can be used to reduce the bias even further.
The result is calculated by convolving one cycle of the bias
produced by post sampler noise (Fig. 5) with the PDF of the
external dither. For example, when the external dither has a
standard deviation equal to that of the internal noise, the bias
is reduced by 0.28 (an increase of 1.8 effective bits), and
if the external noise is twice as large as the internal noise,
the reduction factor is 0.012 (6.4 effective bits). However, to
approach these levels of reduction would require much more
averaging.
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IV. CONCLUSION

This work suggests that architecture should not be ignored
when considering the effects of internal noise on the per-
formance of AID converters. While only one architecture
was studied in this paper, it is likely that other architectures
will exhibit different noise transformations. For successive
approximation converters, the most important findings are that
the PDF of output codes is characterized by spikes showing
marked preference for certain specific codes, and the variance
of the output codes is only about half that of the input noise.
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