
 1

Boundary/Contour Fitted Grid Generation for
Effective Visualizations in a Digital Library of
Mathematical Functions

Bonita Saunders
Qiming Wang

National Institute of Standards and Technology
100 Bureau Drive Stop 8910
Gaithersburg, MD 20899-8910 USA
bonita.saunders@nist.gov, qiming.wang@nist.gov

Abstract

Effective visualizations can help researchers obtain a more complete understanding of
high level mathematical functions that arise in mathematics, statistics, physics, fluid
dynamics and other fields of the mathematical and physical sciences. Accordingly,
dynamic interactive 3D graphs of function surfaces will be a key feature of the National
Institute of Standards and Technology Digital Library of Mathematical Functions, a new
Web-based compendium of mathematical functions that will replace a popular but dated
resource, the National Bureau of Standards Handbook of Mathematical Functions,
published by Abramowitz and Stegun in 1964. As developers of commercial packages
are well aware, creating software to accurately plot complicated 3D surfaces can be a
challenging task. This paper looks at the effectiveness of modifying an algebraic tensor
product spline grid generation technique, whose design was originally motivated by
problems in aerodynamics and solidification theory, to create computational grids for
accurate visualizations of 3D surfaces that capture key function features such as poles,
branch cuts and other singularities.

Introduction

The National Institute of Standards and Technology (NIST) is in the midst of developing
the NIST Digital Library of Mathematical Functions (DLMF) to replace the widely used,
but outdated National Bureau of Standards Handbook of Mathematical Functions
published in 1964 [1]. Like the original book, the digital library will contain a wide
range of information about high level, or special, mathematical functions such as the
Bessel functions, the gamma and beta functions, hypergeometric functions and others
useful for obtaining closed form solutions or qualitative information to solve many
problems in the mathematical and physical sciences. There will be formulas, methods of
computation, references, and links to software for over forty functions. The Web site will
feature interactive navigation, a mathematical equation search, 2D graphics, and dynamic

 2

interactive 3D visualizations that allow users to examine poles, zeros, branch cuts and
other important features of special functions.

This paper discusses our successful use of numerical grid generation techniques to
facilitate the plotting of surfaces that are the graphs of high level mathematical functions,
that is, surfaces that can be described by equations of the form),(yxfw= . The

complicated nature of these functions means that the computational domains are often
irregular, discontinuous, or multiply connected, making the visualization task quite
difficult. Although commercial packages may have some of the functions built in and
may allow the user to produce a plot, typically computations are over a rectangular
Cartesian mesh, which sometimes produces a very poor and misleading graph of the
function. In addition, the packages often have problems clipping the surface properly
when values fall outside the range of interest specified by the user. Furthermore, what
looks satisfactory inside the package, may not be when the data is transformed to a
format more suitable for the Web.

Many problems can be eliminated by designing a computational grid whose boundary
coincides with a selected contour of the surface. This can not only produce a proper
clipping of the function, but also improve the smoothness of the color mapping. Various
structured and unstructured techniques might be used to create the computational grids,
but structured techniques make it easier to write efficient code to implement the
interactive capabilities for the visualizations. We will first examine the problems that can
arise when trying to display dynamic 3D graphics on the Web. Then we will discuss the
grid generation technique we have used, examining an updated version of a tensor
product B-spline grid generation algorithm designed by one of the authors [2]. Finally,
we will discuss our results and look at some possibilities for improvements.

Problem

The content of the NIST DLMF will be organized into approximately forty chapters
written by renowned mathematicians throughout the United States and abroad. The
locations and types of graphs and visualizations for a particular chapter are determined by
consultation with the DLMF editors and chapter authors. Whenever possible, data
accuracy is being validated through computation by at least two different methods using
commercial packages, published software, or the author’s personal codes. In addition to
these issues, a key concern is plot accuracy. Is the displayed plot an accurate
representation of the graph of the function?

Most commercial packages handle 2D graphics very well. If the user only wants to see
the function values that lie within a particular interval, they properly cut, or clip, the
curve so that only points falling within the desired range appear. Discontinuities are
usually handled either automatically or fairly easily with special options. Unfortunately,
the situation is often different with 3D graphics. Figure 1 shows some of the problems we

 3

have encountered when using commercial packages. In the first picture the user has
requested that Airy function |Bi(z)| be plotted only for values less than or equal to 5.
The package produces what might be called a shelf, or table effect, where function values
that exceed the value 5 are set to 5. Although the flat area, which is totally unrelated to
the function, might not concern some users, it might be confusing to students and others
unfamiliar with the function. The figure on the right shows that even when clipping is
done properly, an undesirable color map may result when the data is computed over
purely rectangular mesh cells and rendered in a format for Web viewing. The surface was
displayed using the Virtual Reality Modeling Language (VRML), a standard 3D file
format for creating interactive Web-based visualizations [4]. The bottom figure, showing
the complex gamma function, illustrates the lack of clarity packages may demonstrate
when functions have complicated features such as poles.

 Bad clipping Non-smooth color map

 Poor resolution of poles

Figure 1. Potential problems.

-2

0

2 -4

-2

0

2

4

0
1
2
3
4
5

-2

0

2

-4
-2

0

2

4

-2

0

2

0

2

4

6

-4
-2

0

2

 4

Most of these problems can be eliminated or decreased in severity by computing the
special function over a boundary or contour fitted grid. The next section discusses the
grid generation mapping we have used to produce such a grid.

The Grid Generation Mapping

 The difficulty of the grid generation problem depends directly on the complexity of
the computational domain for the special function. The shapes of the domains range from
simple rectangles to oddly shaped multiply connected domains which must be split to
handle branch cuts. We have experimented with both structured and unstructured grids,
but we have found that structured grids allow us to write more efficient code to
implement the interactive features for the visualizations. One of the primary grid
generation techniques we have used is based on a tensor product mapping and smoothing
functional developed by one of the authors to solve partial differential equations (pdes)
related to aerodynamics and solidification theory[2,3]. The grid generation technique uses
a tensor product mapping T from the unit square 2I to the physical domain defined by

 T
















∑ = ∑ =

∑ = ∑ ==







=

m
i

n
j B

m
i

n
j B

y

x

ijij

ijij

1 1),(

1 1),(

),(

),(
),(

ηξβ

ηξα

ηξ
ηξ

ηξ

where 1,0 ≤≤ ηξ ,)()(),(ηξηξ jiij BBB = and ji BB , are elements of cubic B-spline

sequences. An advantage of this technique is that the coefficients ijij βα , can be easily

chosen to produce a very good variation diminishing approximation to transfinite
interpolation if the grid is very simple[5], or for more complicated highly nonconvex
boundaries, it can become a variational method with the coefficients chosen to minimize

the functional

where J is the Jacobian of the mapping, 321 ,, www are weight constants and u represents

external criteria for adapting the grid. Like the variational method of Brackbill and
Saltzman[6], the integral controls smoothness, orthogonality, and when 3w is nonzero,

the adaptive concentration of the grid lines based on the definition of u. When solving
pdes, u might be a function of the gradient of the evolving solution or an approximation
of truncation error. Here we want u to be based on curvature and gradient information
related to the function surface. Figure 2 shows the initial and optimized grids created for
a puzzle shaped boundary. The minimization of the functional with

dAJuwwJJwF
I
∫ +∂

∂⋅∂
∂+∂

∂+∂
∂=

2

}){}{})(){((3
2

2
22

1 ηξηξ
TT

 5

0,10,2 321 === www pulls all the lines inside the boundary and smoothes the grid cell

spacing.

2 4 6 8 10

-3

-2

-1

0

1

2

3

4

2 4 6 8 10

-3

-2

-1

0

1

2

3

4

Figure 2. Initial and optimized puzzle grids.

Results

To date we have used boundary/contour fitted grid generation to create computational
grids for the production of over one hundred 3D visualizations for the NIST DLMF
project. The plots in Figures 3 and 4 vividly illustrate the effectiveness of the technique.
In Figure 3, the left picture shows the contour curves for |Bi' (z)| = 5. We connected the
curves to parts of a rectangle to form a closed boundary and created the contour fitted
grid shown on the right. The left plot in Figure 4 shows the surface obtained after we
computed the function over the grid and translated the data into VRML format for
viewing on the Web. The figure on the right shows the same function surface computed
over a rectangular Cartesian grid. Notice that the contour fitted grid not only properly
clips the function, but also greatly improves the smoothness of the color map.

 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

 -4 -3 -2 -1 0 1 2

-3

-2

-1

0

1

2

3

Figure 3. Contours and Grid for Airy function |Bi' (z)|.

 6

Figure 4. Airy function |Bi' (z)|.

The next three figures show grids and surfaces for several types of Weierstrass elliptic
functions. All the functions have several poles, making the computational domains of
the functions somewhat complicated. To ease the complexity of the grid generation
problem, we use a block-structured approach, dividing the domains into several sections
and creating a grid on each. Since we are not solving pdes, we are not concerned with
matching boundary conditions across the separate grids. Furthermore, our VRML code,
which governs interaction with the surfaces, accepts any number of grids and operates on
each grid independently.

Figure 5 shows the grid for Weierstrass elliptic function |)0,;7.3(iba +℘ | where

.44,35 ≤≤−≤≤− ba The bottom half of the grid (b<0) was reflected around the line
b=0 to obtain the top half. We used an exponential function to concentrate the grid points.

 -4 -3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

4

 Figure 5. Grid for Weierstrass Elliptic Function |),;(0iba3.7 ++++℘℘℘℘ |.

 7

 Once the coefficients are determined for the tensor product mapping we have an
algebraic method which can be used to create a coarser, or finer, grid simply by
evaluating fewer, or more, points on the unit square. To guarantee that key boundary
points, such as those located at function zeros, are maintained regardless of grid size, we
identify “fixed points,” that is, boundary points which must always be kept. Grid lines
are always drawn through these points. The resulting discontinuities in cell spacing do
not appear to affect the quality of the 3D visualizations. In Figure 6 we show a display of
the function computed over the grid in Figure 5 inside a VRML Cosmo Player browser.
Most VRML browsers have built-in capabilities for rotation, pan, and zoom, but also
allow a programmer to add custom features. We have added user-controlled options for
scaling, alternate color maps, and movable cutting planes.

Figure 6. Weierstrass Elliptic Function |),(0iba;3.7 ++++℘℘℘℘ |.

Figure 7 shows one of four sections of the grid for the Weierstrass −℘ function

| i),iy;(x 41+℘ |, and Figure 8 shows one of two sections of the grid for the Weierstrass

−℘ function | iy)(x +℘ |. For both grids the most time consuming part of the process was

computing the contours for the grid boundaries, but the symmetry of the surface in Figure
8 made the task somewhat easier. In the Weierstrass grids we have set 03 =w so that

adaptive concentration of the grid lines is not applied, but in Figure 9 we show
preliminary progress we have made in this area.

 8

-3.5 -3 -2.5 -2 -1.5 -1

-3

-2

-1

0

1

2

3

4

Figure 7. Weierstrass Elliptic Function |),(i41iy;x ++++℘℘℘℘ |.

 -6 -5 -4 -3 -2 -1 0

2

4

6

8

10

Figure 8. Weierstrass Elliptic Function |)(iyx ++++℘℘℘℘ |.

 9

In Figures 7 and 8 the smoothness of the color map is satisfactory for both surfaces, but
there are some shadowy areas caused by the skewness of the grids near the ends of the
semicircular contours. These areas might be improved by adaptively concentrating the
grid lines according to gradient and curvature information obtained from the function. To
date, we have successfully attracted grid lines to several pre-defined curves. In Figure 9
we attract grid points in an equally spaced square grid to a circle by choosing Jacobian
and orthogonality weights, 1,3 21 == ww , respectively, and adaptive weight 33 =w .

We define u on 2I by
222]64/9)5.()5.[(5005000),(−−+−−= ηξηξ eu . Currently, we are working

on adaptive movement based on function curvature, but several problems must be
addressed. Functional minimization routines, originally designed only for 03 =w , are

being updated to accommodate a likely nonlinear dependence of u on the spline
coefficients. Also, the specialized nature of many of the functions means that accessing
and linking the codes needed to compute gradient and curvature data may not be a trivial
task.

 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

Figure 9. Grid adapted to circular shape.

Conclusions

We have successfully used boundary/contour fitted grid generation to create over one
hundred 3D visualizations of complex mathematical functions for the NIST Digital
Library of Mathematical Functions Project. The grid generation technique has helped us
address many of the problems such as poor clipping, inaccurate plots, and poor color

 10

mapping that can come with using standard commercial packages for 3D graphics. We
continue to improve the technique and have made significant progress toward
implementing the adaptive movement of grid lines based on external information such as
function curvature and gradient data.

Disclaimer

All references to commercial products are provided only for clarification of the results
presented. Their identification does not imply recommendation or endorsement by NIST.

References

[1] Abramowitz, M and Stegun, I.A. editors, Handbook of Mathematical Functions

with Formulas, Graphs and Mathematical Tables, Vol. 55, National Bureau of
Standards Applied Mathematics Series. U.S. Government Printing Office,
Washington, D.C., 1964.

[2] Saunders, B.V. “A Boundary Conforming Grid Generation Stystem for Interface

Tracking,” J. Computers Math Applic . 29,1-17, 1995.

[3] Saunders, B.V., Wang, Q. “From 2D to 3D: Numerical Grid Generation and the

Visualization of Complex Surfaces” Proceedings of the 7th International
Conference on Numerical Grid Generation in Computational Field Simulations,
Soni, B.K., et all (Editors), Whistler, British Columbia, Canada, September 25-
28, 2000.

[4] VRML. The Virtual Reality Modeling Language, International Standard

ISO/IEC 14772-1:1997.

[5] de Boor, C., A Practical Guide to Splines, Revised Edition, Springer-Verlag,

New York, 2001.

[6] Brackbill, J.U. and Saltzman, J.S. “Adaptive Zoning for Singular Problems in

Two Dimensions,” J. Comput. Phys. 46, 342-368, 1982.

