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Bounds on Least-Squares Four-Parameter Sine-Fit Errors

Due to Harmonic Distortion and Noise
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Abstract Least-squares sine-fit algorithms are used

extensively in signal processing applications. The

parameter estimates produced by such algorithms are

subject to both random and systematic errors when the
record of input samples consists of a fundamental sine

wave corrupted by harmonic distortion or noise. The

errors occur because, in general, such sine-fits will

incorporate a portion of the harmonic distortion or
noise into their estimate of the fundamental. Bounds

are developed for these errors for least-squares four-

parameter (amplitude, frequency, phase, and offset)

sine-fit algorithms. The errors are functions of the
number of periods in the record, the number of samples

in the record, the harmonic order, and fundamental and

harmonic amplitudes and phases. The bounds do not apply

to cases in which harmonic components become aliased.

Introduction

Sine-fit routines are used extensively during

characterization of analog-to-digital converters (ADCs)

and digital oscilloscopes [1-3]. These sine fit

algorithms estimate the four parameters 'amplitude,

frequency, phase, and offset) of the sine wave that best

fits a given finite length record of discrete samples,

which are assumed to be samples of a sine wave, possibly

corrupted by noise and distortion. Examples of such

sine fit algorithms are found in IEEE Std. 1057 [1].

Because the records are finite in length (i.e., limited

number of samples and number of periods), random

additive noise and noise produced by timing jitter cause

the parameter estimates themselves to be random
variables with an associated variance. In addition,

harmonic distortion can cause the parameter estimates to

be biased with respect to the true, steady-state

parameters. This occurs because truncated sinusoids of

different frequencies are in general not strictly

orthogonal.

A four parameter sine function is linear in only

three of the four parameters; it is nonlinear with

respect to frequency. Therefore, sine-fit algorithms,

started from different initial parameter estimates, may

converge on different local minima and different

parameter estimates. In the work described here, it is

assumed that the sine fit algorithm has converged on the

global least squares solution.

The goal of this work was to develop bounds for the

errors in parameter estimates returned by four-

parameter, least squares sine fit algorithms, due to

noise, jitter, or harmonic distortion of the sampled

signal.

Errors Due to Harmonic Distortion

Fig. 1 illustrates the problem. A four-parameter,

least-squares sine fit was performed on a lOOO-point

record of a sinusoid of unit amplitude plus 2nd harmonic

distortion with an rms amplitude of 0.1429, sampled over

2.2 periods. The fitted sine wave however, has an
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Fig. 1 Illustration of sine fit errors. Top. plot shows

a sine wave plus 2nd harmonic distortion (solid) and the

best-fit sine wave (dashed) obtained with a 4-parameter

least squares algorithm. Bottom plot shows the harmonic

distortion (solid) compared to the fit residue (dashed).

amplitude of 0.9803, and its frequency is such that

2.237 periods subtend the record. The rms value of the
residuals of the fit is 0.1357. Therefore, the

amplitude and frequency estimates are each in error by

2%, and the residuals are reduced by 5.0%.

Efforts to derive a closed-form expression for such

errors in terms of the amplitude, phase and order of

harmonic distortion, and the parameters of the

fundamental sine wave, were unsuccessful. Bounds on the

errors could be found by performing a brute force

search, varying the parameters of the fundamental and

harmonic components, and performing a full four

parameter least squares sine fit. This approach has two

shortcomings. First, as surmised above, the results

could be dependent on the algorithm and the initial

conditions chosen to perform the sine fit. The second

shortcoming and perhaps the more serious from a

practical standpoint, is the very long computation time
that such a search would require. Because of these

problems, an alternative approach was chosen, based on

estimating the functional relationship using a linear

approximation. This provided a better understanding of
the error mechanisms, and made the task of computing

bounds on the maximum errors more tractable. In

addition, within the attendant approximations of the

linear model, it is possible to combine errors by

superposition, e.g., the errors due to the combination
of two harmonics can be estimated by combining their

errors computed individually. The bounds computed from

the linearized model can be spot-checked using a Monte

Carlo approach with a full four parameter algorithm.

Linearization

The linearization proceeds as follows. Consider an

M-point record of a uniformly sampled sinusoidal
waveform with added harmonic distortion, given by
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y[nJ - y,[n] + Yh[nJ - Aosin(wonT) + Bocos(wonT) +
Co + Yh(nT) (1)

n - 0,1,2,.. .(M-l)

~here T is the sample interval
f designates the fundamental component

h designates the harmonic distortion

o designates the parameters of the fundamental

component.

Note that any sine wave of arbitrary amplitude, offset,

phase, and frequency can be expressed by y,[n] above.
Assume that the sine fit algorithm returns an

estimated sine wave, Ye[n], plus residue given by

y[nJ -y.[n] + r[n] - A sin(wnT) + B cos(wnT) +
C + r[nT] (2)

where r[nTJ is the residue of the fit.

The fitted sine wave given by (2) can be represented
as a Taylor series expansion about the fundamental sine
wave in (1):

y[nJ - y,[n] + (dy,[n]/dAo) ~ + (dy, [n]/dBo) ~B +

(dy,[n]/dCo) ~C + (dYf[n]/dwo) ~w + HOT[n] +
r[nT] (3)

where HOT[n] represents the second and higher order
terms of the expansion, and

~ -A - Ao, ~B - B - Bo, ~C - C - Co, and ~w - w - wo.

Combining (3) with (1) and rearranging gives

Yh[n] - y[n] - y,[n] - (dy,[nJ/dAo) ~ +
(dy,[n]/dBo) ~B + (dy,[n]/dCo) ~C +
(dy,[n]/dwo) ~w + HOT[n] + r[nT]

or in matrix notation,

Yh - D x + E

whereD -
dYe [OJ/dAo
dy,[l]/dAo

dy, [0 JI dBo
dy,[l]/dBo

dy,[OJ/dCo
dYe [l]/dCo

dy,[OJ/dwo
dy,[l]/dwo

dy,[M-l]/dAo dy,[M-l]/dBo dYe [M-IJldCo dYe [M-IJldwo

HOT[O]
HOT[l]

+ r[O]
+ r[l]

E - and x - [~ ~B ~C ~wJT

HOT[M-l] + r[M-l]

The least squares estimate of x is given by

x - (DTD)-lDTYh

This estimate minimizes II Ell, which minimizes Ilrll when
the higher order terms, HOT[n], are negligibly small

(where 11*11 designates the 2-norm of *). Therefore, to a
first order approximation, (6) gives the vector of
parameter error values, x, that produces the least

squares sine fit to the data record given. by (l~.

Search for Bounds

Even though (6) gives an analytical expression (to

first order) for the errors caused by harmonic

distortion, it is of limited use to the practitioner

because it requires that matrix D be generated and the
normal equations solved for each situation. In

addition, the error depends dramatically on the
parameters of the signal and distortion, which are not

necessarily known a priori. It would be preferable to

have simple expressions that bound the errors for
conditions that would likely be known or could be

assumed, a priori. Examples of the complex dependencies

inherent in (6) are given in figs. 2 and 3. Fig. 2
illustrates how the error in the estimate of amplitude

depends on the phases of the harmonic and fundamental

components, for a specific harmonic order (2nd) and
actual number of fundamental periods contained in the

record (2.2). Also, as the harmonic order and actual

number of periods change, the locations of the maxima

(with respect to the fundamental and harmonic phases)
also change, necessitating an extensive search if bounds

on the maxima are to be found. Fig. 3 is a plot of the

maximum errors (for all fundamental and harmonic phases)

in the estimate of the number of fundamental periods, p,

in the record, versus p, for (3rd) harmonic distortion
of unit amplitude relative to the fundamental. Note

that p is proportional to frequency.

Estimates for upper bounds on the parameter errors

were generated using the following procedure based on

(6): (i) accumulate the error estimates for many

different sample records: different numbers of periods,

harmonic orders, fundamental phases, and harmonic

phases; (ii) search the accumulated parameter error

estimates for maxima; and finally (iv) fit these maxima

by regression to produce bound expressions.

Simulations were run for lower harmonics (h-2,3,4,5,

7,10), because these produced the greatest errors in the

sine-fit algorithm, and because these are commonly the

most significant distortion components in the outputs of

ADCs and digital oscilloscopes. The tests were run for

data records of M-200, 1000, 2000, and 4000 samples.
The effect of each harmonic component (e.g., 2nd, 3rd)

was determined separately.
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Fig. 2 Example of complex dependency of amplitude

estimate on the phases of the harmonic (2nd) and

fundamental components. Multiple curves correspond to

different fundamental phases.

(6)

10
number of periods in record

Fig. 3 Plot of the maximum errors (for all fundamental

and harmonic phases) in the period estimate versus the

numbev of periods in the data record, for (3rd) harmonic

distortion of unit amplitude relative to fundamental.

Results

Exponential regression produced an excellent fit of

the dependence of the maxima on the number of periods in

the record, and on the order of the distorting harmonic.
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The
errors
Let~p

resulting estimated bounds on the parameter
follow:

the error in the estimated number of

fundamental periods in the r@cord
the error in the estimated fundamental

amplitude - «A+~)2+(B+~B)2)1/2_(A2+B2)1/2
the error in the estimated fundamental

phase, in degrees - tan-1«B+~B)/(A+~» -
tan-1(B/A)
the error in the estimated DC offset of the
signal.

number of samples in the record

the number of fundamental sine wave periods
in the record - (wMT)/(2~)

the order of the distorting harmonic

(positive integer)

the amplitude of the input fundamental

the amplitude of the input distorting
harmonic

~!

~if>

~off

M
P

h

Ar
Ah

Then
0.90

[

Ab

]maxl~pl - ph1.2 Ar '
for p~2.0, M>2ph

maxl:'1-
1.00

[::] ,
for p~2.0, M>2ph

ph1.25

1800

[

Ab

]maxl~if>1 - ph1.25 Ar '
for p~2.0, M>2ph

I

~off

lmax --;;- -

0.61

[~] ,
for p~2.0, M>2ph

pl . 2 h1 . 1

Expressions (7)-(10) are graphed in fig. 4 as a

function of the ratio (Ah/Ar), for a number of

combinations of harmonic order and number of periods of

the fundamental component contained in the record.

Note that the error bounds are for p~2.0. For two or

more periods, the estimated error magnitude maxima fit

the peaks very well. By contrast, for p<2.0, the error

maxima exceeded these bounds (sometimes reaching as much

as ten times higher), particularly for the lower order
harmonics (2nd, 3rd).

Note also that the bounds are for M>2ph. In other

words, the bounds apply to the case where the harmonic

is being sampled above the Nyquist rate. If M<2ph then

the harmonics alias into neighboring bands, and these
bounds break down, because the aliased harmonic

frequencies can be near or equal to the fundamental

frequency, in which case much or all of the aliased

harmonic power is incorporated into the fundamental

estimate. For M>2ph, the dependence of the bounds on M

was negligible.

The reasons for the non-integer exponents of p and h

are not clear; for quick but conservative approximations

the exponents of p and h can be rounded to unity.

The experiments showed that for p~2.0 and over the

range of (Ah/Af) for which the linear approximation

holds, the effect of the fit errors on effective bits

estimation [1-3] was fairly small, producing errors of
0.1 effective bits or less.

Region of Validity of Linear Hodel

A cautionary note is that as the ratio of the

harmonic to fundamental amplitude increases, the first

ord~r approximation of the sine-fit errors given here

will become invalid, as higher order terms become

important. The region of validity of these bounds has

been evaluated using a full four-parameter least-squares

sine-fit algorithm in a Monte Carlo sampling approach.
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Fig. 4 Plots of error bounds. Use left and right
vertical scales, respectively, for p-2 and p-lO.
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Fig. 5 Results of Monte Carlo tests of bounds given in
(7)-(10). The harmonic order is 2, and the number of

trials at each level of distortion was 1000. (--- - 6p,

... - ~f' -.- - ~if>,and --- - ~off).

The results are presented in fig. 5. For 15 values of

harmonic distortion, the maximum normalized error is

plotted, determined from 1000 trials in which the

fundamental and harmonic phases and the number of

periods (2-10) were all chosen at random for each trial.

It can be seen from the plot that none of the four

bounds is exceeded by more than 4~ for distortion up to

30%. For this plot, the second harmonic was used.

Higher harmonic orders give similar results.

Errors Due to Noise and Jitter

To compute the variance-covariance of the parameter

estimates when noise and jitter are present, we again

use a linearization of the problem, assuming that, at

convergence, four parameter estimates are available (Ac'

Be' Ce, and we)' Adding noise, Eq. (5) becomes
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Yh - D x + b + e (11)

where
D the same as in (5), but with parameters A, B, and

w evaluated at convergence
the nonrandom component of the residue, and is
assumed orthogonal to D, so that DTb - 0
random variable, independent but not necessarily
identically distributed, with zero mean
designates the value at convergence
[~ ~B ~C ~w]T

b

e

c
"

Following the approach outlined in [4], it can be

shown that

E[x] - x (12)

where E[*] designates the expectation of *, and x
least-squares estimate of x. Furthermore, it can
shown that the variance-covariancematrix of x is
by

is the
be

given

where

L(X)

L(X)
W

the variance-covariance matrix of x

a diagonal weighting matrix such that e -

We' and e' is iid,(O,02).

_ 02 (DTD)-lDTWTD(DTD)-l ( 13)

Noise

In the case of random noise, the elements of e are
assumed to be identically distributed, so W - I (where I
is the identity matrix), and (13) reduces to

L(X)noise - 02 (DTD)-l (14)

where 02 is the noise variance.

The parameter variance,~, of the least-squares fit
is given by the diagonal elements of the matrices in

(13) and (14):

o~ - [o~ o~ oe o~]T - diag(*) (15)

where (*) is the corresponding matrix in (13) or (14).

The parameter covariances are given by the off-diagonal
components.

Plots of 0~/02 and 0~A~/w202 are given in fig. 6,

versus the phase of the fundamental component and the
number of periods, respectively. For these plots, M,

the number of samples in the record, was 100. The

values of 0~/02 and 0~A~/w202 are inversely proportional

to M. To determine the proportional variance of the
estimate of parameter A (i.e., o~/A~) from fig. 6a, find

the normalized A-variance corresponding to the

appropriate phase and multiply by the expected

proportional variance of the noise (02/A~) times 100/M.

To determine the proportional variance in w (i.e.,

a~/w2) from fig. 6b, find the normalized w-variance

corresponding to the appropriate number of periods, and

again multiply by 02/A~ times 100/M.
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Fig.6-a Plots of normalized variance of parameter A
(0~/02) vs. phase, for 2-10 periods.
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Fig. 6-b Plots of normalized variance of frequency, w,
(0~A~/w202) vs. no. of periods, for different phases.

Jitter

In the case of jitter, the noise produced by jitter

having a constant variance of oJ is distributed (to
first order) according to the time derivative of the

input signal, so that the (i,j)th element of the

weighting matrix used in (13) is given by

w..
{

dYe [iJldt

1 J o

we AcT cos(wciT) wcBcT sin(wciT) i-j-n

i...j (16)

and 02 in (13) is replaced by the jitter variance, O}

For (16), several simplifying assumptions have been

made: it is assumed that (a) terms involving higher

order derivatives are negligibly small, (b) the harmonic

distortion is small enough that its contribution to the

derivative is negligible, (c) that the mean of the noise

produced by the jitter (see (11» is zero, although this

is not strictly true [5], and (d) that the jitter is

independent from sample to sample.

Conclusions

Four-parameter, least-squares sine wave curve fits

produce parameter estimates that are subject to both

random and systematic errors when the input samples

consist of a fundamental sine wave corrupted by harmonic
distortion or noise. In the case of harmonic

distortion, the errors are bounded by simple expressions

that are approximately inversely proportional to both

harmonic order and number of periods in the record, and

directly proportional to the ratio of harmonic

distortion to fundamental amplitude. These bounds hold

for data records containing at least two periods of the

fundamental and for relatively large signal to noise

ratios, but are not valid for cases in which harmonic

components become aliased. For signals corrupted by

noise or jitter, the variances of the parameter

estimates (normalized by the variance of the corrupting

noise) are functions of the number of periods and the

fundamental phase.
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