
INSTITUTE OF PHYSICS PUBLISHING METROLOGIA

Metrologia 43 (2006) 1–11 doi:10.1088/0026-1394/43/1/001

Bayesian alternative to the ISO-GUM’s
use of the Welch–Satterthwaite formula
Raghu N Kacker

National Institute of Standards and Technology, Gaithersburg, MD 20899-8910, USA

E-mail: raghu.kacker@nist.gov

Received 2 September 2005
Published 18 November 2005
Online at stacks.iop.org/Met/43/1

Abstract
In certain disciplines, uncertainty is traditionally expressed as an interval
about an estimate for the value of the measurand. Development of such
uncertainty intervals with a stated coverage probability based on the
International Organization for Standardization (ISO) Guide to the
Expression of Uncertainty in Measurement (GUM) requires a description of
the probability distribution for the value of the measurand. The ISO-GUM
propagates the estimates and their associated standard uncertainties for
various input quantities through a linear approximation of the measurement
equation to determine an estimate and its associated standard uncertainty for
the value of the measurand. This procedure does not yield a probability
distribution for the value of the measurand. The ISO-GUM suggests that
under certain conditions motivated by the central limit theorem the
distribution for the value of the measurand may be approximated by a
scaled-and-shifted t-distribution with effective degrees of freedom obtained
from the Welch–Satterthwaite (W–S) formula. The approximate
t-distribution may then be used to develop an uncertainty interval with a
stated coverage probability for the value of the measurand. We propose an
approximate normal distribution based on a Bayesian uncertainty as an
alternative to the t-distribution based on the W–S formula. A benefit of the
approximate normal distribution based on a Bayesian uncertainty is that it
greatly simplifies the expression of uncertainty by eliminating altogether the
need for calculating effective degrees of freedom from the W–S formula. In
the special case where the measurand is the difference between two means,
each evaluated from statistical analyses of independent normally distributed
measurements with unknown and possibly unequal variances, the
probability distribution for the value of the measurand is known to be a
Behrens–Fisher distribution. We compare the performance of the
approximate normal distribution based on a Bayesian uncertainty and the
approximate t-distribution based on the W–S formula with respect to the
Behrens–Fisher distribution. The approximate normal distribution is simpler
and better in this case. A thorough investigation of the relative performance
of the two approximate distributions would require comparison for a range
of measurement equations by numerical methods.

1. Introduction

The International Organization for Standardization (ISO)
Guide to the Expression of Uncertainty in Measurement
(GUM) is being increasingly regarded as a de facto interna-
tional standard for evaluating and expressing uncertainty in

measurement. The ISO-GUM is intended for a broad spectrum
of measurements including those for quality control, enforcing
laws and regulations, research and development, calibrations,
traceability and developing and maintaining international
and national physical reference standards for measurement
[1, section 0.4]. It is, therefore, reasonable for a user to expect
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that the ISO-GUM has a single, unambiguous and consistent
technical interpretation. Is it so or is it not so?

In my opinion the ISO-GUM is consistent; but certain
sections, mostly in its annex G, are ambiguous. In the
ISO-GUM, all Type A evaluations are estimates determined
from sampling theory (frequentist statistics). However,
the ISO-GUM (sections 4.1.6 and 6.2.2) interprets the
Type A estimates determined from sampling theory as
parameters of state-of-knowledge probability distributions.
The Type B evaluations are, by definition, parameters of state-
of-knowledge probability distributions. Thus both Type A
and Type B evaluations have a common probabilistic and
statistical interpretation in the ISO-GUM. This common
interpretation makes the ISO-GUM consistent. The
ISO-GUM’s prescription that the sampling theory estimates
be interpreted as parameters of state-of-knowledge probability
distributions has no justification. It has previously been shown
that the ISO-GUM’s interpretation is justified when the Type A
evaluations are either determined from Bayesian statistics
or are regarded as approximations to Bayesian estimates
determined from sampling theory [2]. In this paper, we propose
a simpler Bayesian alternative to the ISO-GUM’s approximate
t-distribution with effective degrees of freedom obtained from
the Welch–Satterthwaite (W–S) formula.

In section 2, we present a review of the ISO-GUM.
The ISO-GUM propagates (through a linear approximation of
the measurement equation) the estimates and their associated
standard uncertainties for the input quantities rather than
their probability distributions. This procedure does not yield
a probability distribution for the value of the measurand.
In certain disciplines, uncertainty is traditionally expressed
as an interval about an estimate for the value of the
measurand. Expression of uncertainty as an interval with
a stated (supposed) coverage probability [1, section 6.2.2],
requires a description of the probability distribution for the
value of the measurand. The ISO-GUM suggests that
when the measurement equation is a linear combination
of independently distributed input variables and certain
conditions, motivated by the central limit theorem, are met,
the probability distribution for the value of the measurand may
be approximated by a scaled-and-shifted t-distribution with
effective degrees of freedom obtained from the W–S formula.
In section 3, we describe the ISO-GUM’s approximate t-
distribution based on the W–S formula. The ISO-GUM does
not state completely and explicitly the conditions required for
approximating the probability distribution for the value of the
measurand by a t-distribution. The ISO-GUM does not discuss
the accuracy of uncertainty intervals so obtained. In section 4,
we propose an approximate normal distribution based on a
Bayesian uncertainty as an alternative to the approximate t-
distribution based on the W–S formula. In section 5, we discuss
the benefits of a Bayesian uncertainty and the approximate
normal distribution. In particular, an approximate normal
distribution based on a Bayesian uncertainty greatly simplifies
the expression of uncertainty by eliminating altogether the
need for calculating effective degrees of freedom from the W–S
formula.

A probability distribution for the value of the measurand
is not analytically tractable in most metrology applications
even when the measurement equation is a linear combination

of independent input variables. In the following non-
trivial metrology application, a probability distribution for
the value of the measurand is analytically tractable. The
measurand is the difference between two means, each
evaluated from statistical analyses of independent normally
distributed measurements with unknown and possibly unequal
variances. In this special application the probability
distribution for the measurand is known to be a Behrens–Fisher
distribution. In section 6, we compare the performance of the
proposed approximate normal distribution based on a Bayesian
uncertainty and the approximate t-distribution based on the
W–S formula with respect to the Behrens–Fisher distribution.
It is shown that the approximate normal distribution is not only
simpler but also better generally. This illustration suggests
that perhaps the simpler approximate normal distribution
may be preferable to the approximate t-distribution for other
measurement equations as well. A thorough investigation
would require comparison for a range of measurement
equations by numerical methods. In section 7, we discuss the
parameters for comparing the two approximate distributions
by numerical methods. The conclusion appears in section 8.

2. Review of the ISO-GUM

A measurand, denoted by Y , is a quantity subject to
measurement or prediction. An estimate for Y , denoted
by y, is a central value of the distribution of values that
could reasonably be attributed to Y . The uncertainty is a
parameter associated with the estimate y which characterizes
the dispersion of the values that could be attributed to Y based
upon all available information. The standard uncertainty is
uncertainty expressed as a standard deviation, denoted by u(y).
The ISO-GUM is based on the concept of a measurement
equation

Y = f (X1, . . . , XN) (1)

that mathematically represents the process (ingredients and
recipe) for determining the estimate y and its associated
standard uncertainty u(y) from the estimates and their
associated standard uncertainties for various input quantities
X1, . . . , XN . The measurement equation (1) should include
an input quantity for every significant source of uncertainty
in determining y and u(y); otherwise, u(y) would be a poor
evaluation. Each input and output quantity of a measurement
equation is regarded as a variable with a state-of-knowledge
probability distribution having an expected value and a finite
standard deviation. The measurement equation (1) could
represent a system of equations where each input variable Xi

may have its own measurement equation.
The expected values, standard deviations and correlation

coefficients of the input variables may be evaluated from
statistical methods or determined by other means. The input
quantities evaluated from statistical analyses of the current
data are referred to as Type A and the input quantities
evaluated by other means, generally scientific judgement, are
referred to as Type B [1, sections 2.3.2 and 2.3.3]. An
input variable is Type A or Type B depending on whether
its probability distribution or its parameters are specified by
statistical methods or by other means.

A common Type A evaluation of an input quantity Xi is the
arithmetic mean of a series {xi1, xi2, . . . } of mi measurements
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that may reasonably be regarded as independent realizations
from the same sampling distribution and that this distribution
is normal with expected value1 Xi and some unknown standard
deviation σi . Suppose the arithmetic mean, the experimental
(estimated) standard deviation and the estimated standard
deviation of the mean of the mi measurements are xi =∑

j xij /mi , si = √
[
∑

j (xij − xi)
2/(mi − 1)] and s(xi) =

si/
√

mi , respectively. Then xi is an estimate of its expected
value Xi and the standard uncertainty associated with xi is
uA(xi) = s(xi) [1, section 4.2]. The subscript A in uA(xi)

indicates that it is a Type A standard uncertainty. The estimate
xi and the uncertainty uA(xi) are determined from sampling
theory (frequentist statistics). However, the ISO-GUM regards
xi and uA(xi) as the expected value and approximate standard
deviation of a state-of-knowledge distribution for Xi , i.e.
E(Xi) = xi and S(Xi) ≈ uA(xi) = s(xi) [1, section
4.1.6], [2]. Depending on the number mi of independent
measurements, the Type A standard uncertainty uA(xi) is
uncertain because of the statistical reason of limited sampling
[1, section E.4.3]. The uncertainty concerning uA(xi) arising
from a limited number of measurements is a statistical-
uncertainty. Following the ISO-GUM [1, section E.4.3],
the statistical-uncertainty concerning uA(xi) is quantified by
degrees of freedom. The degrees of freedom associated with
uA(xi) are νi = mi − 1.

A Type B evaluation of an input quantity Xj is commonly
obtained by assigning a state-of-knowledge probability
distribution for Xj . Then the estimate xj is the expected value
E(Xj) and the standard uncertainty uB(xj ) is the standard
deviation S(Xj ) of the assigned distribution [1, section 4.3].
The subscript B in uB(xj ) indicates that it is a Type B
standard uncertainty. For example, if a rectangular distribution
on the interval (−a, a) is assigned to Xj , then E(Xj) =
xj = 0 and S(Xj ) = uB(xj ) = a/

√
3. The ISO-GUM

[1, section G.4.2] suggests that subjective degrees of freedom
νj may be assigned to a Type B uncertainty uB(xj ) to quantify
uncertainty concerning the uncertainty uB(xj ) itself. When
there is no uncertainty concerning the Type B uncertainty
uB(xj ), it is assigned infinite degrees of freedom.

The estimate y is determined by substituting the estimates
x1, . . . , xN for the input variables in the measurement equation
Y = f (X1, . . . , XN). That is,

y = f (x1, . . . , xN). (2)

The standard uncertainties u(x1), . . . , u(xN) associated with
the estimates x1, . . . , xN are components of uncertainty in
determining the combined estimate y. The measurement
equation (1) is approximated about y by a Taylor series as

Y ≈ Ylinear = y +
∑

i

ci(Xi − xi), (3)

where c1, . . . , cN are partial derivatives of Y with respect
to X1, . . . , XN evaluated at x1, . . . , xN , respectively. The

1 The ISO-GUM [1] uses the same symbols X1, . . . , Xn for both the expected
values of sampling distributions as well as the variables with state-of-
knowledge distributions about the expected values. Likewise, the same symbol
Y is used both for the value of the measurand as well as a variable with a state-
of-knowledge distribution about the value of the measurand.

partial derivatives c1, . . . , cN are referred to as sensitivity
coefficients. If we regard xi and u(xi) as the expected value
and standard deviation of a state-of-knowledge distribution for
Xi , then the variance of Ylinear gives the following expression
for propagating the uncertainties associated with the input
values:

u2(y) =
∑

i

c2
i u

2(xi) + 2
∑
(i<j)

cicju(xi)u(xj )r(xi, xj ), (4)

where r(xi , xj ) is the correlation coefficient between Xi and Xj

for i, j = 1, . . . , N and i �= j . The correlation coefficients are
Type A or Type B depending on whether they are determined
from statistical analyses or by other means. When xi and
u(xi) are the expected value and standard deviation of Xi , for
i = 1, . . . , N , the estimate y and the standard uncertainty u(y)

are the expected value and the standard deviation of Ylinear. The
ISO-GUM regards y and u(y) as approximate expected value
and standard deviation of a state-of-knowledge probability
distribution for Y . The estimate y and uncertainty u(y) so
determined differ from the unknown expected value E(Y ) and
standard deviation S(Y ) to the extent that the distribution for
Y differs from the distribution for Ylinear.

When it is necessary to express the uncertainty as an
interval, multiply the standard uncertainty u(y) by a coverage
factor k to obtain the expanded uncertainty U = ku(y) and
the uncertainty interval [y ±U ] = [y ± ku(y)]. The coverage
probability2 of an uncertainty interval [y±ku(y)] is the fraction
of a state-of-knowledge distribution for Y that is encompassed
by this interval [1, sections 2.3 and 6.2.2]. The conventional
value of k is two3 [3]. To the extent that a state-of-knowledge
probability distribution for Y represented by y and u(y) is not
determined, the coverage probability of [y ± ku(y)] cannot be
stated.

The ISO-GUM [1, section 8, step 7] suggests selecting—
when possible—the coverage factor kp on the basis of the
coverage probability p required of the interval [y ± kpu(y)].
In metrology, the required coverage probability p is generally
set as 95%; coverage probabilities other than 95% are rarely
used in metrology. The ISO-GUM [1, section 6.3.2] is very
clear that the estimate y and standard uncertainty u(y) are
themselves insufficient for determining the coverage factor kp

for a required coverage probability p. An uncertainty interval
[y ± kpu(y)] with a stated (supposed) coverage probability p

can be formed in very special conditions only.

The ISO-GUM’s statement of the conditions in which kp

may be determined from a normal distribution. Suppose the
following conditions are approximately met.

(i) The measurement equation is linear Y = ∑
i ciXi .

(ii) The state-of-knowledge distributions for X1, . . . , XN are
mutually independent; therefore, y = ∑

i cixi and u(y) =√
[
∑

i c
2
i u

2(xi)], where u2(xi) is regarded as the variance
of Xi to a reasonable approximation.

2 The ISO-GUM uses the phrase ‘level of confidence’ as a synonym for
coverage probability.
3 The NIST policy on expression of uncertainty [3] states the following. ‘To
be consistent with current international practice, the value k to be used at NIST
for calculating U is by convention k = 2. Values of k other than 2 are only
to be used for specific applications dictated by established and documented
requirements’.
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(iii) The variance u2(y) is much larger than any single
component c2

i u
2(xi) from a non-normally distributed Xi .

(iv) The uncertainty u(y) is not dominated by a standard
uncertainty component obtained from a Type A evaluation
based on just a few observations, or by a standard
uncertainty component obtained from a Type B evaluation
based on an assumed rectangular distribution.

Under conditions (i) through (iv), the ISO-GUM
[1, section G.2.3] suggests that a reasonable first approxima-
tion to calculating an expanded uncertainty U = kpu(y) that
provides an interval [y ± U ] = [y ± kpu(y)] with coverage
probability p is to use for kp a value from the normal distribu-
tion. In support of this suggestion, the ISO-GUM refers to the
central limit theorem and the calculations of tail probabilities
for sums of various rectangular distributions and sums of rect-
angular and normal distributions as reported in [5, table 4.68].
For normal distribution, the value of kp for the coverage prob-
ability p of 95% is 1.96, which is frequently approximated
as two. Then the uncertainty interval [y ± kpu(y)] with a
stated (supposed) coverage probability p of 95% reduces to
[y ± 2u(y)].

Comment 1: There is no single correct answer for the
coverage probability associated with an uncertainty interval
[y ± ku(y)], where y and u(y) are determined according
to the ISO-GUM. The coverage probability of [y ± ku(y)]
is defined with respect to a specific probability distribution
for Y = f (X1, . . . , XN) which in turn is a consequence
of the joint probability distribution for X1, . . . , XN . The
estimate y and uncertainty u(y) are identical for all those joint
probability distributions for X1, . . . , XN that have the expected
values x1, . . . , xN , standard deviations u(x1), . . . , u(xN) and
correlation coefficients r(xi , xj ), for i, j = 1, . . . , N and
i �= j . But the coverage probability of [y ± ku(y)] may be
different for different such distributions for X1, . . . , XN .

Comment 2: The central limit theorem requires that
(i) Y = ∑

i ciXi , (ii) the probability distributions
for X1, . . . , XN should be mutually independent, (iii)
c1u(x1), . . . , cNu(xN) should be the exact standard deviations
of the probability distributions for c1X1, . . . , cNXN and
(iv) the number N of summands in Y = ∑

i ciXi

should be sufficiently large for the given standard deviations
c1u(x1), . . . , cNu(xN) [4]. When c1u(x1), . . . , cNu(xN) are
unequal, which is often the case, the number N of summands
required for an approximate normal distribution for Y =∑

i ciXi may be fairly large.
The central limit theorem does not apply when N

is not sufficiently large for the given standard deviations
c1u(x1), . . . , cNu(xN) or when c1u(x1), . . . , cNu(xN) are not
the exact standard deviations of c1X1, . . . , cNXN . A statement
of coverage probability for the interval [y ± ku(y)] must be
justified by the claimant.

Comment 3: (i) The degrees of freedom associated with a
Type B evaluation are not comparable to the degrees of freedom
associated with a Type A evaluation. The Type A degrees of
freedom represent statistical-uncertainty in uA(xi) arising from
a limited number of independent measurements mi available
to evaluate uA(xi). The degrees of freedom are mi minus the
number of statistical parameters estimated (restrictions) before
evaluating uA(xi). The Type B degrees of freedom associated

with uB(xj ) represent subjective doubt about the parameters
of a state-of-knowledge probability distribution assigned to the
variable Xj .

(ii) It is superfluous in my opinion to quantify doubt about
a state-of-knowledge probability distribution. For example
in Bayesian statistics, one does not quantify doubt about a
prior probability distribution which represents the state-of-
knowledge about a statistical parameter before measurement.
Hence the degrees of freedom associated with a Type B
uncertainty are superfluous.

(iii) It is difficult to quantify doubt about a state-of-
knowledge probability distribution.

(iv) I have never seen any metrologist assigning finite
degrees of freedom to a Type B evaluation.

3. Approximate t-distribution based on the
W–S formula

The ISO-GUM [1, sections G.3 and G.4] suggests that a better
value of kp than the one determined from normal distribution
is provided by a t-distribution with effective degrees of
freedom obtained from the W–S formula. Suppose Y is
equal to

∑
i ciXi , for i = 1, . . . , N , and X1, . . . , XN are

mutually independent. Suppose the probability distributions
for X1, . . . , Xn, for n < N , are Type A and the probability
distributions for Xn+1, . . . , XN are Type B. Suppose, for
i = 1, . . . , n, the expected value and standard deviation of
a state-of-knowledge distribution for Xi are determined from
mi independent normally distributed measurements. Suppose
E(Xi) = xi and S(Xi) ≈ uA(xi) = s(xi) with degrees of
freedom νi = mi − 1, respectively [1, sections 4.1.6 and 4.2].
Suppose Xn+1, . . . , XN are evaluated from the assigned state-
of-knowledge distributions with expected values E(Xj) = xj

and standard deviations S(Xj ) = uB(xj ) [1, section 4.3] with
subjective degrees of freedom νj [1, section G.4.2].

Let us define

XA =
n∑

i=1

ciXi (5)

and

XB =
N∑

i=n+1

ciXi. (6)

Then Y = ∑
i ciXi = XA + XB, where XA and XB are the

Type A and the Type B components of Y . Following the ISO-
GUM [1, section 5.1] an estimate for XA is

xA =
n∑

i=1

cixi (7)

and its associated standard uncertainty is

uA(xA) =
√√√√ n∑

i=1

c2
i u

2
A(xi). (8)

The standard uncertainty uA(xA) is an approximation for the
standard deviation S(XA) = √

[
∑

i c
2
i S

2(Xi)].
My understanding of the ISO-GUM [1, sections G.3

and G.4] is that it ascribes to the variable (XA −xA)/uA(xA) an
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approximate state-of-knowledge t-distribution with effective
degrees of freedom νeffA, where

νeffA = [uA(xA)]4∑n
i=1 ([|ci |uA(xi)]4/νi)

. (9)

The expression (9) for νeffA is referred to as the W–S
formula. The effective degrees of freedom νeffA quantify the
statistical-uncertainty in uA(xA) arising from limited numbers
m1, . . . , mn of measurements available for evaluating the
parameters of the Type A variables X1, . . . , Xn, respectively.

The expected value E(XB) and standard deviation S(XB)

are, respectively,

xB =
N∑

j=n+1

cjxj (10)

and

uB(xB) =
√√√√ N∑

j=n+1

c2
ju

2
B(xj ). (11)

The ISO-GUM suggests that the coverage factor kp of an
uncertainty interval [y ± kpu(y)] for Y may be determined
by ascribing to the variable (Y − y)/u(y) an approximate
t-distribution with effective degrees of freedom νeff , where

y = xA + xB =
∑

i

cixi, (12)

u(y) =
√

u2
A(xA) + u2

B(xB)

=
√√√√ n∑

i=1

c2
i u

2
A(xi) +

N∑
j=n+1

c2
ju

2
B(xj ) (13)

and

νeff = [u(y)]4∑n
i=1([|ci |uA(xi)]4/νi) +

∑N
j=n+1([|ci |uB(xj )]4/νj )

.

(14)

Thus the ISO-GUM suggests that kp may be determined by
ascribing to the variable Y an approximate state-of-knowledge
scaled-and-shifted t-distribution with degrees of freedom νeff

that have been scaled by u(y) of equation (13) and shifted
by y of equation (12). Suppose tp(νeff) is a percentile4

of the t-distribution with degrees of freedom νeff such that
the interval [−tp(νeff), +tp(νeff)] encompasses the fraction
p of this distribution. Then according to the ISO-GUM,
[y ± tp(νeff)u(y)] is an uncertainty interval for Y with an
approximate coverage probability p.

Comment 4: The W–S formula was developed for what
are now called the Type A evaluations determined from
sampling theory (frequentist statistics). Its origins are
discussed in [6]. References [6–8] discuss the use of W–S
formula from the viewpoint of sampling theory when n =
N = 2.

Comment 5: The uncertainty interval [y ± tp(νeff)u(y)] is
wider than the interval [y±2u(y)] based on normal distribution
for finite values of νeff . The coverage factor tp(νeff) and hence
the width of the interval [y ± tp(νeff)u(y)] increases as the

4 The ISO-GUM’s symbol tp(νi) is (1/2)(1 + p) × 100th percentile of the
t-distribution with degrees of freedom νi .

effective degrees of freedom νeff decrease [1, table G.2]. Thus
the lesser the degrees of freedom, the larger is the width of the
interval [y ± tp(νeff)u(y)]. The larger width of the interval
[y ± tp(νeff)u(y)] reflects the uncertainty in u(y) indicated by
its effective degrees of freedom νeff .

Comment 6: The ISO-GUM does not explicitly state the
conditions in which a user may determine the coverage factor
kp from an approximate t-distribution with effective degrees of
freedom νeff determined from the W–S formula. Are these the
same conditions as those stated in the ISO-GUM [1, section
G.2] for determining kp from normal distribution and restated
here in section 2?

Comment 7: The ISO-GUM does not discuss the accuracy
of the stated (supposed) coverage probability p of the
interval [y ± tp(νeff)u(y)] determined from an approximate
t-distribution with effective degrees of freedom νeff determined
from the W–S formula. The correct coverage probability
would depend on the joint probability distribution for the
input variables X1, . . . , XN and the corresponding probability
distribution for Y = ∑

i ciXi (see, comment 1).
Comment 8: It seems that the ISO-GUM’s use of an

approximate scaled-and-shifted t-distribution with effective
degrees of freedom νeff for Y = ∑

i ciXi requires two sets
of assumptions.

(1) Assumptions that underlie the W–S formula for the
Type A variables X1, . . . , Xn: Each input quantity Xi , for
i = 1, . . . , n, is (i) evaluated from a series of mi mutually
independent measurements having the same normal5 sampling
distribution with expected value Xi and variance σ 2

i and (ii) the
sets of m1, . . . , mn measurements for evaluating X1, . . . , Xn,
respectively, are independent [10–12]. A consequence of the
second part of this assumption is that the state-of-knowledge
distributions for X1, . . . , Xn are mutually independent. Here
the number n of the Type A variables may be as little as two.

(2) Assumptions similar to those that underlie the central
limit theorem: In particular, the number of summands in
Y = XA + cn+1Xn+1 + · · · + cNXN is sufficiently large for the
central limit theorem to apply for the given standard deviations
of the variables XA, cn+1Xn+1, . . . , cNXN .

4. Approximate normal distribution based on a
Bayesian uncertainty

Suppose the assumptions that underlie the W–S formula for
the Type A variables X1, . . . , Xn, stated in comment 8, are
reasonably satisfied. There are two statistical approaches
to determine an estimate for an input quantity Xi : sampling
theory (frequentist statistics) and Bayesian statistics [13]. Both
approaches agree with the ISO-GUM’s definition of a Type A
evaluation for the input quantity Xi . An estimate for Xi

5 In sampling theory (frequentist statistics), an approximate t-distribution for
(xA − XA)/uA(xA) with effective degrees of freedom νeffA obtained from
the W–S formula requires that xi be the arithmetic mean and s2

i be the sample
variance of mi independent normally distributed measurements with unknown
variance σ 2

i and that the sets of m1, . . . , mn measurements be independent.
The ISO-GUM [1, section G.4.1] appears to imply that the normal distribution
for the mi independent measurements is not essential. This is incorrect. The
W–S formula requires that xi and s2

i have independent sampling distributions,
for i = 1, . . . , n. It turns out that normal distribution is the only probability
distribution for which the sampling distributions of xi and s2

i are mutually
independent [9]. Therefore normal distribution is essential.
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and its associated standard uncertainty determined through
Bayesian statistics from only the mi measurements without
assuming any additional information are obtained by using
non-informative prior distributions for Xi and σ 2

i . Non-
informative prior distributions for Xi and σ 2

i indicate that there
is no prior knowledge about their values before (or in addition
to) measurement6. A convenient pair of non-informative
prior distributions7 is as follows: the prior distribution for
Xi is proportional to one and the prior distribution for σ 2

i

is proportional to 1/σ 2
i [13]. The mi independent normal

measurements provide a likelihood function for Xi and σ 2
i

given the measurements. It can then be shown using
the Bayes’s theorem that the Bayesian posterior state-of-
knowledge probability distribution for (Xi − xi)/s(xi) is the
t-distribution with degrees of freedom νi = mi − 1 [13]. It
follows that the Bayesian distribution for Xi based on only the
mi measurements is a scaled-and-shifted t-distribution with
degrees of freedom νi that have been scaled by uA(xi) = s(xi)

and shifted by xi . The expected value and standard deviation
of a t-distribution with degrees of freedom νi are, respectively,
zero and

√
[νi/(νi − 2)] = √

[(mi − 1)/(mi − 3)] [14].
It follows that the expected value and standard deviation of
the Bayesian posterior distribution for Xi are E(Xi) = xi

and S(Xi) = √
[(mi − 1)/(mi − 3)] × uA(xi), respectively.

The standard deviation S(Xi) is a Bayesian standard
uncertainty, uA,Bayes(xi), associated with the estimate xi [2]8.
That is,

uA,Bayes(xi) =
√

mi − 1

mi − 3
uA(xi). (15)

The ISO-GUM interprets the standard uncertainty uA(xi) =
s(xi) determined from sampling theory (frequentist statistics)
as an approximate standard deviation of a state-of-knowledge
distribution for Xi with degrees of freedom νi = mi − 1 [1,
section 4.1.6]. The standard uncertainty uA,Bayes(xi) is the
standard deviation of a Bayesian posterior distribution for Xi ,
which is a state-of-knowledge distribution by definition. Thus
uA(xi) = s(xi) may be regarded as an approximation for
uA,Bayes(xi). The approximation is poor when the degrees of
freedom νi are small but good when νi are large.

The Bayesian uncertainty uA,Bayes(xi) requires at least
four independent normal measurements mi . When mi = 2
or mi = 3, there are three options. First, investigate other
reasonable prior distributions for Xi and σ 2

i that might yield
useful expressions for uA,Bayes(xi). Second, use a Type B
probability distribution for Xi . Third, use ad hoc standard
uncertainties. When p = 95%, the ad hoc standard
uncertainties for mi = 2 and mi = 3 are, respectively,
u∗

A(xi) = 6.483 × uA(xi) and u∗
A(xi) = 2.195 × uA(xi) [2].

6 Prior distributions convey information in addition to the measurement data.
In order to develop an approximate probability distribution for Y that is
comparable to the ISO-GUM’s t-distribution based on the W–S formula,
we need non-informative prior distributions that do not carry additional
information.
7 These non-informative prior distributions are not proper probability
distributions and hence they are termed improper prior distributions.
8 A Bayesian standard uncertainty associated with xi depends on the choice of
prior distributions for Xi and σ 2

i . The posterior distribution for Xi , and hence
a Bayesian uncertainty, is different for different prior distributions for the
statistical parameters. The Bayesian uncertainty uA,Bayes(xi ) of equation (15)
is based on the particular improper non-informative prior distributions used
for Xi and σ 2

i .

The ad hoc standard uncertainties were suggested in [2] by
replacing the undefined factor

√
[(mi − 1)/(mi − 3)], when

mi is less than four, with the ratio of the relevant percentiles of
t-distribution and normal distribution for the chosen p of 95%.

We propose to approximate the Bayesian scaled-and-
shifted t-distribution for Xi by a normal distribution, N(xi ,
u2

A,Bayes(xi)), with expected value xi and variance u2
A,Bayes(xi).

The two distributions agree up to the moments of order
two [1, section C.2.13]; the moment of order three is zero
because of symmetry. Then an approximate Bayesian posterior
distribution for XA is normal N(xA, u2

A,Bayes(xA)) where xA is
defined in equation (7) and

uA,Bayes(xA) =
√√√√ n∑

i=1

c2
i u

2
A, Bayes(xi)

=
√√√√ n∑

i=1

c2
i

mi − 1

mi − 3
u2

A(xi). (16)

Now Y = ∑
i ciXi = XA +XB. Therefore, the expected value

and standard deviation of Y are, respectively, y = xA + xB =∑
i cixi as in equation (12), and

uBayes(y) =
√√√√ n∑

i=1

c2
i

mi − 1

mi − 3
u2

A(xi) +
N∑

j=n+1

c2
ju

2
B(xj ). (17)

Suppose the requirements that underlie the central limit
theorem are reasonably satisfied for the sum Y = XA + XB =
XA + cn+1Xn+1 + · · · + cNXN , where the distribution for XA

is approximately normal. Then the distribution for Y may be
assumed to be approximately normal with expected value y and
variance u2

Bayes(y). Thus [y ± zpuBayes(y)] is an uncertainty
interval for Y with approximate coverage probability p, where
zp is a percentile of the standard normal distribution such
that the interval [−zp, +zp] encompasses the fraction p of
this distribution. For p = 95%, zp = 1.96 and the interval
[y ± zpuBayes(y)] becomes [y ± 1.96uBayes(y)], which may
sometimes be approximated as [y ± 2uBayes(y)].

5. Benefits of a Bayesian uncertainty and the
approximate normal distribution

The ISO-GUM is consistent because it interprets the Type A
evaluations as parameters of state-of-knowledge distributions.
Then Type A and Type B evaluations have a common
probabilistic interpretation and they can be combined through
a measurement equation. The ISO-GUM’s interpretation
is justified when either Bayesian statistics is used for the
Type A evaluations or sampling theory estimates are regarded
as approximations to Bayesian estimates. Therefore the ISO-
GUM may be regarded as an extension of Bayesian statistics
to incorporate non-statistical evaluations.

As indicated in the ISO-GUM [1, section E.4.3], the
statistical-uncertainty in uA(xi) arising from the limited
number mi of measurements may be large for practical values
of mi . Therefore, uA(xi), defined in section 2, is an incomplete
expression of the uncertainty associated with xi without an
accompanying statement of its degrees of freedom. Similarly,
the statistical-uncertainty in u(y), defined in section 3, may
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be large when its effective degrees of freedom νeff are small.
Therefore, u(y) is an incomplete expression of the uncertainty
associated with y without an accompanying statement of its
effective degrees of freedom. Unlike sampling theory, a
Bayesian standard uncertainty has no statistical-uncertainty.
Thus uA,Bayes(xi) is a complete expression of the uncertainty
associated with xi , for i = 1, . . . , n. Similarly, uBayes(y) is a
complete expression of the uncertainty associated with y.

The use of an approximate normal distribution for Y

based on a Bayesian uncertainty uBayes(y) greatly simplifies
the expression of uncertainty associated with y by eliminating
altogether the need for calculating effective degrees of freedom
from the W–S formula.

The primary expression of uncertainty in the ISO-GUM
is standard uncertainty. An uncertainty interval is a secondary
expression of uncertainty obtained from standard uncertainty.
The ISO-GUM accounts for the statistical-uncertainty in u(y)

arising from the limited numbers m1, . . . , mn of measurements
when an uncertainty interval [y ± kpu(y)] is computed by
using a larger coverage factor kp = tp(νeff) determined
from a t-distribution rather than the coverage factor kp =
zp determined from the normal distribution. The factors√

[(mi−1)/(mi−3)], for i = 1, 2, . . . , n, built in the Bayesian
standard uncertainty uBayes(y) enlarge it when one or more of
the numbers m1, . . . , mn of measurements are small. Thus
Bayesian statistics automatically accounts for the numbers of
measurements in the standard uncertainty which is the primary
expression of uncertainty.

6. Analytical comparison with respect to the
Behrens–Fisher distribution for the difference
between two means

Suppose the measurement equation for the value of the
measurand is Y = X1 − X2, where X1 and X2 are
independently distributed. Suppose the estimate and standard
uncertainty for Xi are xi and u(xi), respectively, for i =
1 and 2. Then y = x1 − x2 and u(y) = √

[u2(x1) +
u2(x2)]. This measurement equation applies when a common
quantity is measured by two different instruments, methods or
laboratories and the metrological interest lies in the difference
between the two evaluations. In CIPM key comparisons [15]
among national metrology institutes (NMIs), pair wise degrees
of equivalence di,j and their associated standard uncertainties
u(di,j ) are of the form y and u(y), respectively.

We consider a special application of the measurement
equation Y = X1 − X2, where Xi is evaluated from mi

independent and normally distributed measurements with
unknown variance σ 2

i , for i = 1 and 2. Thus both X1 and X2

are Type A variables. Then, as discussed in section 2,
result xi is the arithmetic mean and uncertainty u(xi) is the
standard deviation of the mean s(xi) = si/

√
mi . A Bayesian

posterior distribution for Ti = (Xi − xi)/u(xi), based on the
non-informative prior distributions for Xi and σ 2

i introduced
in section 4, is the t-distribution with degrees of freedom
νi = mi − 1. In this situation the probability distribution of
(Y − y)/u(y) is known to be the Behrens–Fisher distribution9

9 The distribution of [T1 sin θ −T2 cos θ ], where 0 � θ � π/2 radians (90˚),
is a Behrens–Fisher distribution [16, 17]. The distribution of (Y − y)/u(y)

has θ = tan−1[u(x1)/u(x2)]. The Behrens–Fisher distribution was originally

with parameters ν1 = m1 − 1, ν2 = m2 − 1 and θ =
tan−1[u(x1)/u(x2)] [18]. The percentiles of Behrens–Fisher
distribution for the coverage probability p of 95% are tabulated
in [19] for ν1, ν2 = 1, 2, . . . , 8, 10, 12, 24 and ∞, and θ = 0˚,
15˚, 30˚, 45˚, 60˚, 75˚ and 90˚. These percentiles may be used
to determine the correct coverage factor kp of the uncertainty
interval [y ± kpu(y)] for Y for various values of ν1, ν2 and θ ,
and p of 95%.

This example is referred to in textbooks on statistics as
‘the two-sample problem with unknown and possibly unequal
variances’. For this case, reference [20, appendix B] discusses
three other approximations proposed in [21] and [22] for the
distribution of (Y − y)/u(y). The approximations proposed
in [21] and [22] are better than the approximate t-distribution
based on the W–S formula. The approximation proposed
in [22] applies to sums of many scaled t-distributions. In this
section, we investigate the accuracies of the coverage factors
determined from the approximate t-distribution based on the
W–S formula and the approximate normal distribution based
on a Bayesian uncertainty with respect to the correct coverage
factor kp based on the Behrens–Fisher distribution.

The correct coverage factor kp of an uncertainty interval
[y ± kpu(y)] for Y with coverage probability p is kp =
BFp(ν1, ν2, θ ), where BFp(ν1, ν2, θ ) is a percentile
of the Behrens–Fisher distribution such that the interval
[−BFp(ν1, ν2, θ ), +BFp(ν1, ν2, θ )] encompasses the fraction
p of this distribution. An approximate coverage factor
determined from the t-distribution based on the W–S formula
is kp(W) = tp(νeff), where νeff = [u(y)]4/[u4(x1)/ν1 +
u4(x2)/ν2]. An uncertainty interval for Y determined
from the approximate normal distribution based on a
Bayesian uncertainty is [y ± zpuBayes(y)], where uBayes(y) =√

[u2
Bayes(x1)+u2

Bayes(x2)] and uBayes(xi) = √
[(mi −1)/(mi −

3)] × u(xi), provided mi is greater than 3, for i = 1 and 2.
To compare the interval based on Bayesian uncertainty with
the interval [y ± kpu(y)] determined from the Behrens–Fisher
distribution, we express the former as [y ± kp(B)u(y)], where
kp(B) = zp × uBayes(y)/u(y). Then we compare the three
coverage factors kp = BFp(ν1, ν2, θ ), kp(W) = tp(νeff) and
kp(B) = zp × uBayes(y)/u(y) for various values of ν1, ν2 and
θ , and p = 95%. Here, kp is the correct coverage factor
and kp(W) and kp(B) are approximate coverage factors.

To determine the coverage factors kp, kp(W) and kp(B), we
require numerical values for the parameters u(x1) = s1/

√
m1

and u(x2) = s2/
√

m2. We arbitrarily set s2
1 = 100 and

determined the corresponding s2
2 by solving the equation

θ = tan−1[u(x1)/u(x2)] for various values of θ . The ratios
u(x1)/u(x2) corresponding to θ = 15˚, 30˚, 45˚, 60˚ and 75˚
are, respectively, 27%, 58%, 100%, 173% and 373%. The
value θ = 45˚ represents the situation where the uncertainties
u(x1) and u(x2) are equal. The values θ = 30˚ and 60˚
represent the situation where the difference between u(x1)

and u(x2) is small. The values θ = 15˚ and 75˚ represent
the situation where the difference between u(x1) and u(x2) is
large.

The use of W–S formula is of greatest advantage when
one or both the degrees of freedom ν1 and ν2 are small.
Therefore, the smaller values of ν1 and ν2 are of greater interest.

developed in what is called fiducial inference; however, it was subsequently
identified as a Bayesian distribution [18].
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Table 1. Relative errors �kp(W) and �kp(B) for (ν1, ν2, θ ), where
(ν1, ν2) = (1, 1), (2, 1) and (2, 2); and θ = 15˚, 30˚, 45˚, 60˚ and
75˚. Comparison for (1, 2, θ ) is given by the comparison for
(2, 1, 90˚ − θ ).

ν1 ν2 θ kp(W) kp(B) kp �kp(W) �kp(B)

1 1 15˚ 12.71 12.71 15.56 −0.1834 −0.1834
2 1 15˚ 12.71 12.32 12.41 0.0239 −0.0070
2 2 15˚ 4.30 4.30 4.41 −0.0252 −0.0252
1 1 30˚ 12.71 12.71 17.36 −0.2681 −0.2681
2 1 30˚ 12.71 11.21 11.54 0.1011 −0.0284
2 2 30˚ 3.18 4.30 4.56 −0.3026 −0.0571
1 1 45˚ 4.30 12.71 17.97 −0.7606 −0.2929
2 1 45˚ 4.30 9.49 10.14 −0.5757 −0.0645
2 2 45˚ 2.78 4.30 4.62 −0.3996 −0.0695
1 1 60˚ 12.71 12.71 17.36 −0.2681 −0.2681
2 1 60˚ 4.30 7.37 8.34 −0.4843 −0.1173
2 2 60˚ 3.18 4.30 4.56 −0.3026 −0.0571
1 1 75˚ 12.71 12.71 15.56 −0.1834 −0.1834
2 1 75˚ 4.30 5.30 6.34 −0.3213 −0.1641
2 2 75˚ 4.30 4.30 4.41 −0.0252 −0.0252

Tables 1–6 display kp(W), kp(B), kp, and the relative errors
�kp(W) = [kp(W)−kp]/kp and �kp(B) = [kp(B)−kp]/kp

for the triplets (ν1, ν2, θ ), where ν1, ν2 = 1, 2, 3, 4, 5,
10 and 24; ν1 � ν2; and θ = 15˚, 30˚, 45˚, 60˚ and 75˚.
Comparison for ν1 � ν2 is made by comparing the coverage
factors for the triplets (ν2, ν1, 90˚−θ ) [18]. The relative errors
�kp(W) and �kp(B) indicate the accuracies of kp(W) and
kp(B) with respect to kp, respectively. In tables 1–3, when ν1,
ν2 = 1 or 2, we use for uBayes(xi) ad hoc standard uncertainties
given in section 4.

Table 1 is for the case where both ν1 and ν2 are either
1 or 2. The minimum and maximum values of the absolute
relative error |�kp(W)| are 2.39% and 76.06%, respectively.
The minimum and maximum values of the absolute relative
error |�kp(B)| are 0.70% and 29.29%, respectively. In the
cases considered, |�kp(B)| is less than or equal to |�kp(W)|.

Table 2 is for the case where either ν1 or ν2 is 1 and
the other is 3, 4, 5, 10 or 24. The minimum and maximum
values of the absolute relative error |�kp(W)| are 3.39% and
66.06%, respectively. The minimum and maximum values
of the absolute relative error |�kp(B)| are 0.03% and 6.37%,
respectively. In the cases considered, |�kp(B)| is substantially
less than |�kp(W)|.

Table 3 is for the case where either ν1 or ν2 is 2 and
the other is 3, 4, 5, 10 or 24. The minimum and maximum
values of the absolute relative error |�kp(W)| are 1.48% and
29.63%, respectively. The minimum and maximum values
of the absolute relative error |�kp(B)| are 0.05% and 3.52%,
respectively. In the cases considered, |�kp(B)| is substantially
less than |�kp(W)|.

Table 4 is for the case where ν1, ν2 = 3, 4, 5, 10 and 24
and the difference between u(x1) and u(x2) is large (θ = 15˚
or 75˚). The minimum and maximum values of the absolute
relative error |�kp(W)| are 0.16% and 4.92%, respectively.
The minimum and maximum values of the absolute relative
error |�kp(B)| are 0.01% and 6.77%, respectively. Thus the
absolute relative error in both �kp(W) and �kp(B) is small
when the difference between u(x1) and u(x2) is large (θ = 15˚
or 75˚). Mostly, |�kp(B)| is less than |�kp(W)|. In a few
cases, |�kp(W)| is less than |�kp(B)|.

Table 2. Relative errors �kp(W) and �kp(B) for (ν1, ν2, θ ), where
ν1 = 3, 4, 5, 10 and 24; ν2 = 1; and θ = 15˚, 30˚, 45˚, 60˚ and 75˚.
Comparison for (ν1, ν2, θ ), where ν1 < ν2 is given by the
comparison for (ν2, ν1, 90˚ − θ ).

ν1 ν2 θ kp(W) kp(B) kp �kp(W) �kp(B)

3 1 15˚ 12.71 12.30 12.29 0.0339 0.0012
4 1 15˚ 12.71 12.29 12.28 0.0347 0.0012
5 1 15˚ 12.71 12.29 12.28 0.0347 0.0009

10 1 15˚ 12.71 12.29 12.28 0.0347 0.0005
24 1 15˚ 12.71 12.28 12.28 0.0347 0.0004

3 1 30˚ 12.71 11.13 11.11 0.1437 0.0022
4 1 30˚ 12.71 11.09 11.06 0.1488 0.0028
5 1 30˚ 12.71 11.08 11.04 0.1509 0.0033

10 1 30˚ 12.71 11.06 11.03 0.1520 0.0026
24 1 30˚ 12.71 11.05 11.03 0.1520 0.0019

3 1 45˚ 3.18 9.30 9.30 −0.6579 −0.0003
4 1 45˚ 3.18 9.20 9.14 −0.6517 0.0066
5 1 45˚ 3.18 9.16 9.09 −0.6499 0.0078

10 1 45˚ 3.18 9.12 9.06 −0.6485 0.0069
24 1 45˚ 3.18 9.10 9.05 −0.6482 0.0060

3 1 60˚ 2.78 7.00 7.12 −0.6102 −0.0172
4 1 60˚ 2.78 6.79 6.77 −0.5899 0.0030
5 1 60˚ 2.57 6.72 6.64 −0.6126 0.0127

10 1 60˚ 2.31 6.63 6.51 −0.6458 0.0183
24 1 60˚ 2.20 6.60 6.49 −0.6606 0.0171

3 1 75˚ 3.18 4.64 4.96 −0.3584 −0.0637
4 1 75˚ 2.78 4.24 4.47 −0.3787 −0.0511
5 1 75˚ 2.57 4.10 4.22 −0.3906 −0.0286

10 1 75˚ 2.23 3.91 3.84 −0.4190 0.0198
24 1 75˚ 2.06 3.84 3.69 −0.4399 0.0413

Table 3. Relative errors �kp(W) and �kp(B) for (ν1, ν2, θ ), where
ν1 = 3, 4, 5, 10 and 24, ν2 = 2; and θ = 15˚, 30˚, 45˚, 60˚ and 75˚.
Comparison for (ν1, ν2, θ ), where ν1 < ν2 is given by the
comparison for (ν2, ν1, 90˚ − θ ).

ν1 ν2 θ kp(W) kp(B) kp �kp(W) �kp(B)

3 2 15˚ 4.30 4.25 4.24 0.0148 0.0019
4 2 15˚ 4.30 4.22 4.21 0.0232 0.0030
5 2 15˚ 4.30 4.21 4.19 0.0259 0.0032

10 2 15˚ 4.30 4.19 4.18 0.0284 0.0025
24 2 15˚ 4.30 4.19 4.18 0.0293 0.0023

3 2 30˚ 3.18 4.09 4.10 −0.2238 −0.0013
4 2 30˚ 3.18 3.98 3.96 −0.1972 0.0029
5 2 30˚ 3.18 3.94 3.91 −0.1859 0.0067

10 2 30˚ 3.18 3.88 3.85 −0.1725 0.0099
24 2 30˚ 3.18 3.86 3.83 −0.1686 0.0095

3 2 45˚ 2.78 3.88 3.90 −0.2886 −0.0071
4 2 45˚ 2.57 3.62 3.65 −0.2963 −0.0093
5 2 45˚ 2.57 3.53 3.54 −0.2728 −0.0015

10 2 45˚ 2.45 3.41 3.37 −0.2731 0.0143
24 2 45˚ 2.36 3.37 3.31 −0.2847 0.0191

3 2 60˚ 2.78 3.64 3.65 −0.2383 −0.0005
4 2 60˚ 2.57 3.22 3.31 −0.2239 −0.0267
5 2 60˚ 2.45 3.07 3.15 −0.2220 −0.0236

10 2 60˚ 2.20 2.87 2.87 −0.2339 −0.0015
24 2 60˚ 2.10 2.79 2.75 −0.2360 0.0137

3 2 75˚ 3.18 3.46 3.36 −0.0528 0.0307
4 2 75˚ 2.78 2.90 2.98 −0.0677 −0.0263
5 2 75˚ 2.57 2.69 2.78 −0.0767 −0.0352

10 2 75˚ 2.20 2.39 2.46 −0.1053 −0.0277
24 2 75˚ 2.06 2.27 2.31 −0.1065 −0.0154

Table 5 is for the case where ν1, ν2 = 3, 4, 5, 10 and 24
and the difference between u(x1) and u(x2) is small (θ = 30˚
or 60˚). The minimum and maximum values of the absolute
relative error |�kp(W)| are 1.63% and 16.00%, respectively.
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Table 4. Relative errors �kp(W) and �kp(B) for (ν1, ν2, θ ), where
ν1, ν2 = 3, 4, 5, 10, 24, ν1 � ν2; and θ = 15˚ and 75˚. Comparison
for (ν1, ν2, θ ), where ν1 < ν2 is given by the comparison for
(ν2, ν1, 90˚ − θ ).

ν1 ν2 θ kp(W) kp(B) kp �kp(W) �kp(B)

3 3 15˚ 3.18 3.39 3.19 −0.0027 0.0639
4 3 15˚ 3.18 3.36 3.15 0.0106 0.0660
5 3 15˚ 3.18 3.34 3.13 0.0155 0.0670

10 3 15˚ 3.18 3.33 3.12 0.0210 0.0676
24 3 15˚ 3.18 3.32 3.11 0.0230 0.0677

4 4 15˚ 2.78 2.77 2.77 0.0016 −0.0001
5 4 15˚ 2.78 2.76 2.75 0.0082 0.0009

10 4 15˚ 2.78 2.74 2.73 0.0155 0.0010
24 4 15˚ 2.78 2.73 2.73 0.0181 0.0009

5 5 15˚ 2.57 2.53 2.56 0.0026 −0.0131
10 5 15˚ 2.57 2.51 2.54 0.0116 −0.0126
24 5 15˚ 2.57 2.50 2.53 0.0148 −0.0127
10 10 15˚ 2.20 2.19 2.22 −0.0099 −0.0142
24 10 15˚ 2.20 2.18 2.21 −0.0059 −0.0145
24 24 15˚ 2.05 2.05 2.06 −0.0049 −0.0072
3 3 75˚ 3.18 3.39 3.19 −0.0027 0.0639
4 3 75˚ 2.78 2.82 2.82 −0.0140 0.0007
5 3 75˚ 2.57 2.60 2.63 −0.0211 −0.0109

10 3 75˚ 2.20 2.29 2.31 −0.0480 −0.0087
24 3 75˚ 2.06 2.16 2.16 −0.0492 0.0008

4 4 75˚ 2.78 2.77 2.77 0.0016 −0.0001
5 4 75˚ 2.57 2.55 2.58 −0.0044 −0.0135

10 4 75˚ 2.20 2.23 2.27 −0.0295 −0.0146
24 4 75˚ 2.06 2.10 2.12 −0.0295 −0.0068
5 5 75˚ 2.57 2.53 2.56 0.0026 −0.0131

10 5 75˚ 2.20 2.22 2.25 −0.0209 −0.0144
24 5 75˚ 2.06 2.08 2.10 −0.0202 −0.0071
10 10 75˚ 2.20 2.19 2.22 −0.0099 −0.0142
24 10 75˚ 2.05 2.06 2.07 −0.0097 −0.0072
24 24 75˚ 2.05 2.05 2.06 −0.0049 −0.0072

The minimum and maximum values of the absolute relative
error |�kp(B)| are 0.07% and 6.87%, respectively. In the cases
considered, |�kp(B)| is substantially less than |�kp(W)|.

Table 6 is for the case where ν1, ν2 = 3, 4, 5, 10 and 24
and u(x1) and u(x2) are equal (θ = 45˚). The minimum and
maximum values of the absolute relative error |�kp(W)| are
2.21% and 24.57%, respectively. The minimum and maximum
values of the absolute relative error |�kp(B)| are 0.02% and
6.02%, respectively. In the cases considered, |�kp(B)| is
substantially less than |�kp(W)|.

The relative errors displayed in tables 1–6 for p = 95%
show that generally the correction factors kp(B) determined
from the approximate normal distribution based on a Bayesian
uncertainty are more accurate than the correction factors kp(W)
determined from the approximate t-distribution based on the
W–S formula. We conclude that the approximate normal
distribution based on a Bayesian uncertainty is both simpler
and better in this non-trivial metrology application.

7. Parameters for comparing the two approximate
distributions by numerical methods

A thorough investigation of the relative performance of the
approximate t-distribution based on the W–S formula as
suggested in the ISO-GUM and the simpler approximate
normal distribution based on a Bayesian uncertainty as
proposed in this paper would require comparison for a range
of measurement equations by numerical methods. Suppose

Table 5. Relative errors �kp(W) and �kp(B) for (ν1, ν2, θ ), where
ν1, ν2 = 3, 4, 5, 10, 24, ν1 � ν2; and θ = 30˚ and 60˚. Comparison
for (ν1, ν2, θ ), where ν1 < ν2 is given by the comparison for
(ν2, ν1, 90˚ − θ ).

ν1 ν2 θ kp(W) kp(B) kp �kp(W) �kp(B)

3 3 30˚ 2.78 3.39 3.23 −0.1391 0.0527
4 3 30˚ 2.78 3.25 3.09 −0.1009 0.0526
5 3 30˚ 2.57 3.20 3.03 −0.1505 0.0577

10 3 30˚ 2.57 3.14 2.94 −0.1262 0.0665
24 3 30˚ 2.57 3.11 2.91 −0.1175 0.0687
4 4 30˚ 2.45 2.77 2.78 −0.1195 −0.0026
5 4 30˚ 2.45 2.71 2.72 −0.0994 −0.0013

10 4 30˚ 2.45 2.64 2.63 −0.0689 0.0041
24 4 30˚ 2.45 2.61 2.59 −0.0567 0.0060
5 5 30˚ 2.31 2.53 2.56 −0.0999 −0.0124

10 5 30˚ 2.31 2.45 2.47 −0.0668 −0.0085
24 5 30˚ 2.31 2.42 2.44 −0.0534 −0.0071
10 10 30˚ 2.12 2.19 2.22 −0.0438 −0.0116
24 10 30˚ 2.12 2.16 2.18 −0.0267 −0.0100
24 24 30˚ 2.02 2.05 2.06 −0.0163 −0.0053
3 3 60˚ 2.78 3.39 3.23 −0.1391 0.0527
4 3 60˚ 2.45 2.94 2.91 −0.1600 0.0093
5 3 60˚ 2.36 2.77 2.76 −0.1420 0.0058

10 3 60˚ 2.18 2.55 2.50 −0.1278 0.0193
24 3 60˚ 2.07 2.45 2.38 −0.1279 0.0321
4 4 60˚ 2.45 2.77 2.78 −0.1195 −0.0026
5 4 60˚ 2.36 2.59 2.63 −0.0992 −0.0123

10 4 60˚ 2.16 2.35 2.37 −0.0888 −0.0089
24 4 60˚ 2.06 2.25 2.25 −0.0855 −0.0007
5 5 60˚ 2.31 2.53 2.56 −0.0999 −0.0124

10 5 60˚ 2.14 2.28 2.31 −0.0715 −0.0126
24 5 60˚ 2.05 2.18 2.19 −0.0635 −0.0059
10 10 60˚ 2.12 2.19 2.22 −0.0438 −0.0116
24 10 60˚ 2.03 2.08 2.10 −0.0303 −0.0066
24 24 60˚ 2.02 2.05 2.06 −0.0163 −0.0053

Table 6. Relative errors �kp(W) and �kp(B) for (ν1, ν2, θ ), where
ν1, ν2 = 3, 4, 5, 10, 24, ν1 � ν2; and θ = 45˚. Comparison for
(ν1, ν2, θ ), where ν1 < ν2 is given by the comparison for
(ν2, ν1, 90˚ − θ ).

ν1 ν2 θ kp(W) kp(B) kp �kp(W) �kp(B)

3 3 45˚ 2.45 3.39 3.24 −0.2457 0.0465
4 3 45˚ 2.45 3.10 3.01 −0.1876 0.0289
5 3 45˚ 2.36 2.99 2.90 −0.1838 0.0335

10 3 45˚ 2.26 2.86 2.72 −0.1680 0.0508
24 3 45˚ 2.23 2.80 2.64 −0.1573 0.0602
4 4 45˚ 2.31 2.77 2.79 −0.1726 −0.0054
5 4 45˚ 2.31 2.65 2.68 −0.1379 −0.0079

10 4 45˚ 2.20 2.50 2.50 −0.1189 0.0002
24 4 45˚ 2.16 2.44 2.42 −0.1077 0.0064
5 5 45˚ 2.23 2.53 2.57 −0.1313 −0.0135

10 5 45˚ 2.16 2.37 2.39 −0.0961 −0.0097
24 5 45˚ 2.12 2.30 2.31 −0.0831 −0.0046
10 10 45˚ 2.09 2.19 2.22 −0.0583 −0.0107
24 10 45˚ 2.05 2.12 2.14 −0.0410 −0.0073
24 24 45˚ 2.01 2.05 2.06 −0.0221 −0.0043

Y is equal to
∑

i ciXi , for 1, . . . , N , where X1, . . . , Xn

have the Type A distributions, and Xn+1, . . . , XN have the
Type B distributions. A number of values for n and a
number of values of N would have to be considered for
n = 1, . . . , N and N = 2, 3, . . . . One would have to consider
various negative and positive sensitivity coefficients c1, . . . , cN

associated with the variables X1, . . . , Xn and Xn+1, . . . , XN .
A useful comparison may assume that the expected value and
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standard deviation of Xi , for i = 1, . . . , n, are determined
from mi independent normally distributed measurement and
Xn+1, . . . , XN have rectangular distributions. For each
Type A variable Xi one would consider various values for
the number mi of independent measurements with normal
sampling distributions. For each Xi one would consider
various values of the standard deviations σi , for i = 1, . . . , n.
For each Xj one would consider a number of rectangular
distributions of various widths for j = n + 1, . . . , N . The
required coverage probability p may be set as 95% or
several different values of p may be considered. Numerical
simulation would be required for each combination of the
aforementioned parameters. The number of simulations for
each combination of parameters should be sufficiently large
for a meaningful difference between the approximate coverage
factors kp determined from the two approximate distributions
for Y . Numerical simulation would indicate the accuracies
of the coverage factors determined from each of the two
approximate distributions.

8. Conclusion

The ISO-GUM interprets the Type A evaluations (commonly
determined from sampling theory) as parameters of state-
of-knowledge probability distributions. It has previously
been shown that the ISO-GUM’s interpretation is justified
when the Type A evaluations are either determined from
Bayesian statistics or are regarded as approximations to
Bayesian estimates determined from sampling theory [2].
In certain disciplines, uncertainty is traditionally expressed as
an interval about an estimate for the value of the measurand.
Expression of uncertainty as an interval with a stated
(supposed) coverage probability requires a description of the
probability distribution for the value of the measurand. The
ISO-GUM suggests that under certain conditions, motivated by
the central limit theorem, the coverage factor of an uncertainty
interval that yields the required coverage probability may be
determined from an approximate t-distribution with effective
degrees of freedom obtained from the W–S formula. As a
sequel to [2], this paper proposes an approximate normal
distribution based on a Bayesian uncertainty as an alternative to
the approximate t-distribution based on the W–S formula. The
use of an approximate normal distribution based on a Bayesian
uncertainty greatly simplifies the expression of uncertainty
by eliminating altogether the need for calculating effective
degrees of freedom from the W–S formula.

When the measurand is the difference between two
means, each evaluated from independent normally distributed
measurements, the probability distribution for the value of
the measurand is known to be a Behrens–Fisher distribution.
We compared the accuracy of correction factors determined
from the two approximate distributions with respect to the
correct coverage factor from the Behrens–Fisher distribution
for the coverage probability of 95%. Our investigation
shows that in this special case the coverage factor determined
from the approximate normal distribution is generally more
accurate. This example suggests that perhaps the simpler
approximate normal distribution may be preferable to the
approximate t-distribution for other measurement equations
as well. A thorough investigation of the relative performance

of the approximate t-distribution based on the W–S formula
as suggested in the ISO-GUM and the simpler approximate
normal distribution based on a Bayesian uncertainty as
proposed in this paper would require comparison for a range
of measurement equations by numerical methods.

The assumptions that underlie the approximate
t-distribution based on the W–S formula and the approximate
normal distribution based on a Bayesian uncertainty are essen-
tially identical. Unless these assumptions are validated, one is
not fully justified in using the approximate distributions. Some
tend to use the approximate t-distribution based on the W–S
formula as a general rule [23]. To the extent that one is will-
ing to use the approximate t-distribution without validating
the underlying assumptions, one should be willing to use the
simpler approximate normal distribution.
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