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Abstract -The frequency response of a linear time-invariant
system can be estimated from the measurement of its
response to an ideal step input. However, an ideal step is
unrealizable, and various other error sources affect the
accuracy of such estimates. This paper investigates the
effectof using an uncertain (inexactly known), step-like test
signaL An approach is developed here for determining the
s)'stematic uncertainties of the frequency response estimate
of a device under test (DUT), when it is estimated from the
response of the DUT to the uncertain, step-like test signal.
The timc-domain uncertainties of the test signal, and those of
the DUT response, are converted to the frequency domain
and processed, resulting in uncertainties for the frequency
responseof the DUT. Also,a mathematical proof is provided
for the "envelope-modulation" method of calculating the
s)'stematic uncertainties of a frequency response estimate of
a device,as derived from the uncertain response of the device
to an ideal step.

I. INTRODUCTION

Previous research has shown that the frequency responses of

filters,digital oscilloscopes. analog-to-digital converters (ADCs),
and linear systems in general can be estimated effectively from
discrete-time step response measurements (e.g., [1-5]). Earlier
studies have analyzed error sources that can affect the fTequency
response estimates, such as noise, jitter, aliasing, and derivative
estimation errors. In addition to these error sources. it is

important to know the uncertainties of the estimated fTequency
content of the step-like test signal. If known or bounded, these
uncertainties can be used to determine the resulting uncertainties
in frequency response estimates of OUTs that are measured using
the step-like test signal. In a recent paper [6], we examined the
fIrStpart of this problem, namely. determining the uncertainties of
the estimate of the equivalent frequency response of a step-like
signal generator. based on the systematic uncertainties of a time-
domain measurement of its output (Fig. 1). By "equivalent
frequency response," we mean the frequency response of the
linearnetwork that would produce the step-like signal in response
to an ideal input step. The present work outlines a method for
solving the second part of the problem, computing the systematic
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uncertainties of the estimated frequency response of a OUT when
the Wlcertainstep-like signal is the test input. By "uncertain:' we
mean that the signal is not known with complete certainty: the
measurement system that is available can only measure or
estimate the signal to within some uncertainties.

In [6], we developed two methods of determining the systematic
uncertainties of the equivalent frequency response of a step-like
signal generator. Of these, the so-called "envelope-modulation"
method warrants further attention because it was offered without

proof, but it produces smaller frequency response uncertainties.
A mathematical proof of the envelope-modulation method is
provided in this paper. in the Appendix. Because of its smaller
uncertainties, that method is preferred, and is used in the present
work.

The main contribution of this work is outlining the application
of the envelope-modulation method to the practical problem of
finding the uncertainties of the estimate of the frequency
response of a OUT from its response to an uncertain, step-like
signal produced by a given signal generator. This application was
sketched out at the end of [6]. The step-like-signal generator is
modelled as an ideal step generator in series with a network
having frequency response G(f). The output of the
step-like-signal generator is carefully measured, and the
systematic measurement uncertainties are estimated. By
differentiation and Discrete Fourier Transform (OFT), and use of

the envelope-modulation method, an estimate of G(t) with
systematic uncertainties is produced. Then the generator is
connected to the input of the OUT whose fTequency response,
H(f), we wish to know (Fig. 2a). The OUT might be, for
example. a filter, amplifier, attenuator. oscilloscope, or an ADC.
The response of the OUT to the step-like input is carefulJy
measured, and the systematic measurement uncertainties are again
estimated. By differentiation, OFT, and using the envelope-
modulation method. an estimate of an equivalent frequency
response (G(f).H(f)) with systematic uncertainties is produced.
Using that result. and the estimate of G(f), an estimate of H(t) is
reconstructed (i.e, deconvolved [7], from the time-domain
perspective). The uncertainties are processed appropriately, and
the result is an estimate of the OUT ftequency response H(t) with
systematic magnitude and phase uncertainties (Fig. 2b).
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II. BACKGROUND

A step-like-signal generator can be modeled as an ideal step
generator in series with a linear network, as shown in Fig. Ia. The
network has frequency response G(t). The network represents the
physical realization of the generator, and is a useful model only for
certain purposes: while its output can always be represented as the
result of such a combination, it is unlikely that the signal
generator is in fact a linear system.

The output of the step-like-signal generator, s.(t), is carefully
measured using measurement system A to be sam[n]= \n (nT),
where T is the sampling period and there are M points in the data
record (Fig. I a). T and M are set according to the allowable
aliasing error[I,4], the required resolution of the trequency
response estimate (6f=11MT), and the requirement that the step-
like signal be virtually completely settled at the beginning and end
of the recorded time epoch, to avoid spectral leakage errors [5]~
this is discussed further in Section III.

The systematic uncertainties of sam[n].\l,p.[n] and u.am.[n],are
assumed to be determined correctly (Fig. Ib), such that they
enclose the measurement error, e.[n], with acceptable confidence
but are not too large

Sgn,[n]+usgmJn] ~ sin1) s:Sgm[n] +usgmJn],

esg[n] = Sgn,[n]- s/n1),

usgmJn] ~ -esg[n] s: usgmJn],

where ulI[PITI-[n]s; 0 and u88JD+[n]~ O. Note the negative sign in front

of e.[n] in (3) due to the way it is defined in (2). Determining
u_gm.[n]and l\gm.[n]properly is a significant problem (e.g., [8])
that we do not venture to solve here. To minimize the

tmcertainties,it is assumedthat sam[n] has been corrected as much
as possible for any known linear. nonlinear, impedance, or
timebascerrors (e.g.. [7.9-11]) of measurement systemA. These
cOlTections are important, because small time-domain
uncertainties can produce significant frequency-domain
uncertainty. as shown in [6]. The uncertainties uegm.[n]and
u.am.[n] then enclose any remaining systematic errors of the
measurement system, resulting for example trom imperfect
correctionforits impulse response. or uncorrectible nonlinearity.
Uncertaintiesdue to aliasing,derivative estimation, and random
etTorsourcesshouldbe handledseparately,by stochasticor other
means [1,4,6].

The signal sam[n]is differentiated in discrete time[I,4,12].
yieLdinggm[n). The OFT of ~[n], normalized by T, is the
estimateof O(t):

O','1(

}..{-I

G",(h> =TE gm[n] .exp( -j21tknIA1),n-o
for k =O,f:I,f:2,...,f:(M/2).

(4)

Note that Gm(fk)is only available at discrete frequencies f1;:

k

It= Mr.
(5)

(I)

The systematic magnitude and phase uncertainties of 0m(f.J.
UIJGm(fk) andUcj>Gm(fk), respectively, are produced from u'am.[n]
and uegm.[n]by the envelope-modulation method. Note that
U11Gm(fk)andU~(fk) are both synunetric uncertainties: the
negative uncertainty for each is simply the negative of the
corresponding positive uncertainty. '
In the next section, we extend these ideas. which were presented

in [6], in order to estimate the frequency response of a OUT.

using the non-ideal but available step-like signal s,(1) as the test
input. Note that in order to produce a valid estimate of the OUT
frequency response, the step-like-signal generator should have
significantly higher performance (i.e., at least four times higher
bandwidth, shorter risetime. and shorter settling time) than that of
the OUT.

(2) III. OUT FREQUENCYRESPONSE ESTIMATION

(3)
To estimate the OUT frequency response. H(f). the output of

the step-like signal generator is connected to the input of the OUT
(Fig. 2a). The resulting response of the OUT. Sy(t).is measured
by measurement system B. After as much correction as possible.

it is estimated to be sym[n],with systematic unce11ainties usvmJn]
and u In). As with s@J1l[n],uncertainties due to aliasing,
differcirtiation errors. and noise are to be handled separately. If
measurement system B is a part of the OUT. for instance if the

OUT is a digitizer, then determination of usyrnJn] and usymJn] is
problematic~ a linear OUT response, Sy(t),may not exist, so that
uncertainties of measuring it cannot be defined. In such a case, we
recommend setting uf)'lll.[n]= uaym+[n]= O. and to note having done
that with the results.

For mathematical simplicity in later calculations, it is best if Sy(t)
is measured using the same number of points M and sampling

period T that are used to measure s,(1), thus assuring that YIII(t)
and Gm(t) are known at the same set of discrete frequencies, J" .
However, that requires that M and T are set such that S (1)and

Sy(t) are both sampled with acceptably low aliasing[l,4]. fhat the
required resolution of the final frequency response estimate

(,1f= l/MT) is achieved, and that both s.(O and Sy(t)are vil1ually
completely settled at both the beginning and end of the data
records. to avoid spectral leakage errors [5]. Therefore. it may
be necessary to sample S (t) and S (t) with different sampling
periods and record lengt~s. and ~hen use interpolation and

decimation to assure that ~(f) and Y m(t) are determined at the
same set of discrete frequencies. fk. For simplicity. we assume

, here that sgm[n] and syt,,[n] have the same values ofM and T.
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The response of the OUT, sym[n],is differentiated. Fourier-
transfonned.and normalizedby T, yieldingYm(fk):

M-l
Ym(h) = T L Ym[n].exp( -j21tknlM).o

where ym[n] is the discrete-time differentiation of ~ [n]. Again
using the envelope-modulation method, the systematic magnitude
and phase uncertainties of Ym(fJ are determined: U11Ym(fk) and

Utym(fk), respectively.
G..(fJ can then be extracted from Ym(fk)using deconvolution

methods, to yield the estimate of H(f)

If ",(he) = Ym(he) R(he)
Gm(he) ,

where R(fk) is a regularization operator that is determined
according to the nature of 0m(fk)and Ym(fk) [7.13]. R(fk) is
essentiallyunity within the passband of 0m(fk)' which should
include the frequenciesof interest in detennining H...(fk),if the
criteriain Section II are followedregardingselection of the step-
likesignal generator.

IV. FREQUENCYRESPONSE UNCERTAINTIES

The systematicmagnitude and phase uncertainties of ~(fk),
which areUIJHm(fk)and U4»Hm(fk).respectively, are determined by
processingUQGm(fk), Ucf>Gm(fk),UIIYm(fk),and U4»Ym(fk), in
correspondence with the deconvolution calculation in (7).
Regarding magnitude uncertainties, if we try to find the
lU1certaintyon 1~(fJI by including magnitude uncertainties in (7),
we get an expression like

IYm(he) I + UIIYm(h) IR(h)l.
IHnr(J~)1+ Ull1fm(h)::: I~ m(he) I- UIIGm(h~

Ifwe constrain our interest to the area well within the passband of

Gm(f.J. where IGm(f,,) I»U1\Gm(fk), we can use a Taylor series
approximation for the fractIon in the righthand side of (8).

Combining the uncertainties U11Gm(f,) and UIIYm(fk) via
root-sum -of-squares yields

[ ( )

2

( )

2

]

(112)

U = H UIIYm<h) + UIIGm<h)

II/fm<h) I m<h)1 IYm<h)I IGm<h)I . (9)

Note that where the asswnption IGm(fk)I»U11Gm(fk) is not valid,
detennining ~m(fk) is more complicated.

Ifphase uncertainties are similarly included in (7), calculations
with phasors yield the systematic phase uncertainty for ~(fk)

r I
I

U4»Hm(h) ={(V4»Ym(h)f+ (V 4»Qm(h)\2 fll2). (10)

(6)

(7)

As implied earlier, in the case where the OUT is a digitizer or

oscilloscope, the tenns UIIYm(fk)and U4IYm(fk)are neglected in
the equations above.

To determine the total uncertainties of ~(fk), the systematic

uncertaintiesU1[Gm(fk),Ucf>Gm(fL),UIIYm(fk).and U4IYm(fle)can be
augmented, pnor to the calculations (9) and (10), with the other
significantfi-equency-domain uncertainties of estimating G(t) and
Yet). These other uncertainties may be due to aliasing. derivative
estimation errors, and noise, and should have been determined

separately as suggested above. The uncertainties can be
combined by methods such as in [14].

V. DISCUSSION

We have proposed a method of determining the systematic

magnitude and phase uncertainties, UIIHm(f,,)and U4II-Im(f,,),
respectively, of a OUT frequency response estimate, H.n(f\:),that
is calculated from the response of the OUT to an uncertain,
step-like input signal. This method may be applied to the
estimation of the frequency responses of OUTs such as filters,
amplifiers, attenuators, digitizers, oscilloscopes, and ADCs. It is
worth reiterating that in the case of the latter three types of OUTs,
where measurement system B is a part of the OUT, detelmining

theuncertainties usymJn]and usymJn] maybe problematic, in that
an actual linear response Sy(t) may not exist. In that case, we

recommend setting uS)111Jn]= usymJn] = 0, and noting that with
the test results ( ~(fk), Uill-Im(fie)' and UcjIHm(fk)).
A [mal note is that the concepts presented here are extensible to
impulse-like signals [15,16].

(8)
APPENDIX

This appendix contains the mathematical proof of the p311of the
envelope-modulation method that was empilically deIived in [6].
Assume we have the situation shown in Fig. Ia, with a petfect step
signal that is the input to the network G(t); the output is best
estimated to be sgm[n]. The negative of the measurement en.or,
-e [n], defined in (2), is enclosed by properly detennined

un~rtainties usgmJn]andusgmJn] (Fig. Ib). Thepoint-by-poinl
uncertainty average, uavfn],and the halved difference, uhAn], are

uav[n] = (usgmJn] + usgmJn])/2,

uhJn] = (usgmJn] - usgmJn])l2.

(A.I)

(A.2)

The unproved, empilieally-derived assumption of the
envelope-modulation method is[6]: the magnitude of the Fourier
transform of esg[n] is always less than or equal to the sum
ofIUhd[O]I, the magnitude of the DC component of the Fourier
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transfonn ofl1twJ[n],plus the magnitude of the Fdwier transfonn of
uev[n]

IEsg[k] I ~ IUNAO] I + IU QV[k] I-
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This assumptionis proved below.
Note that u.v[n] marks the centerline of the uncertainty

envelope, while ~[n] is always nonnegative and is half of the
width of the envelope at sample n. Let r[n] be the difference
betweenthe negativeof the error, -e.[n], and u.v[n]

r[n] = -esg[n] - u~n].

Using (A.4) in (3), and then (A.I) and (A2), yields

Ir[nJi~ u,Jn].

The magnitude of the DFT of the error is

!

M-l .. J
\Esg[k]1 = ~(esg[n))-exp( -j21tknIM1

I

M-l

I= ~(-r[n]-uQV[n))-exp( -j21tknlM).

Using the Triangle Inequality with (A.6), we see that

1E"lkll ~ ~ r1nl'exp(-j21tkn1M)1

I

M-t

I+ ?; uQV[n]-exp( -j21tknlM) .

It C

I

:talSO be shown using th

l

e Triangle Inequality that

~r[n] 'ex1>(-j21t/mIM)
M-I M-l

s; L Ir[n]'exp(-j21t/mIM)1 =E Ir[nJI
n-o n-o.

and using (A.S) gives

M-I M-t

L Ir[n] I s; L u,Jn] = U"JO].
n-o n-o

..:

Combining(A.7), (A.8), and (A.9) proves (A.3)

IESg[k] I s; IU,JO] I + IU QV[kJl.

[I)

(A.9)

(A.10)
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