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ABSTRACT 
This paper describes the algorithmic details involved in 

developing high-order Fourier series representations for 
periodic solutions to autonomous delay differential equations. 
Although the final approximate Fourier coefficients are 
computed by way of a nonlinear minimization algorithm, the 
steps to set up the objective function are shown to involve a 
sequence of matrix-vector operations. By proper coordination, 
these operations can be made very efficient so that high-order 
approximations can be obtained easily. An example of the 
calculations is shown for a Van der Pol equation with unit delay 

 
NOMENCLATURE 
a = vector of unknown Fourier coefficients 
b = vector of residual Fourier coefficients 
f = differentiable function 
h = discrete delay 
r = residual bound 
t = scaled time vector 
x = state variable 
xm = approximate state variable 
A = coefficient matrix for perturbed state variable 
B = coefficient matrix for perturbed delay state 

variable 
R = residual state 
U = monodromy operator 
Z = fundamental solution of variational equation 

pγ  = norm of p-th derivative of f 

pσ  = bound function for approximate Fourier 

coefficients 
ω  = unknown frequency 

 
INTRODUCTION 

Numerically approximating a solution to a delay 
differential equation has been studied by many authors. See, for 
example, Engelborghs et al. [1], Paul [2], Shampine and 
Thompson [3], Willé, D. R. and Baker, C. T. H. [4]. However, 
some problems require knowledge of a representation of the 
periodic structure of a high-order approximate solution to a 
differential equation. The need for this form of representation 
has arisen in cases where several authors have been able to 
show that under certain conditions there exist exact periodic 
solutions for differential equations and functional differential 
equations in a computable neighborhood of the approximate 
solution, e. g. a Galerkin approximation. For some of these 
results see Cesari [5], Stokes [6,7], and Urabe [8]. An 
application  of one of the results due to Stokes [7] has been 
reported by Gilsinn [9] for delay differential equations. 

To the author’s knowledge there have been few reports on 
procedures to develop representations of solutions to delay 
differential equations. MacDonald [10] has applied harmonic 
balance to special cases. Poincaré-Lindstedt methods have been 
used by Casal and Freedman [11] and Morris [12]. However, 
the methods described in these papers do not lend themselves 
easily to developing high-order approximations. 

In this paper we extend to a class of autonomous delay 
differential equations a method used by Urabe and Reiter [13] 
to construct high-order trigonometric approximations to 
periodic solutions of nonautonomous ordinary differential 
equations. In particular, we wish to show that by a careful 
organization of operations we can structure the computation in 
an efficient matrix-vector form. Current compilers, e. g. 
FORTRAN 90/95, and processing systems, such as MATLAB, 
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provide high performance computing capability that allows 
vectorized matrix-vector operations. The approach to 
approximations presented here allows for potentially very high-
order approximations. 

The paper is divided as follows. We first describe the class 
of problems we consider and develop the form of the 
determining equations. Then we develop the vectorization steps 
for evaluating the coefficients for the approximate 
representation.  Next, we estimate the approximation error 
through the residual.  We then consider one approach to 
estimating the stability of the approximate solution. Finally, we 
examine a number of cases of approximate solutions to a Van 
der Pol equation with delay. 

 
 

CONSTRUCTING THE DETERMINING EQUATIONS 
We will consider the class of autonomous delay differential 

equations of the form 
( )( ( ), ( )) 1x x X x t h x t h+ = − −  

where  We assume that X is 
sufficiently differentiable. It is known that solutions exist and 
are unique if continuous, initial-condition functions are 
specified on the delay interval [ , , see Hale [14]. In order 
to simplify the notation, we normalize the delay to unity. This 
can be done by substituting  for t. Furthermore, since the 
period is unknown in Eq. (1) we can introduce a normalized 
period of 

, , (0,0)x X R X∈ 0.=

]0h−

th

2π by replacing t by /t ω , where ω is an unknown 
frequency. Then we can put (1) in the form 

( )2 ( ( ), ( )). 2x x X x t x tω ω ω+ = − −  

       Thus, in the process of developing an approximate periodic 
solution we also approximate the frequency. For illustration, 
below we use the Van der Pol equation with 

2( ( ), ( )) (1 ( ) ) ( )X x t x t x t x tω ω ωλ ω ω− − = − − −  
        In order to determine the frequency we need to constrain 
one of the coefficients of our representation. Since we will be 
using finite trigonometric polynomials we will set the most 
significant sine term coefficient to zero. We then write the 
trigonometric polynomial as 

[ ] ( )2 2 2 1
2

( ) cos cos sin 3
m

m n n
n

x t a t a nt a nt−
=

= + +∑  

where we look for a periodic solution around the origin. We 
will set 1a ω=  for the unknown frequency. The first and 
second derivatives of the trigonometric polynomial become 

[ ]2 2 1 2
2

2 2
2 2 2 1

2

( ) sin cos sin (4)

( ) cos cos sin

m

m n n
n

m

m n n
n

x t a t na nt na nt

x t a t n a nt n a nt

−
=

−
=

= − + −

⎡ ⎤= − + − −⎣ ⎦

∑

∑
 

       The residual of Eq. (2) is  

( )2
1 1( , ) ( ) ( ) ( ( ), ( )) 5m m m mR t a a x t x t X x t a x t a= + − − − 1  

where   Expanding Eq. (5) in discrete 
Fourier series gives 

1 2 2( , , , )T
ma a a a=

2

0
1

2

0

1
( , ) [sin ( , ) sin

cos ( , ) cos ] (6)

m

n

R t a nt R s a nsds

nt R s a nsds

π

π

π =

=

+

∑ ∫

∫  

If we equate Eq. (6) to zero, the determining equations can be 
written as 

2

0

2

2 1 0

2

1
( ) ( , ) cos

1
( ) ( , ) sin 0 (7)

for 1, 2, , .

0

n

n a R s a nsds

a R s a nsds

n m

R

R

π

π

π

π−

=

= =

=

=∫

∫  

If this set of 2m determining equations in 2m unknowns has a 

solution ( 1 2 2, , , T
ma a a a= ) , the trigonometric polynomial  

[ ] ( )2 2 2 1
2

( ) cos cos sin 8
m

m n n
n

x t a t a nt a nt−
=

= + +∑  

will be taken as an approximate periodic solution of Eq. (2) of 
period 2π with approximate frequency 1aω = . 
        The key to vectorizing an algorithm to solve the 
determining equations Eq. (7) rests on a vectorizable 
representation of the integrals in Eq. (7). For this we use a 
result proved by Urabe and Reiter [13]. 
 
THEOREM: Let ( )f t be a p-times (p 1) continuously 
differentiable periodic function with period 

≥
2π and let its 

Fourier series be 

[ ]1 2 2 1
1

( ) cos sinn n
n

f t a a nt a nt
∞

+
=

= + +∑ . 

Set 

( )
1

2 22

0

1 ( )
2

p
p f t dt

π
γ

π
⎡ ⎤= ⎢ ⎥⎣ ⎦∫ . 

Then, for any positive integer , N
2

1
1

2

2
1

2

2 1
1

1 ( ) ( 1)
2

1 ( )cos 2 ( 1)
2

1 ( )sin 2 ( 1)
2

N

i p p
i

N

n i i p p
i

N

n i i p p
i

a f t N
N

a f t nt N
N

a f t nt
N

γ σ

γ σ

γ σ

=

=

+
=

− ≤ −

− ≤

N

−

− ≤ −

∑

∑

∑
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for  1,2, , 1,n N= −
2 1 ,
2i
it
N

π−
=  

for , and 1,2, ,2i N=
1
22( 1) ( 1)

2 1
p

p N N
p

σ
− +

− < −
−

. 

This theorem implies that for a sufficiently fine mesh specified 
by { }: 1, ,2it i N=  in [0,2 ]π  the determining equations 

can be written as 

2 1

2

2

1

2

1

( )

1
( ) (9)

for 1,2, ,

1 ( , )cos 0

( , )sin 0n

n

N

i i
i

N

i i
i

aR

a
N

n m

R t a nt
N

R R t a nt
−

=

=

=

=

=

=

=

∑

∑  

for  
2 1 ,
2i
it
N

π−
=  

for , and  For a more complete 
discussion of the interpolative ability of finite Fourier series see 
Dahlquist and Björck [15], Hamming [16], or Stoer and 
Bulirsch [17]. 

1,2, ,2i N= 1.N m≥ +

        Equation (9) can then be used to find an approximation for 
the vector by a minimization process, such as a

2
2

2
min ( ) (10)

m

ka k

R a
=
∑  

There are existing high-quality software packages that are 
optimized to perform such minimization. Our object in this 
paper is to indicate how the determining equations Eq. (9) can 
be efficiently vectorized. Since the functions Eq. (9) are 
evaluated for each iteration of   it is important that their 
evaluation be as efficient as possible. 

a

 
VECTORIZATION ISSUES 

The significance of the formulation of the determining 
equations in Eq. (9) is that the various operations can be written 
in matrix-vector form. In this section we assume that the 
optimization package used requires a user-supplied subroutine 
function that would take the vector of parameters  and 
produce the vector 

a

( )2 2( ) ( ), , ( ) (11)T
mR a R a R a=  

Such packages exist so this is not a constraining assumption. 
       Our objective in this section is to produce the basic 
vectorization steps needed to create Eq. (11), given an a . To 
start, we suppose a user has specified the number m of 
harmonics desired in Eq. (3), the trigonometric polynomial for 

( )mx t .  We also assume a mesh index N is specified with 

. In describing the steps we will use the notation of 
MATLAB as well as in Golub and VanLoan [18]. 

1N m≥ +

        There are several quantities in Eq. (9) that need only be 
computed once. These can be done in the main calling program 
and be declared as global quantities or placed in a module in 
FORTRAN 90/95 and accessed by a USE statement in the 
subroutine that computes the vector ( )R a . 
        The first vector that should be produced in the main 
program is the mesh vector t. This can be done easily with the 
three statements 
                                   N2 = 2*N; 
                                   i = (1:N2)’;                             
                                   t = (1/N2)*(2*i-1)*pi; 
The second statement produces a column vector from 1 to N2. 
The third produces a column vector from  to .  Once the 
mesh vector is generated, four matrices can be formed.  

1t 2Nt

        The first matrix that can be formed in the main program is 
associated with the determining equations Eq. (9). These 
equations can be written in matrix-vector form as 

R = CS’*r                                 (12) 
where the prime designates transpose and 

1 2 2

2
1 1

( , , , )

( , ) ( ) ( ) ( ( ), ( ))
for 1, , 2

T
N

i i m i m i m i m i

r r r r

r R t a x t x t X x t a x t a
i N

α

=

= = + − − −

=

1 2 2

1 2 2

1 2 2

1 2 2

1 2 2

1 2 2

sin sin sin
cos cos cos
sin2 sin2 sin2
cos2 cos2 cos2 (13)

sin sin sin
cos cos cos

N

N

N

N

N

N

t t t
t t t
t t t

CS t t t

mt mt mt
mt mt mt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

The vector r is calculated in the function subroutine for ( )R a  
and we will consider this vector below. The matrix CS can be 
computed once in the main program and passed to the 
subroutine as a global array.  The portion of the script given 
below depends on the fact that the intrinsic functions for sine 
and cosine can be applied to an array. This feature is available 
in MATLAB and FORTRAN 90/95. 
                              m2 = 2*m; 
                              m2m1 = m2-1; 
                              j = (1:m)’; 
                              tm = t*j’; 
                              cm = cos(tm); 
                              sm = sin(tm); 
                              CS(1:N2,1:2:m2m1) = sm; 
                              CS(1:N2,2:2:m2N2) = cm; 

 3 Copyright © #### by ASME 



The second line applies t to the transpose of j to form the 
array 2m N×

1 2

1 2

1 2

2 2
N

N

N

t t
t t

mt mt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 The next matrix of interest is associated with ( )mx t  in 
Eq. (3). We can write Eq. (3) over the mesh t as 

0* (14)xm M a=  
where 

( )1 2( ), , ( ) T
m m Nxm x t x t=  

 

1 1 1 1 1

2 2 2 2 2

0 cos sin2 cos2 sin cos
0

0 cos sin2 cos2 sin cosN N N N

t t t mt mt
M

t t t mt mt

⎡ ⎤
⎢=⎢
⎢⎣ N

⎥
⎥
⎥⎦

 (15) 

 
We can compute M0 as follows 
                     M0(1:N2,1) = 0; 
                     M0(1:N2,3:2:m2m1) = sm(1:N2,2:m); 
                     M0(1:N2,2:2:m2) = cm. 
This same matrix can be used to compute 

( ), 1, , 2.m ix t i N=  We do this by defining a global work 
column array in the main program of length m2 and setting it to 

2 2 2 2
2 3 4 2 1 2(0, , 2 , 2 , , , ) .T

m mW a a a m a m a−= − − − − −   
       We will discuss an efficient procedure for creating this 
vector below. The computation of the second derivative is them 
simply 

0* (16)xmdd M W=  

        Next, 1(m )x t a− can be computed using the array CS in 
Eq. (13). We can write 

_ *xm delay CS b= (17)

)

)

 
where  

( 1 1 2 1

2 1

2 1

3 1 4 1

3 1 4 1

2 1 1 2 1

2 1 1 2 1

_ ( ), , ( )

sin
cos

cos2 sin2
sin2 cos2 (18)

cos sin
sin cos

T
m m N

m m

m m

xm delay x t a x t a

a a
a a

a a a a
b a a a a

a ma a ma
a a a ma
−

−

= − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+
⎜ ⎟

= − +⎜ ⎟
⎜ ⎟
⎜ ⎟

+⎜ ⎟
⎜ ⎟− +⎝ ⎠

 

We will discuss the efficient computation of b below. Forming 

1(m ix t a−  can be done in a similar manner. In this case 

_ * (20)xmd delay CS c=  
where 

1 1 2 1 2 1

2 1

2 1

3 1 4 1

3 1 4 1

2 1 1 2 1

2 1 1 2 1

_ ( ( ), ( ), , ( ))
cos
sin

2 sin 2 2 cos2
2 cos 2 sin (21)

sin cos
cos sin

T
m m m N

m m

m m

xmd delay x t a x t a x t a
a a
a a

a a a a
c a a a a

ma ma ma ma
ma ma ma ma

−

−

= − − −

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥= +⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥+⎣ ⎦

 

        For each call to the function that produces ( )R a , each of 
the vectors W,  b, and c must be formed.  The forming of each 
of the vectors depends on the operations with which each is 
composed.  We will consider the efficient computation of each 
of the vectors in turn. 

        We assume the vector  is available 

to the function

( )1 2 2, , , T
ma a a a=

( )R a . We initialize the work array W and two 
more column work arrays W1 and W2 of length 2m to zero in 
the main program and pass them as global arrays. We can 
initialize the vectors to zero in the main program by 
                                 W = zeros(m2,1); 
                                 W1 = zeros(m2p1,1); 
                                 W2 = zeros(m2,1); 
Instead of defining extra arrays b and c we will reuse W. We 
can also initialize some other arrays and variables in the main 
program as 
                                  mv = (1:m)’; 
                                  mvsqr = mv.*mv; 
                                  m2 = 2*m; 
                                  m2m1 = m2 – 1; 
and pass them as global values also.  
       In the function for ( )R a we can immediately compute xm 
in Eq. (14) as 
                                   xm = M0*a; 
To compute xmdd in Eq. (16) we compute the array W as 
                             W(1:2:m2m1,1) = -mvsq.*a(1:2:m2m1,1); 
                             W(2:2:m2,1) = -mvsq.*a(2:2:m2,1); 
The dot-asterisk operation takes two vectors of the same length 
and creates a new vector of the same length with each element 
of the new vector equal to the product of the same element 
entries of the two vectors in the product. Thus if w = u.*v then 
w(i) = u(i)*v(i). This operation is defined in MATLAB. 
Although it is not defined as an intrinsic operation of 
FORTRAN 90/95, there is a facility to create user defined 
operations by using an INTERFACE OPERATOR block. We 
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should note that the first element in W when multiplied by M0 
will produce a zero. It is more efficient to leave it in W than to 
expend extra operations to create a zero there.  
       We can generate b in Eq. (17) using the work arrays W, W1 
and W2 as follows. We first break b in Eq. (18) into the sum of 
two vectors 

3 1

3 1

2 1 1

2 1 1

0
0

cos 2
sin 2

cos
sin

m

m

a a
a a

a m
a ma

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a

 

and 

2 1

2 1

4 1

4 1

2 1

2 1

sin
cos
sin 2
cos 2

sin
cos

m

m

a a
a a
a a
a a

a ma
a ma

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

To form xm_delay in Eq. (17) we compute as follows. Note the 
reuse of the work arrays. 
                      smva = sin(mv*a(1,1)); 
                      cmva = cos(mv*a(1,1)); 
                      W(1,1) =0; 
                      W(2,1) = 0; 
                      W1(4:2:m2,1) = -a(3:2:m2m1,1); 
                      W1(3:2:m2m1,1) = a(3:2:m2m1,1); 
                      W2(1:2:m2m1,1) = cmva; 
                      W2(2:2:m2,1) = smva; 
                      W = W1.*W2; 
                      W1(1:2:m2m1,1) = a(2:2:m2,1); 
                      W1(2:2:m2,1) = a(2:2:m2,1); 
                      W2(1:2:m2m1,1) = smva; 
                      W2(2:2:m2,1) = cmva; 
                       W = W + W1.*W2; 
                       Xm_delay = CS*W; 
We can form xmd_delay in Eq. (21) in a similar manner. We 
break c into the sum of two vectors 

3 1

3 1

2 1 1

2 1 1

0
0

2 sin 2
2 cos 2

sin
cos

m

m

a a
a a

ma ma
ma ma

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and 

2 1

2 1

4 1

4 1

2 1

2 1

cos
sin

2 cos 2
2 sin 2

cos
sin

m

m

a a
a a
a a
a a

ma ma
ma ma

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Then, to form xmd_delay in Eq. (21) we can write using W2 
from the previous calculation 
                   W1(1,1) = 0; 
                   W1(3:2:m2m1,1) = mv(2:m).*a(3:2:m2m1,1); 
                   W1(2:2:m2,1) = W1(1;2:m2m1,1); 
                   W = W1.*W2; 
                   W1(1:2:m2m1,1) = -mv.*a(2:2:m2,1); 
                   W1(2:2:m2,1) = -W1(1:2:m2m1,1); 
                   W2(1:2:m2m1,1) = cmva; 
                   W2(2:2:m2,1) = smva; 
                   W = W + W1.*W2; 
                   Xmd_delay = CS*W; 
Finally, we can form the residual vector R(a) by setting 
                    r = (a(1,1)*a(1,1)*xmdd+xm+a(1,1)*lambda… 
                             (xm_delay.*xm_delay – 1).*xmd_delay; 
                    R = CS’*r; 
Where the three dots at the end of the line represent a a line 
continuation. The objective function for (10) can be formed by 
                     y = sum(R.*R); 
where y is the scalar returned by the function  R(a) to the 
minimization routine. 
 
ESTIMATING THE RESIDUAL 

 
We wish to estimate a value for r such that 

( )2
1 1( ) ( ) ( ), ( ) (22)m m m mr a x t x t X x t a x t a≥ + − − − 1  

for [0,2 ].t π∈  The overbar is used to represent the estimated 
solution and parameters. 
        In this section and the next, we will present the general 
methods and not detail the possible vectorization steps that 

 5 Copyright © #### by ASME 



could be used. In general, they would be similar to those in the 
previous section. 
        Let 

( )2
1 1( ) ( ) ( ) ( ), ( ) . (23)m m m mR t a x t x t X x t a x t a= + − − − 1  

To estimate the value of r we can consider the approximate 
trigonometric polynomial 

( )
0

2 2 1
1

( ) cos sin (24)
m

n n
n

R t b nt b nt+
=

≈ +∑  

for some large positive integer . As in the second section 
the coefficients are approximated by 

0m

2

2
1

2

2 1
1

1 ( )cos (25)

1 ( )sin

N

n i i
i

N

n i i
i

b R t nt
N

b R t nt
N

=

+
=

=

=

∑

∑
 

for  0 01, 2, , , 1,n m N m= ≥ +
2 1
2i
it
N

π−
=  

for  Then we estimate the r in Eq. (22) by 1, 2, , 2 .i = N

( )
0

2 2 10 2 1

max cos sin (26)
m

n nt n

b nt b nt
π +≤ ≤

=

+∑  

An obvious upper bound for Eq. (26) is given by 

( )
0

2 2 1
1

(27)
m

n n
n

b b +
=

+∑  

but refined meshes for [0, 2 ]t π∈ could lead to a better 
estimate in Eq. (26). 
 
STABILITY OF THE APPROXIMATE SOLUTION 

The stability of the approximate periodic solution is 
determined by the characteristic multipliers of the variational 
equation with respect to the approximate solution. 
Characteristic multipliers for delay differential equations have 
been computed by several authors. See Butcher et al. [19] and 
Luzyanina and Engelborghs [20], for example. For this paper 
we will use a method proposed by Gilsinn [9] based upon 
representing the monodromy operator in terms of a variation-
of- constants formula developed by Halanay [21]. 

For the class of equations considered here the variational 
equation about the approximate solution is given by 

( ) ( ) ( ) ( ) ( ) (28)z t A t z t B t z t ω= + −  
where  

( ) ( )

2

2 2
1 2

0 1
( )

1/ 0

0 0
( )

1/ ( ( ), ( )) 1/ ( ( ), ( ))

At

B t
X x t x t X x t x t

ω

ω ω ω ω ω

⎡ ⎤
=⎢ ⎥−⎣ ⎦

ω

⎡ ⎤
=⎢ ⎥

− − − −⎢ ⎥⎣ ⎦

 

The subscripts to X represent the partial derivatives with 
respect to the first and second variables, respectively. Clearly 

( ) ( 2 ), ( ) ( 2 ).A t A t B t B tπ π= + = +  
        Let ( , )Z t s be the fundamental solution of Eq. (28) such 
that ( , ) , ( , ) 0 for .Z s s I Z t s t s= = <  Define the operator 

( )( ) ( 2 ) (29)U s z sφ π= +  
where φ  is the initial continuous function on [ ,0]ω− . The 
eigenvalues of U are the characteristic multipliers (Halanay 
[21]). Furthermore Halanay [21] has shown that the operator U 
can be written as 

0

( )( ) ( 2 ,0) (0)

( 2 , ) ( ) ( ) (30)

U s Z s

Z s B d
ω

φ π φ

π α ω α ω φ α α
−

= +

+ + + +∫
We can approximate the operator equation by discretizing 
[ ,0]ω−  into k equal intervals by 1 1 0ks sω +− = < < =  

and setting the interval as / .kω∆ =  U is then represented by 

a matrix ijU⎡ ⎤⎣ ⎦  where for  1, , 1, 1, , ,i k j= + = k

.( 2 , ) ( )ij i j jU Z s s B sπ ω ω= + + + ∆  

For 1, , 1, 1,i k j k= + = +  

, 1 1 1 1( 2 , ) ( 2 , ) ( )i k i k i k kU Z s s Z s s B s .π π ω ω+ + + += + + + + + ∆  

The fundamental solution can be computed numerically using, 
for example, the program of Shampine and Thompson [3], or 
by other means as discussed earlier. 
 
EXAMPLE 

For an example of the approximation process described in 
the previous sections we consider the Van der Pol equation with 
unit delay 

( )2( ) ( ) 1 ( 1) ( 1). (31)x t x t x t x tλ+ = − − −  

As before, we introduce an unknown frequency and write Eq. 
(31) in the form 

( )2 2( ) ( ) 1 ( ) ( ) (32)x t x t x t x tω ωλ ω ω+ = − − −  

for [ ]0,2t π∈ . 

        We will study the effects of various values of λ and 
various orders of harmonic approximation.  In all of these 
cases, we will estimate the residual error and compute the 
characteristic multipliers relative to the approximate solution. If 
the approximate solution were in fact a true periodic solution, 
then one of the characteristic multipliers would be identically 
one. Since we are dealing with variations about an approximate 
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solution, however, we can expect that there may not be any 
characteristic multipliers equal to one. We can still expect that 
if all of the characteristic multipliers lie within the unit circle in 
the complex plane, then the approximate solution is stable and 
if any characteristic multiplier lies outside of the unit circle the 
approximate solution is unstable (Halanay [21]).  
        The results reported here were performed on a system with 
a 2.4 GHz Intel Pentium 4 processor, 2 GB RAM, under a 
Windows 2000, Service Pack 4, operating system. The 
algorithms were coded in MATLAB 6.5. 
        The first case we consider is for λ =0.01. The first 
subcase is for a Galerkin expansion of 5 harmonics.  Figure 1 
shows the error distribution for the residual in Eq. (26). 

 
Figure 2 shows an overlay phase plot of the Galerkin 
approximate solution and the numerical solution of the Van der 
Pol Eq. (32) where the frequency was set to the estimated 
frequency. The numerical integration was done over a range of 
8π . Although it is hard to distinguish it the Galerkin phase 
plot is done in dashed lines. 

For each case, for λ three harmonics cases will be examined. 
The results will be summarized in a table. Table 1 represents 
the summary results for the λ =0.01 case. The six rows of the 
table are from top to bottom, the λ case, the harmonics in the 
Galerkin approximation. T1 in milliseconds represents the sum 
of the milliseconds consumed in setting up the CS and M0 
matrices in the main program plus the time consumed in one 
evaluation of the function called by the optimization 
subroutine. T2 in milliseconds is the sum of T1 and the time it 
takes to run the optimization subroutine (fminuc in MATLAB). 
The fifth row is the maximum absolute value of the residual 
error computed in Eq. (26). The final row is the maximum of 
the absolute values of the characteristic multipliers.  
 

λ =0.01 
Harmonics 

 
5 
 

10 
 

25 
 

T1 
(milliseconds) 

 

0 
 

10 
 

0 
 

T2 
(milliseconds 

 

190 
 

1091 
 

3044 
 

Max. Abs. 
Resid. 

 

7.8481e-5 
 

4.4003e-5 
 

1.1390e-4 
 

Max. Abs. 
Char. Mult. 0.9962 0.9962 0.9961 

 
Table 1: Summary table for λ =0.01 case showing timings, 
absolute residual error and maximum absolute characteristic 
multiplier. 
 

Figure 2: Overlay of Galerkin approximation and 
numerically integrated Van der Pol for λ =0.01 with 
5 harmonics 

 
Figure 1: Error distribution for 10000 samples from 0 
to 2π for the Galerkin approximation residual for λ = 
0.01 and 5 harmonics.  
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The fact that T1 shows zero milliseconds indicates the 
vectorization is efficient enough to evaluate all of the matrices 
and vectors in less than a millisecond. That T1 is 10 in the 10 
harmonic case is possibly due to a system interrupt during the 
evaluations, since the other cases were zero. T2 shows the 
effect of the optimization call. Note that the absolute residual 
error increases at 25 harmonics along with a change in the 
maximum absolute characteristic multiplier. This indicates that 
there is an optimum setting for the harmonics that is less than 
25. Since the maximum absolute value of the characteristic 
multipliers is less than one, this indicates the approximate 
solution is stable. This is clearly indicated by Figure 2 which 
shows the attraction of the numerically integrated Van der Pol 
equation. 
       We now consider the λ =0.1 case. The only figures we 
will show for the rest of the cases are the overlay figures 
comparable to Fig. 2. Figure 3 shows some deforming of the 
limit cycle but again the Galerkin approximate solution 
overlays the numerically integrated Van der Pol equation, 
although as Table 2 shows the maximum absolute residuals in 
this case are larger than in the λ =0.01 case. Again, the 
characteristic multipliers lie within the unit circle indicating 
stability. This is indicated by the maximum absolute value of 
the characteristic multipliers being less than one. Table 2 shows 
that there is no distinct advantage in adding harmonics beyond 
five. 
       Figure 4 shows further deforming of the phase plot for the 
λ =0.5 case. Table 3 shows the maximum absolute residual 
increasing. The maximum absolute characteristic multiplier still 
remains less than one showing that stability still holds.  
       Figure 5 and Table 4 indicate that stability still holds at 
λ =1.0 but Figure 6 and Table 5 show that instability begins to 
occur at λ =1.14 although, even with numerical integration 
over 64π , the numerical solution still remains close to the 
approximate solution. 

 

 
       Instability atλ =1.14 for the Van der Pol equation with 
delay in the nonlinear terms is in marked contrast with the Van 
der Pol equation with no delay. In that case the Van der Pol 
equation is stable for large values of λ , far exceeding one. 
 
 

Figure 3: Overlay of Galerkin approximation and 
numerically integrated Van der Pol for λ =0.10 with 5 
harmonics 

λ =0.10 
Harmonics 

 
5 
 

10 
 

25 
 

T1 
(milliseconds) 

 

0 
 

0 
 

10 
 

T2 
(milliseconds 

 

110 
 

641 
 

2724 
 

Max. Abs. 
Resid. 

 

5e-3 
 

5e-3 
 

5e-3 
 

Max. Abs. 
Char. Mult 

 

0.9979 
 

0.9979 
 

0.9979 
 

 
Table 2: Summary table for λ =0.10 case showing timings, 
absolute residual error and maximum absolute characteristic 
multiplier. 
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SUMMARY 

This paper has shown that approximate periodic solution 
for autonomous differential equations with constant delay can 
be efficiently computed by using discrete Fourier series. The 
efficiency arises from the ability to write the various algorithm 
operations in vector-matrix form. With existing scientific 
computing languages and processors these operations can be 
vectorized adding to the efficiency and speed-up of the 
algorithm. 
 

DISCLAIMER 
Certain trade names and company products are mentioned 

in the text or identified in an illustration in order to adequately 
specify the experimental procedure and equipment used.  In no 
case does such an identification imply recommendation or 
endorsement by the National Institute of standards and 
Technology, nor does it imply that the products are necessarily 
the best available for the purpose. 
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Figure 4: Overlay of Galerkin approximation and 
numerically integrated Van der Pol for λ =0.50 with 5 
harmonics 

λ =0.50 
Harmonics 

 
5 
 

10 
 

25 
 λ

T1 
(milliseconds) 

 

0 
 

0 
 

0 
 

T2 
(milliseconds 

 

121 
 

381 
 

2994 
 

Max. Abs. 
Resid. 

 

0.2389 
 

0.2459 
 

0.2454 
 

Max. Abs. 
Char. Mult 

 

0.9963 
 

0.9962 
 

0.9962 
 

 
Table 3: Summary table for λ =0.50 case showing timings, 
absolute residual error and maximum absolute characteristic 
multiplier. 
 

=1.00 
Harmonics 

 
5 
 

10 
 

25 
 

T1 
(milliseconds) 

 

0 
 

0 
 

0 
 

T2 
(milliseconds 

 

200 
 

561 
 

2994 
 

Max. Abs. 
Resid. 

 

1.4980 
 

2.2655 
 

2.2766 
 

Max. Abs. 
Char. Mult 

 

0.9474 
 

0.9930 
 

0.9930 
 

 
Table 4: Summary table for λ =1.0 case showing 
timings, absolute residual error and maximum absolute 
characteristic multiplier. 
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Figure 6: Overlay of Galerkin approximation and 
numerically integrated Van der Pol for λ =1.14 with 5 
harmonics 

λ =1.14 

Harmonics 5 10 25 

T1 
(milliseconds) 0 0 0 

T2 
(milliseconds 271 631 3065 

Max. Abs. 
Resid. 3.1132 4.2665 4.2745 

Max. Abs. 
Char. Mult 1.0121 1.0026 1.0025 

 
Table 5: Summary table for λ =1.14 case showing 
timings, absolute residual error and maximum absolute 
characteristic multiplier. 
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