
Proceedings of IDETC/CIE 2005:
ASME 2005 International Design Engineering Technical Conferences

& Computers and Information in Engineering Conference
September 24-28, Long Beach, CA

DETC 2005-84038

DISCRETE FOURIER SERIES APPROXIMATION TO PERIODIC SOLUTIONS OF
AUTONOMOUS DELAY DIFFERENTIAL EQUATIONS

 David E. Gilsinn

Mathematical and Computational Sciences Division
National Institute of Standards and Technology

Gaithersburg, MD 20899-8910

ABSTRACT
This paper describes the algorithmic details involved in

developing high-order Fourier series representations for
periodic solutions to autonomous delay differential equations.
Although the final approximate Fourier coefficients are
computed by way of a nonlinear minimization algorithm, the
steps to set up the objective function are shown to involve a
sequence of matrix-vector operations. By proper coordination,
these operations can be made very efficient so that high-order
approximations can be obtained easily. An example of the
calculations is shown for a Van der Pol equation with unit delay

NOMENCLATURE
a = vector of unknown Fourier coefficients
b = vector of residual Fourier coefficients
f = differentiable function
h = discrete delay
r = residual bound
t = scaled time vector
x = state variable
xm = approximate state variable
A = coefficient matrix for perturbed state variable
B = coefficient matrix for perturbed delay state

variable
R = residual state
U = monodromy operator
Z = fundamental solution of variational equation

pγ = norm of p-th derivative of f

pσ = bound function for approximate Fourier

coefficients
ω = unknown frequency

INTRODUCTION

Numerically approximating a solution to a delay
differential equation has been studied by many authors. See, for
example, Engelborghs et al. [1], Paul [2], Shampine and
Thompson [3], Willé, D. R. and Baker, C. T. H. [4]. However,
some problems require knowledge of a representation of the
periodic structure of a high-order approximate solution to a
differential equation. The need for this form of representation
has arisen in cases where several authors have been able to
show that under certain conditions there exist exact periodic
solutions for differential equations and functional differential
equations in a computable neighborhood of the approximate
solution, e. g. a Galerkin approximation. For some of these
results see Cesari [5], Stokes [6,7], and Urabe [8]. An
application of one of the results due to Stokes [7] has been
reported by Gilsinn [9] for delay differential equations.

To the author’s knowledge there have been few reports on
procedures to develop representations of solutions to delay
differential equations. MacDonald [10] has applied harmonic
balance to special cases. Poincaré-Lindstedt methods have been
used by Casal and Freedman [11] and Morris [12]. However,
the methods described in these papers do not lend themselves
easily to developing high-order approximations.

In this paper we extend to a class of autonomous delay
differential equations a method used by Urabe and Reiter [13]
to construct high-order trigonometric approximations to
periodic solutions of nonautonomous ordinary differential
equations. In particular, we wish to show that by a careful
organization of operations we can structure the computation in
an efficient matrix-vector form. Current compilers, e. g.
FORTRAN 90/95, and processing systems, such as MATLAB,

 1 Copyright © #### by ASME

provide high performance computing capability that allows
vectorized matrix-vector operations. The approach to
approximations presented here allows for potentially very high-
order approximations.

The paper is divided as follows. We first describe the class
of problems we consider and develop the form of the
determining equations. Then we develop the vectorization steps
for evaluating the coefficients for the approximate
representation. Next, we estimate the approximation error
through the residual. We then consider one approach to
estimating the stability of the approximate solution. Finally, we
examine a number of cases of approximate solutions to a Van
der Pol equation with delay.

CONSTRUCTING THE DETERMINING EQUATIONS
We will consider the class of autonomous delay differential

equations of the form
()((), ()) 1x x X x t h x t h+ = − −

where We assume that X is
sufficiently differentiable. It is known that solutions exist and
are unique if continuous, initial-condition functions are
specified on the delay interval [, , see Hale [14]. In order
to simplify the notation, we normalize the delay to unity. This
can be done by substituting for t. Furthermore, since the
period is unknown in Eq. (1) we can introduce a normalized
period of

, , (0,0)x X R X∈ 0.=

]0h−

th

2π by replacing t by /t ω , where ω is an unknown
frequency. Then we can put (1) in the form

()2 ((), ()). 2x x X x t x tω ω ω+ = − −

 Thus, in the process of developing an approximate periodic
solution we also approximate the frequency. For illustration,
below we use the Van der Pol equation with

2((), ()) (1 ()) ()X x t x t x t x tω ω ωλ ω ω− − = − − −
 In order to determine the frequency we need to constrain
one of the coefficients of our representation. Since we will be
using finite trigonometric polynomials we will set the most
significant sine term coefficient to zero. We then write the
trigonometric polynomial as

[] ()2 2 2 1
2

() cos cos sin 3
m

m n n
n

x t a t a nt a nt−
=

= + +∑

where we look for a periodic solution around the origin. We
will set 1a ω= for the unknown frequency. The first and
second derivatives of the trigonometric polynomial become

[]2 2 1 2
2

2 2
2 2 2 1

2

() sin cos sin (4)

() cos cos sin

m

m n n
n

m

m n n
n

x t a t na nt na nt

x t a t n a nt n a nt

−
=

−
=

= − + −

⎡ ⎤= − + − −⎣ ⎦

∑

∑

 The residual of Eq. (2) is

()2
1 1(,) () () ((), ()) 5m m m mR t a a x t x t X x t a x t a= + − − − 1

where Expanding Eq. (5) in discrete
Fourier series gives

1 2 2(, , ,)T
ma a a a=

2

0
1

2

0

1
(,) [sin (,) sin

cos (,) cos] (6)

m

n

R t a nt R s a nsds

nt R s a nsds

π

π

π =

=

+

∑ ∫

∫

If we equate Eq. (6) to zero, the determining equations can be
written as

2

0

2

2 1 0

2

1
() (,) cos

1
() (,) sin 0 (7)

for 1, 2, , .

0

n

n a R s a nsds

a R s a nsds

n m

R

R

π

π

π

π−

=

= =

=

=∫

∫

If this set of 2m determining equations in 2m unknowns has a

solution (1 2 2, , , T
ma a a a=) , the trigonometric polynomial

[] ()2 2 2 1
2

() cos cos sin 8
m

m n n
n

x t a t a nt a nt−
=

= + +∑

will be taken as an approximate periodic solution of Eq. (2) of
period 2π with approximate frequency 1aω = .
 The key to vectorizing an algorithm to solve the
determining equations Eq. (7) rests on a vectorizable
representation of the integrals in Eq. (7). For this we use a
result proved by Urabe and Reiter [13].

THEOREM: Let ()f t be a p-times (p 1) continuously
differentiable periodic function with period

≥
2π and let its

Fourier series be

[]1 2 2 1
1

() cos sinn n
n

f t a a nt a nt
∞

+
=

= + +∑ .

Set

()
1

2 22

0

1 ()
2

p
p f t dt

π
γ

π
⎡ ⎤= ⎢ ⎥⎣ ⎦∫ .

Then, for any positive integer , N
2

1
1

2

2
1

2

2 1
1

1 () (1)
2

1 ()cos 2 (1)
2

1 ()sin 2 (1)
2

N

i p p
i

N

n i i p p
i

N

n i i p p
i

a f t N
N

a f t nt N
N

a f t nt
N

γ σ

γ σ

γ σ

=

=

+
=

− ≤ −

− ≤

N

−

− ≤ −

∑

∑

∑

 2 Copyright © #### by ASME

for 1,2, , 1,n N= −
2 1 ,
2i
it
N

π−
=

for , and 1,2, ,2i N=
1
22(1) (1)

2 1
p

p N N
p

σ
− +

− < −
−

.

This theorem implies that for a sufficiently fine mesh specified
by { }: 1, ,2it i N= in [0,2]π the determining equations

can be written as

2 1

2

2

1

2

1

()

1
() (9)

for 1,2, ,

1 (,)cos 0

(,)sin 0n

n

N

i i
i

N

i i
i

aR

a
N

n m

R t a nt
N

R R t a nt
−

=

=

=

=

=

=

=

∑

∑

for
2 1 ,
2i
it
N

π−
=

for , and For a more complete
discussion of the interpolative ability of finite Fourier series see
Dahlquist and Björck [15], Hamming [16], or Stoer and
Bulirsch [17].

1,2, ,2i N= 1.N m≥ +

 Equation (9) can then be used to find an approximation for
the vector by a minimization process, such as a

2
2

2
min () (10)

m

ka k

R a
=
∑

There are existing high-quality software packages that are
optimized to perform such minimization. Our object in this
paper is to indicate how the determining equations Eq. (9) can
be efficiently vectorized. Since the functions Eq. (9) are
evaluated for each iteration of it is important that their
evaluation be as efficient as possible.

a

VECTORIZATION ISSUES

The significance of the formulation of the determining
equations in Eq. (9) is that the various operations can be written
in matrix-vector form. In this section we assume that the
optimization package used requires a user-supplied subroutine
function that would take the vector of parameters and
produce the vector

a

()2 2() (), , () (11)T
mR a R a R a=

Such packages exist so this is not a constraining assumption.
 Our objective in this section is to produce the basic
vectorization steps needed to create Eq. (11), given an a . To
start, we suppose a user has specified the number m of
harmonics desired in Eq. (3), the trigonometric polynomial for

()mx t . We also assume a mesh index N is specified with

. In describing the steps we will use the notation of
MATLAB as well as in Golub and VanLoan [18].

1N m≥ +

 There are several quantities in Eq. (9) that need only be
computed once. These can be done in the main calling program
and be declared as global quantities or placed in a module in
FORTRAN 90/95 and accessed by a USE statement in the
subroutine that computes the vector ()R a .
 The first vector that should be produced in the main
program is the mesh vector t. This can be done easily with the
three statements
 N2 = 2*N;
 i = (1:N2)’;
 t = (1/N2)*(2*i-1)*pi;
The second statement produces a column vector from 1 to N2.
The third produces a column vector from to . Once the
mesh vector is generated, four matrices can be formed.

1t 2Nt

 The first matrix that can be formed in the main program is
associated with the determining equations Eq. (9). These
equations can be written in matrix-vector form as

R = CS’*r (12)
where the prime designates transpose and

1 2 2

2
1 1

(, , ,)

(,) () () ((), ())
for 1, , 2

T
N

i i m i m i m i m i

r r r r

r R t a x t x t X x t a x t a
i N

α

=

= = + − − −

=

1 2 2

1 2 2

1 2 2

1 2 2

1 2 2

1 2 2

sin sin sin
cos cos cos
sin2 sin2 sin2
cos2 cos2 cos2 (13)

sin sin sin
cos cos cos

N

N

N

N

N

N

t t t
t t t
t t t

CS t t t

mt mt mt
mt mt mt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

The vector r is calculated in the function subroutine for ()R a
and we will consider this vector below. The matrix CS can be
computed once in the main program and passed to the
subroutine as a global array. The portion of the script given
below depends on the fact that the intrinsic functions for sine
and cosine can be applied to an array. This feature is available
in MATLAB and FORTRAN 90/95.
 m2 = 2*m;
 m2m1 = m2-1;
 j = (1:m)’;
 tm = t*j’;
 cm = cos(tm);
 sm = sin(tm);
 CS(1:N2,1:2:m2m1) = sm;
 CS(1:N2,2:2:m2N2) = cm;

 3 Copyright © #### by ASME

The second line applies t to the transpose of j to form the
array 2m N×

1 2

1 2

1 2

2 2
N

N

N

t t
t t

mt mt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 The next matrix of interest is associated with ()mx t in
Eq. (3). We can write Eq. (3) over the mesh t as

0* (14)xm M a=
where

()1 2(), , () T
m m Nxm x t x t=

1 1 1 1 1

2 2 2 2 2

0 cos sin2 cos2 sin cos
0

0 cos sin2 cos2 sin cosN N N N

t t t mt mt
M

t t t mt mt

⎡ ⎤
⎢=⎢
⎢⎣ N

⎥
⎥
⎥⎦

 (15)

We can compute M0 as follows
 M0(1:N2,1) = 0;
 M0(1:N2,3:2:m2m1) = sm(1:N2,2:m);
 M0(1:N2,2:2:m2) = cm.
This same matrix can be used to compute

(), 1, , 2.m ix t i N= We do this by defining a global work
column array in the main program of length m2 and setting it to

2 2 2 2
2 3 4 2 1 2(0, , 2 , 2 , , ,) .T

m mW a a a m a m a−= − − − − −
 We will discuss an efficient procedure for creating this
vector below. The computation of the second derivative is them
simply

0* (16)xmdd M W=

 Next, 1(m)x t a− can be computed using the array CS in
Eq. (13). We can write

_ *xm delay CS b= (17)

)

)

where

(1 1 2 1

2 1

2 1

3 1 4 1

3 1 4 1

2 1 1 2 1

2 1 1 2 1

_ (), , ()

sin
cos

cos2 sin2
sin2 cos2 (18)

cos sin
sin cos

T
m m N

m m

m m

xm delay x t a x t a

a a
a a

a a a a
b a a a a

a ma a ma
a a a ma
−

−

= − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+
⎜ ⎟

= − +⎜ ⎟
⎜ ⎟
⎜ ⎟

+⎜ ⎟
⎜ ⎟− +⎝ ⎠

We will discuss the efficient computation of b below. Forming

1(m ix t a− can be done in a similar manner. In this case

_ * (20)xmd delay CS c=
where

1 1 2 1 2 1

2 1

2 1

3 1 4 1

3 1 4 1

2 1 1 2 1

2 1 1 2 1

_ ((), (), , ())
cos
sin

2 sin 2 2 cos2
2 cos 2 sin (21)

sin cos
cos sin

T
m m m N

m m

m m

xmd delay x t a x t a x t a
a a
a a

a a a a
c a a a a

ma ma ma ma
ma ma ma ma

−

−

= − − −

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥= +⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥+⎣ ⎦

 For each call to the function that produces ()R a , each of
the vectors W, b, and c must be formed. The forming of each
of the vectors depends on the operations with which each is
composed. We will consider the efficient computation of each
of the vectors in turn.

 We assume the vector is available

to the function

()1 2 2, , , T
ma a a a=

()R a . We initialize the work array W and two
more column work arrays W1 and W2 of length 2m to zero in
the main program and pass them as global arrays. We can
initialize the vectors to zero in the main program by
 W = zeros(m2,1);
 W1 = zeros(m2p1,1);
 W2 = zeros(m2,1);
Instead of defining extra arrays b and c we will reuse W. We
can also initialize some other arrays and variables in the main
program as
 mv = (1:m)’;
 mvsqr = mv.*mv;
 m2 = 2*m;
 m2m1 = m2 – 1;
and pass them as global values also.
 In the function for ()R a we can immediately compute xm
in Eq. (14) as
 xm = M0*a;
To compute xmdd in Eq. (16) we compute the array W as
 W(1:2:m2m1,1) = -mvsq.*a(1:2:m2m1,1);
 W(2:2:m2,1) = -mvsq.*a(2:2:m2,1);
The dot-asterisk operation takes two vectors of the same length
and creates a new vector of the same length with each element
of the new vector equal to the product of the same element
entries of the two vectors in the product. Thus if w = u.*v then
w(i) = u(i)*v(i). This operation is defined in MATLAB.
Although it is not defined as an intrinsic operation of
FORTRAN 90/95, there is a facility to create user defined
operations by using an INTERFACE OPERATOR block. We

 4 Copyright © #### by ASME

should note that the first element in W when multiplied by M0
will produce a zero. It is more efficient to leave it in W than to
expend extra operations to create a zero there.
 We can generate b in Eq. (17) using the work arrays W, W1
and W2 as follows. We first break b in Eq. (18) into the sum of
two vectors

3 1

3 1

2 1 1

2 1 1

0
0

cos 2
sin 2

cos
sin

m

m

a a
a a

a m
a ma

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a

and

2 1

2 1

4 1

4 1

2 1

2 1

sin
cos
sin 2
cos 2

sin
cos

m

m

a a
a a
a a
a a

a ma
a ma

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

To form xm_delay in Eq. (17) we compute as follows. Note the
reuse of the work arrays.
 smva = sin(mv*a(1,1));
 cmva = cos(mv*a(1,1));
 W(1,1) =0;
 W(2,1) = 0;
 W1(4:2:m2,1) = -a(3:2:m2m1,1);
 W1(3:2:m2m1,1) = a(3:2:m2m1,1);
 W2(1:2:m2m1,1) = cmva;
 W2(2:2:m2,1) = smva;
 W = W1.*W2;
 W1(1:2:m2m1,1) = a(2:2:m2,1);
 W1(2:2:m2,1) = a(2:2:m2,1);
 W2(1:2:m2m1,1) = smva;
 W2(2:2:m2,1) = cmva;
 W = W + W1.*W2;
 Xm_delay = CS*W;
We can form xmd_delay in Eq. (21) in a similar manner. We
break c into the sum of two vectors

3 1

3 1

2 1 1

2 1 1

0
0

2 sin 2
2 cos 2

sin
cos

m

m

a a
a a

ma ma
ma ma

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and

2 1

2 1

4 1

4 1

2 1

2 1

cos
sin

2 cos 2
2 sin 2

cos
sin

m

m

a a
a a
a a
a a

ma ma
ma ma

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥
⎢ ⎥⎣ ⎦

Then, to form xmd_delay in Eq. (21) we can write using W2
from the previous calculation
 W1(1,1) = 0;
 W1(3:2:m2m1,1) = mv(2:m).*a(3:2:m2m1,1);
 W1(2:2:m2,1) = W1(1;2:m2m1,1);
 W = W1.*W2;
 W1(1:2:m2m1,1) = -mv.*a(2:2:m2,1);
 W1(2:2:m2,1) = -W1(1:2:m2m1,1);
 W2(1:2:m2m1,1) = cmva;
 W2(2:2:m2,1) = smva;
 W = W + W1.*W2;
 Xmd_delay = CS*W;
Finally, we can form the residual vector R(a) by setting
 r = (a(1,1)*a(1,1)*xmdd+xm+a(1,1)*lambda…
 (xm_delay.*xm_delay – 1).*xmd_delay;
 R = CS’*r;
Where the three dots at the end of the line represent a a line
continuation. The objective function for (10) can be formed by
 y = sum(R.*R);
where y is the scalar returned by the function R(a) to the
minimization routine.

ESTIMATING THE RESIDUAL

We wish to estimate a value for r such that

()2
1 1() () (), () (22)m m m mr a x t x t X x t a x t a≥ + − − − 1

for [0,2].t π∈ The overbar is used to represent the estimated
solution and parameters.
 In this section and the next, we will present the general
methods and not detail the possible vectorization steps that

 5 Copyright © #### by ASME

could be used. In general, they would be similar to those in the
previous section.
 Let

()2
1 1() () () (), () . (23)m m m mR t a x t x t X x t a x t a= + − − − 1

To estimate the value of r we can consider the approximate
trigonometric polynomial

()
0

2 2 1
1

() cos sin (24)
m

n n
n

R t b nt b nt+
=

≈ +∑

for some large positive integer . As in the second section
the coefficients are approximated by

0m

2

2
1

2

2 1
1

1 ()cos (25)

1 ()sin

N

n i i
i

N

n i i
i

b R t nt
N

b R t nt
N

=

+
=

=

=

∑

∑

for 0 01, 2, , , 1,n m N m= ≥ +
2 1
2i
it
N

π−
=

for Then we estimate the r in Eq. (22) by 1, 2, , 2 .i = N

()
0

2 2 10 2 1

max cos sin (26)
m

n nt n

b nt b nt
π +≤ ≤

=

+∑

An obvious upper bound for Eq. (26) is given by

()
0

2 2 1
1

(27)
m

n n
n

b b +
=

+∑

but refined meshes for [0, 2]t π∈ could lead to a better
estimate in Eq. (26).

STABILITY OF THE APPROXIMATE SOLUTION

The stability of the approximate periodic solution is
determined by the characteristic multipliers of the variational
equation with respect to the approximate solution.
Characteristic multipliers for delay differential equations have
been computed by several authors. See Butcher et al. [19] and
Luzyanina and Engelborghs [20], for example. For this paper
we will use a method proposed by Gilsinn [9] based upon
representing the monodromy operator in terms of a variation-
of- constants formula developed by Halanay [21].

For the class of equations considered here the variational
equation about the approximate solution is given by

() () () () () (28)z t A t z t B t z t ω= + −
where

() ()

2

2 2
1 2

0 1
()

1/ 0

0 0
()

1/ ((), ()) 1/ ((), ())

At

B t
X x t x t X x t x t

ω

ω ω ω ω ω

⎡ ⎤
=⎢ ⎥−⎣ ⎦

ω

⎡ ⎤
=⎢ ⎥

− − − −⎢ ⎥⎣ ⎦

The subscripts to X represent the partial derivatives with
respect to the first and second variables, respectively. Clearly

() (2), () (2).A t A t B t B tπ π= + = +
 Let (,)Z t s be the fundamental solution of Eq. (28) such
that (,) , (,) 0 for .Z s s I Z t s t s= = < Define the operator

()() (2) (29)U s z sφ π= +
where φ is the initial continuous function on [,0]ω− . The
eigenvalues of U are the characteristic multipliers (Halanay
[21]). Furthermore Halanay [21] has shown that the operator U
can be written as

0

()() (2 ,0) (0)

(2 ,) () () (30)

U s Z s

Z s B d
ω

φ π φ

π α ω α ω φ α α
−

= +

+ + + +∫
We can approximate the operator equation by discretizing
[,0]ω− into k equal intervals by 1 1 0ks sω +− = < < =

and setting the interval as / .kω∆ = U is then represented by

a matrix ijU⎡ ⎤⎣ ⎦ where for 1, , 1, 1, , ,i k j= + = k

.(2 ,) ()ij i j jU Z s s B sπ ω ω= + + + ∆

For 1, , 1, 1,i k j k= + = +

, 1 1 1 1(2 ,) (2 ,) ()i k i k i k kU Z s s Z s s B s .π π ω ω+ + + += + + + + + ∆

The fundamental solution can be computed numerically using,
for example, the program of Shampine and Thompson [3], or
by other means as discussed earlier.

EXAMPLE

For an example of the approximation process described in
the previous sections we consider the Van der Pol equation with
unit delay

()2() () 1 (1) (1). (31)x t x t x t x tλ+ = − − −

As before, we introduce an unknown frequency and write Eq.
(31) in the form

()2 2() () 1 () () (32)x t x t x t x tω ωλ ω ω+ = − − −

for []0,2t π∈ .

 We will study the effects of various values of λ and
various orders of harmonic approximation. In all of these
cases, we will estimate the residual error and compute the
characteristic multipliers relative to the approximate solution. If
the approximate solution were in fact a true periodic solution,
then one of the characteristic multipliers would be identically
one. Since we are dealing with variations about an approximate

 6 Copyright © #### by ASME

solution, however, we can expect that there may not be any
characteristic multipliers equal to one. We can still expect that
if all of the characteristic multipliers lie within the unit circle in
the complex plane, then the approximate solution is stable and
if any characteristic multiplier lies outside of the unit circle the
approximate solution is unstable (Halanay [21]).
 The results reported here were performed on a system with
a 2.4 GHz Intel Pentium 4 processor, 2 GB RAM, under a
Windows 2000, Service Pack 4, operating system. The
algorithms were coded in MATLAB 6.5.
 The first case we consider is for λ =0.01. The first
subcase is for a Galerkin expansion of 5 harmonics. Figure 1
shows the error distribution for the residual in Eq. (26).

Figure 2 shows an overlay phase plot of the Galerkin
approximate solution and the numerical solution of the Van der
Pol Eq. (32) where the frequency was set to the estimated
frequency. The numerical integration was done over a range of
8π . Although it is hard to distinguish it the Galerkin phase
plot is done in dashed lines.

For each case, for λ three harmonics cases will be examined.
The results will be summarized in a table. Table 1 represents
the summary results for the λ =0.01 case. The six rows of the
table are from top to bottom, the λ case, the harmonics in the
Galerkin approximation. T1 in milliseconds represents the sum
of the milliseconds consumed in setting up the CS and M0
matrices in the main program plus the time consumed in one
evaluation of the function called by the optimization
subroutine. T2 in milliseconds is the sum of T1 and the time it
takes to run the optimization subroutine (fminuc in MATLAB).
The fifth row is the maximum absolute value of the residual
error computed in Eq. (26). The final row is the maximum of
the absolute values of the characteristic multipliers.

λ =0.01
Harmonics

5

10

25

T1
(milliseconds)

0

10

0

T2
(milliseconds

190

1091

3044

Max. Abs.
Resid.

7.8481e-5

4.4003e-5

1.1390e-4

Max. Abs.
Char. Mult. 0.9962 0.9962 0.9961

Table 1: Summary table for λ =0.01 case showing timings,
absolute residual error and maximum absolute characteristic
multiplier.

Figure 2: Overlay of Galerkin approximation and
numerically integrated Van der Pol for λ =0.01 with
5 harmonics

Figure 1: Error distribution for 10000 samples from 0
to 2π for the Galerkin approximation residual for λ =
0.01 and 5 harmonics.

 7 Copyright © #### by ASME

The fact that T1 shows zero milliseconds indicates the
vectorization is efficient enough to evaluate all of the matrices
and vectors in less than a millisecond. That T1 is 10 in the 10
harmonic case is possibly due to a system interrupt during the
evaluations, since the other cases were zero. T2 shows the
effect of the optimization call. Note that the absolute residual
error increases at 25 harmonics along with a change in the
maximum absolute characteristic multiplier. This indicates that
there is an optimum setting for the harmonics that is less than
25. Since the maximum absolute value of the characteristic
multipliers is less than one, this indicates the approximate
solution is stable. This is clearly indicated by Figure 2 which
shows the attraction of the numerically integrated Van der Pol
equation.
 We now consider the λ =0.1 case. The only figures we
will show for the rest of the cases are the overlay figures
comparable to Fig. 2. Figure 3 shows some deforming of the
limit cycle but again the Galerkin approximate solution
overlays the numerically integrated Van der Pol equation,
although as Table 2 shows the maximum absolute residuals in
this case are larger than in the λ =0.01 case. Again, the
characteristic multipliers lie within the unit circle indicating
stability. This is indicated by the maximum absolute value of
the characteristic multipliers being less than one. Table 2 shows
that there is no distinct advantage in adding harmonics beyond
five.
 Figure 4 shows further deforming of the phase plot for the
λ =0.5 case. Table 3 shows the maximum absolute residual
increasing. The maximum absolute characteristic multiplier still
remains less than one showing that stability still holds.
 Figure 5 and Table 4 indicate that stability still holds at
λ =1.0 but Figure 6 and Table 5 show that instability begins to
occur at λ =1.14 although, even with numerical integration
over 64π , the numerical solution still remains close to the
approximate solution.

 Instability atλ =1.14 for the Van der Pol equation with
delay in the nonlinear terms is in marked contrast with the Van
der Pol equation with no delay. In that case the Van der Pol
equation is stable for large values of λ , far exceeding one.

Figure 3: Overlay of Galerkin approximation and
numerically integrated Van der Pol for λ =0.10 with 5
harmonics

λ =0.10
Harmonics

5

10

25

T1
(milliseconds)

0

0

10

T2
(milliseconds

110

641

2724

Max. Abs.
Resid.

5e-3

5e-3

5e-3

Max. Abs.
Char. Mult

0.9979

0.9979

0.9979

Table 2: Summary table for λ =0.10 case showing timings,
absolute residual error and maximum absolute characteristic
multiplier.

 8 Copyright © #### by ASME

SUMMARY

This paper has shown that approximate periodic solution
for autonomous differential equations with constant delay can
be efficiently computed by using discrete Fourier series. The
efficiency arises from the ability to write the various algorithm
operations in vector-matrix form. With existing scientific
computing languages and processors these operations can be
vectorized adding to the efficiency and speed-up of the
algorithm.

DISCLAIMER
Certain trade names and company products are mentioned

in the text or identified in an illustration in order to adequately
specify the experimental procedure and equipment used. In no
case does such an identification imply recommendation or
endorsement by the National Institute of standards and
Technology, nor does it imply that the products are necessarily
the best available for the purpose.

ACKNOWLEDGMENTS
The author wishes to acknowledge the assistance of

Christopher Copeland of Vanderbilt University for his
assistance in testing earlier versions of the algorithms described
in this paper.

Figure 4: Overlay of Galerkin approximation and
numerically integrated Van der Pol for λ =0.50 with 5
harmonics

λ =0.50
Harmonics

5

10

25
 λ

T1
(milliseconds)

0

0

0

T2
(milliseconds

121

381

2994

Max. Abs.
Resid.

0.2389

0.2459

0.2454

Max. Abs.
Char. Mult

0.9963

0.9962

0.9962

Table 3: Summary table for λ =0.50 case showing timings,
absolute residual error and maximum absolute characteristic
multiplier.

=1.00
Harmonics

5

10

25

T1
(milliseconds)

0

0

0

T2
(milliseconds

200

561

2994

Max. Abs.
Resid.

1.4980

2.2655

2.2766

Max. Abs.
Char. Mult

0.9474

0.9930

0.9930

Table 4: Summary table for λ =1.0 case showing
timings, absolute residual error and maximum absolute
characteristic multiplier.

 9 Copyright © #### by ASME

REFERENCES
[1] Engelborghs, K., Luzyanina, T., IN ‘T Hout, K. J., and
Roose, D., 2000, “Collocation Methods for the Computation of
Periodic Solutions of Delay Differential Equation,” SIAM J.
Sci. Comput., 22, (5), pp. 1593-1609.
[2] Paul, C. A. H., 1992, “Developing a Delay Differential
Equation Solver,” Applied Numerical Mathematics, 9, pp. 403-
414.

[3] Shampine, L. F., and Thompson, S., 2001, “Solving DDE’s
in MATLAB,” Applied Numerical Mathematics, 37, pp. 441-
458.
[4] Willé, D. R., and Baker, C. T. H., 1992, “DELSOL – a
Numerical Code for the Solution of Systems of Delay-
Differential Equations,’ 9, pp.223-234.
[5] Cesari, L., 1962, “Functional Analysis and Periodic
Solutions of Nonlinear Differential Equations,” 1, (2), pp. 149-
187.
[6] Stokes, A., 1972, “On the Approximation of Nonlinear
Oscillations,” Journal of Differential Equations, 12, pp. 535-
558.
[7] Stokes, A. P., 1976, “On the Existence of Periodic Solutions
of Functional Differential Equations,” Journal of Mathematical
Analysis and Applications, 54, pp. 634-652.
[8] Urabe, M., 1965, “Galerkin’s Procedures for Nonlinear
Periodic Systems,” Arch. Rational Mech., 20, pp. 120-152.
[9] Gilsinn, D. E., 2004, “Approximating Limit Cycles of a Van
der Pol Equation with Delay,” Proc. Of Dynamic Systems and
Applications, 4, To appear.
[10] MacDonald, N., 1995, “Harmonic Balance in Delay-
Differential Equations,” Journal of Sound and Vibration, 186,
(4), pp. 649-656.
[11] Casal, A., and Freedman, M., 1980, “A Poincaré-Lindstedt
Approach to Bifurcation Problems for Differential-Delay
Equations,” IEEE Transactions on Automatic Control, AC-25,
(5), pp. 967-973.
[12] Morris, H. C., 1976, “A Perturbative Approach to Periodic
Solutions of Delay-Differential Equations,” J. Inst. Maths
Applics, 18, pp. 15-24.
[13] Urabe, M., and Reiter, A., 1966, “Numerical Computation
of Nonlinear Forced Oscillations by Galerkin’s Procedure,”
Journal of Mathematical Analysis and Applications, 14, pp.
107-140.
[14] Hale, J., 1971, Functional Differential Equations,
Springer-Verlag, New York, pp. 13-23.
[15] Dahlquist, G., and Björck, Å, 1974, Numerical Methods,
Prentice-Hall, Inc., Englewood Cliffs, pp. 410-411.
[16] Hamming, R. W., 1973, Numerical Methods for Scientists
and Engineers, McGraw-Hill Book Company, New York, pp.
510-515.
[17] Stoer, J. and Bulirsch, R., 1993, Introduction to Numerical
Analysis, Springer-Verlag, New York, pp. 72-77.
[18] Golub, G. H., and Van Loan, C. F., 1989, Matrix
Computations, The Johns Hopkins University Press, Baltimore.
[19] Butcher, E. A., Ma, H., Bueler, E., Averina, V., and Szabo,
Z., 2004, “Stability of Linear Time-Periodic Delay-Differential
Equations via Chebyshev Polynomials,” International Journal
for Numerical Methods in Engineering, 59, pp. 895-922.
[20] Luzyanina, T., and Engelborghs, K., 2002, “Computing
Floquet Multipliers for Functional Differential Equations,”
International Journal of Bifurcation and Chaos, 12, (12), pp.
2977-2989.
[21] Halanay, A., 1966, Differential Equations: Stability,
Oscillations, Time Lags, Academic Press, New York, Chap. 4.

Figure 6: Overlay of Galerkin approximation and
numerically integrated Van der Pol for λ =1.14 with 5
harmonics

λ =1.14

Harmonics 5 10 25

T1
(milliseconds) 0 0 0

T2
(milliseconds 271 631 3065

Max. Abs.
Resid. 3.1132 4.2665 4.2745

Max. Abs.
Char. Mult 1.0121 1.0026 1.0025

Table 5: Summary table for λ =1.14 case showing
timings, absolute residual error and maximum absolute
characteristic multiplier.

 10 Copyright © #### by ASME

