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Abstract

Effective visualizations can help researchers abtaimore complete understanding of
high level mathematical functions that arise in meatatics, statistics, physics, fluid
dynamics and other fields of the mathematical ahgsjgzal sciences. Accordingly,
dynamic interactive 3D graphs of function surfae@$ be a key feature of the National
Institute of Standards and Technology Digital Ligraf Mathematical Functions, a new
Web-based compendium of mathematical functionswhlatreplace a popular but dated
resource, the National Bureau of Standards HandbafoRvathematical Functions,
published by Abramowitz and Stegun in 1964. As tpers of commercial packages
are well aware, creating software to accuratelyt ptomplicated 3D surfaces can be a
challenging task. This paper looks at the effectéss of modifying an algebraic tensor
product spline grid generation technique, whosegdesvas originally motivated by
problems in aerodynamics and solidification thedoy,create computational grids for
accurate visualizations of 3D surfaces that capkesefunction features such as poles,
branch cuts and other singularities.

Introduction

The National Institute of Standards and Technol@gT) is in the midst of developing
the NIST Digital Library of Mathematical Functio(BLMF) to replace the widely used,
but outdated National Bureau of Standards HandbobkMathematical Functions
published in 1964 [1]. Like the original book, theital library will contain a wide
range of information about high level, or speciahthematical functions such as the
Bessel functions, the gamma and beta functionserdggommetric functions and others
useful for obtaining closed form solutions or gtaive information to solve many
problems in the mathematical and physical scieritieere will be formulas, methods of
computation, references, and links to softwareofar forty functions. The Web site will
feature interactive navigation, a mathematical #gnaearch, 2D graphics, and dynamic



interactive 3D visualizations that allow users i@mine poles, zeros, branch cuts and
other important features of special functions.

This paper discusses our successful use of nurhagi@h generation techniques to
facilitate the plotting of surfaces that are theprs of high level mathematical functions,
that is, surfaces that can be described by equatminthe form w=f(xy). The

complicated nature of these functions means thatcttmputational domains are often
irregular, discontinuous, or multiply connected, king the visualization task quite

difficult. Although commercial packages may havensoof the functions built in and

may allow the user to produce a plot, typically ponations are over a rectangular
Cartesian mesh, which sometimes produces a very aod misleading graph of the
function. In addition, the packages often have [@wis clipping the surface properly
when values fall outside the range of interest ifigelcby the user. Furthermore, what
looks satisfactory inside the package, may not Ibennvthe data is transformed to a
format more suitable for the Web.

Many problems can be eliminated by designing a edatjpnal grid whose boundary
coincides with a selected contour of the surfad@is Tan not only produce a proper
clipping of the function, but also improve the srioeess of the color mapping. Various
structured and unstructured techniques might bd tsereate the computational grids,
but structured techniques make it easier to wriiicient code to implement the

interactive capabilities for the visualizations. Wil first examine the problems that can
arise when trying to display dynamic 3D graphicsttom Web. Then we will discuss the
grid generation technique we have used, examinimgugdated version of a tensor
product B-spline grid generation algorithm desigigdone of the authors [2]. Finally,

we will discuss our results and look at some pal#s#is for improvements.

Problem

The content of the NIST DLMF will be organized inapproximately forty chapters

written by renowned mathematicians throughout thdtdd States and abroad. The
locations and types of graphs and visualizationgfparticular chapter are determined by
consultation with the DLMF editors and chapter awh Whenever possible, data
accuracy is being validated through computatiorableast two different methods using
commercial packages, published software, or theaaist personal codes. In addition to
these issues, a key concern is plot accuracy. ¢s displayed plot an accurate
representation of the graph of the function?

Most commercial packages handle 2D graphics velli; Wehe user only wants to see
the function values that lie within a particulaterval, they properly cut, or clip, the
curve so that only points falling within the desireange appear. Discontinuities are
usually handled either automatically or fairly éasvith special options. Unfortunately,
the situation is often different with 3D graphi€sgure 1 shows some of the problems we



have encountered when using commercial packagethelrirst picture the user has
requested that Airy function |Bk)| be plotted only for values less than or eqodb.t
The package produces what might be called a streiéble effect, where function values
that exceed the value 5 are set to 5. AlthougHl#tearea, which is totally unrelated to
the function, might not concern some users, it inighconfusing to students and others
unfamiliar with the function. The figure on thehi shows that even when clipping is
done properly, an undesirable color map may reshkn the data is computed over
purely rectangular mesh cells and rendered inradbfor Web viewing. The surface was
displayed using the Virtual Reality Modeling Langea(VRML), a standard 3D file
format for creating interactive Web-based visudiores [4]. The bottom figure, showing
the complex gamma function, illustrates the laclclafrity packages may demonstrate
when functions have complicated features such ks po
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Figure 1. Potential problems.



Most of these problems can be eliminated or deeckas severity by computing the
special function over a boundary or contour fittgetl. The next section discusses the
grid generation mapping we have used to produde augid.

The Grid Generation Mapping

The difficulty of the grid generation prebh depends directly on the complexity of
the computational domain for the special functibime shapes of the domains range from
simple rectangles to oddly shaped multiply conrie@emains which must be split to
handle branch cuts. We have experimented with swotitctured and unstructured grids,
but we have found that structured grids allow uswidte more efficient code to
implement the interactive features for the viswlans. One of the primary grid
generation techniques we have used is basedemsartproduct mapping and smoothing
functional developed by one of the authors to s@adial differential equations (pdes)
related to aerodynamics and solidification theo3J2The grid generation technique uses
a tensor product mappifigfrom the unit squarel, to the physical domain defined by

y(£.7)

where 0<¢,7<1, B;(,7) =B(S)Bj(17) and B;,B; are elements of cubic B-spline
sequences. An advantage of this technique istieatoefficientsa;;, ; can be easily
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chosen to produce a very good variation diminishagproximation to transfinite
interpolation if the grid is very simple[5], or fanore complicated highly nonconvex
boundaries, it can become a variational method thighcoefficients chosen to minimize

the functional
F= w37 +(§D %) + wol TF 112 + wsf Juy oA
I2

where J is the Jacobian of the mapping,, w,, w; are weight constants amdepresents
external criteria for adapting the grid. Like thariational method of Brackbill and
Saltzman[6], the integral controls smoothness, agtimality, and whenw;is nonzero,
the adaptive concentration of the grid lines bamedhe definition ofu. When solving
pdes,u might be a function of the gradient of the evolvewution or an approximation
of truncation error. Here we want u to be basectunvature and gradient information
related to the function surface. Figure 2 showsitiiel and optimized grids created for
a puzzle shaped boundary. The minimization of thenctional with



w = 2,w, =10w; =0 pulls all the lines inside the boundary and smesttine grid cell
spacing.
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Figure 2. Initial and optimized puzzle grids.
Results

To date we have used boundary/contour fitted gadegation to create computational
grids for the production of over one hundred 3Duslizations for the NIST DLMF
project. The plots in Figures 3 and 4 vividly illtege the effectiveness of the technique.
In Figure 3, the left picture shows the contourvesrfor |Bi' (z)] = 5. We connected the
curves to parts of a rectangle to form a closedhbdaty and created the contour fitted
grid shown on the right. The left plot in Figureshows the surface obtained after we
computed the function over the grid and transldtesl data into VRML format for
viewing on the Web. The figure on the right shotws same function surface computed
over a rectangular Cartesian grid. Notice thatdbetour fitted grid not only properly
clips the function, but also greatly improves thesthness of the color map.
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Figure 3. Contours and Grid for Airy function |Bi' (2)|.



Figure 4. Airy function |Bi' (2)|.

The next three figures show grids and surfaceséweral types of Weierstrass elliptic
functions.  All the functions have several polesking the computational domains of
the functions somewhat complicated. To ease tmeptaxity of the grid generation
problem, we use a block-structured approach, digdhe domains into several sections
and creating a grid on each. Since we are notrgplpdes, we are not concerned with
matching boundary conditions across the separads. gfurthermore, our VRML code,
which governs interaction with the surfaces, accepty number of grids and operates on
each grid independently.

Figure 5 shows the grid for Weierstrass elliptindtion [ (3.7;a+ib,0)| where

-5<a< 3-4<hb< 4 The bottom half of the gridb&0) was reflected around the line
b=0 to obtain the top half. We used an exponentiattion to concentrate the grid points.
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Figure 5. Grid for Weierstrass Elliptic Function |0 (3.7;a+ib,0) |.



Once the coefficients are determined for the termoduct mapping we have an
algebraic method which can be used to create aseqaor finer, grid simply by
evaluating fewer, or more, points on the unit squdf guarantee that key boundary
points, such as those located at function zerespraintained regardless of grid size, we
identify “fixed points,” that is, boundary poitvhich must always be kept. Grid lines
are always drawn through these points. The regulliscontinuities in cell spacing do
not appear to affect the quality of the 3D visuatians. In Figure 6 we show a display of
the function computed over the grid in Figure S5desa VRML Cosmo Player browser.
Most VRML browsers have built-in capabilities fastation, pan, and zoom, but also
allow a programmer to add custom features. We laaded user-controlled options for
scaling, alternate color maps, and movable cuttlages.
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Figure 6. Weierstrass Elliptic Function 0 (3.7,a+ib,0)|.

Figure 7 shows one of four sections of the grid flle Weierstrasg] —function
|0 (x+iy;14i)|, and Figure 8 shows one of two sections @ gtid for the Weierstrass
O —function [ (x +iy) |. For both grids the most time consuming partefgrocess was

computing the contours for the grid boundaries,thatsymmetry of the surface in Figure
8 made the task somewhat easier. In the Weiesstyidds we have set,; =0 so that

adaptive concentration of the grid lines is not legoh but in Figure 9 we show
preliminary progress we have made in this area.



Figure 7. Weierstrass Elliptic Function [0 (x +iy;14i) |.

Figure 8. Weierstrass Elliptic Function [ (x +iy) |.



In Figures 7 and 8 the smoothness of the color imaptisfactory for both surfaces, but
there are some shadowy areas caused by the skeafmigsgrids near the ends of the
semicircular contours. These areas might be imgutdwy adaptively concentrating the
grid lines according to gradient and curvature rimfation obtained from the function. To
date, we have successfully attracted grid lineseteeral pre-defined curves. In Figure 9
we attract grid points in an equally spaced sqggickto a circle by choosing Jacobian
and orthogonality weightsw; = 3w, =1, respectively, and adaptive weigh; = 3.

We defineu onl, byu(&, ;) = 5000 304€- 57 + - 5°-9/64"  cyrrently, we are working
on adaptive movement based on function curvatutg, Several problems must be
addressed. Functional minimization routines, oadly designed only fow; = 0, are
being updated to accommodate a likely nonlineareddpnce ofu on the spline
coefficients. Also, the specialized nature of mafiyhe functions means that accessing
and linking the codes needed to compute gradieshicarnvature data may not be a trivial

task.
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Figure 9. Grid adapted to circular shape.

Conclusions

We have successfully used boundary/contour fitted generation to create over one
hundred 3D visualizations of complex mathematiaaicfions for the NIST Digital
Library of Mathematical Functions Project. Thedggieneration technique has helped us
address many of the problems such as poor clippivegcurate plots, and poor color



mapping that can come with using standard comniepeiekages for 3D graphics. We
continue to improve the technique and have madeifignt progress toward
implementing the adaptive movement of grid linesdabon external information such as
function curvature and gradient data.

Disclaimer

All references to commercial products are providety for clarification of the results
presented. Their identification does not imply moeendation or endorsement by NIST.
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