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Abstract  
 
Effective visualizations can help researchers obtain a more complete understanding of 
high level mathematical functions that arise in mathematics, statistics, physics, fluid 
dynamics and other fields of the mathematical and physical sciences. Accordingly, 
dynamic interactive 3D graphs of function surfaces will be a key feature of the National 
Institute of Standards and Technology Digital Library of Mathematical Functions, a new 
Web-based compendium of mathematical functions that will replace a popular but dated 
resource, the National Bureau of Standards Handbook of Mathematical Functions, 
published by Abramowitz and Stegun in 1964. As developers of commercial packages 
are well aware, creating software to accurately plot complicated 3D surfaces can be a 
challenging task. This paper looks at the effectiveness of modifying an algebraic tensor 
product spline grid generation technique, whose design was originally motivated by 
problems in aerodynamics and solidification theory, to create computational grids for 
accurate visualizations of 3D surfaces that capture key function features such as poles, 
branch cuts and other singularities.  
 
Introduction  
 
The National Institute of Standards and Technology (NIST) is in the midst of developing 
the NIST Digital Library of Mathematical Functions (DLMF) to replace the widely used, 
but outdated National Bureau of Standards Handbook of Mathematical Functions 
published in 1964 [1].  Like the original book, the digital library will contain a wide 
range of information about high level, or special, mathematical functions  such as the 
Bessel functions, the gamma and beta functions, hypergeometric functions and others 
useful for obtaining closed form solutions or qualitative information to solve many 
problems in the mathematical and physical sciences. There will be formulas, methods of 
computation, references, and links to software for over forty functions.  The Web site will 
feature interactive navigation, a mathematical equation search, 2D graphics, and dynamic 
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interactive 3D visualizations that allow users to examine poles, zeros, branch cuts and 
other important features of special functions. 
 
This paper discusses our successful use of numerical grid generation techniques to 
facilitate the plotting of surfaces that are the graphs of high level mathematical functions, 
that is, surfaces that can be described by equations of the form ),( yxfw= . The 

complicated nature of these functions means that the computational domains are often 
irregular, discontinuous, or multiply connected, making the visualization task quite 
difficult. Although commercial packages may have some of the functions built in and 
may allow the user to produce a plot, typically computations are over a rectangular 
Cartesian mesh, which sometimes produces a very poor and misleading graph of the 
function. In addition, the packages often have problems clipping the surface properly 
when values fall outside the range of interest specified by the user.  Furthermore, what 
looks satisfactory inside the package, may not be when the data is transformed to a 
format more suitable for the Web. 
 
Many problems can be eliminated by designing a computational grid whose boundary 
coincides with a selected contour of the surface. This can not only produce a proper 
clipping of the function, but also improve the smoothness of the color mapping. Various 
structured and unstructured techniques might be used to create the computational grids, 
but structured techniques make it easier to write efficient code to implement the 
interactive capabilities for the visualizations. We will first examine the problems that can 
arise when trying to display dynamic 3D graphics on the Web. Then we will discuss the 
grid generation technique we have used, examining an updated version of a tensor 
product B-spline grid generation algorithm designed by one of the authors [2]. Finally, 
we will discuss our results and look at some possibilities for improvements. 
 
Problem 
 
The content of the NIST DLMF will be organized into approximately forty chapters 
written by renowned mathematicians throughout the United States and abroad. The 
locations and types of graphs and visualizations for a particular chapter are determined by  
consultation with the DLMF editors and chapter authors. Whenever possible, data 
accuracy is being validated through computation by at least two different methods using 
commercial packages, published software, or the author’s personal codes. In addition to 
these issues, a key concern is plot accuracy. Is the displayed plot an accurate 
representation of the graph of the function?  
 
Most commercial packages handle 2D graphics very well. If the user only wants to see 
the function values that lie within a particular interval, they properly cut, or clip, the 
curve so that only points falling within the desired range appear. Discontinuities are 
usually handled either automatically or fairly easily with special options. Unfortunately, 
the situation is often different with 3D graphics. Figure 1 shows some of the problems we 
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have encountered when using commercial packages. In the first picture the user has 
requested that Airy function |Bi(z )|  be plotted only for values less than or equal to 5.  
The package produces what might be called a shelf, or table effect, where function values 
that exceed the value 5 are set to 5.  Although the flat area, which is totally unrelated to 
the function, might not concern some users, it might be confusing to students and others 
unfamiliar with the function.  The figure on the right shows that even when clipping is 
done properly, an undesirable color map may result when the data is computed over 
purely rectangular mesh cells and rendered in a format for Web viewing. The surface was 
displayed using the Virtual Reality Modeling Language (VRML), a standard 3D file 
format for creating interactive Web-based visualizations [4]. The bottom figure, showing 
the complex gamma function, illustrates the lack of clarity packages may demonstrate 
when functions have complicated features such as poles.  
 

                              
                      Bad clipping                                                 Non-smooth color map   
                          
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                   Poor resolution of poles 
                                                    

Figure 1. Potential problems. 
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Most of these problems can be eliminated or decreased in severity by computing the 
special function over a boundary or contour fitted grid. The next section discusses the 
grid generation mapping we have used to produce such a grid. 
 
The Grid Generation Mapping 
 
        The difficulty of the grid generation problem depends directly on the complexity of 
the computational domain for the special function. The shapes of the domains range from 
simple rectangles to oddly shaped multiply connected domains which must be split to 
handle branch cuts.  We have experimented with both structured and  unstructured grids, 
but we have found that structured grids allow us to write more efficient code to 
implement the interactive features for the visualizations. One of the primary grid 
generation techniques we have used  is based on a tensor product mapping and smoothing 
functional developed by one of the authors to solve partial differential equations (pdes)  
related to aerodynamics and solidification theory[2,3]. The grid generation technique uses 
a tensor product mapping T from the unit square  2I  to the physical domain defined by  
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where  1,0 ≤≤ ηξ  , )()(),( ηξηξ jiij BBB =  and ji BB ,  are elements of cubic B-spline 

sequences.  An advantage of this technique is that the coefficients ijij βα ,  can be easily 

chosen to produce a very good variation diminishing approximation to transfinite 
interpolation if the grid is very simple[5], or for more complicated highly nonconvex 
boundaries, it can become a variational method with the coefficients chosen to minimize 

the functional   

            
 
 
where  J  is the Jacobian of the mapping, 321 ,, www are weight constants and u represents 

external criteria for adapting the grid. Like the variational method of Brackbill and 
Saltzman[6], the integral controls smoothness, orthogonality, and when 3w is nonzero, 

the adaptive concentration of the grid lines based on the definition of u. When solving 
pdes, u might be a function of the gradient of the evolving solution or an approximation 
of truncation error. Here we want u to be based on curvature and gradient information 
related to the function surface. Figure 2 shows the initial and optimized grids created for 
a puzzle shaped boundary. The minimization of the functional with 
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0,10,2 321 === www  pulls all the lines inside the boundary and smoothes the grid cell 

spacing.   
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Figure 2. Initial and optimized puzzle grids. 

 
Results 
 
To date we have used boundary/contour fitted grid generation to create computational 
grids for the production of over one hundred 3D visualizations for the NIST DLMF 
project. The plots in Figures 3 and 4 vividly illustrate the effectiveness of the technique. 
In Figure 3, the left picture shows the contour curves for |Bi' (z)| = 5.  We connected the 
curves to parts of a rectangle to form a closed boundary and created the contour fitted 
grid shown on the right.  The left plot in Figure 4 shows the surface obtained after we 
computed the function over the grid and translated the data into VRML format for 
viewing on the Web. The figure on the right shows the same function surface computed 
over a rectangular Cartesian grid. Notice that the contour fitted grid not only properly 
clips the function, but also greatly improves the smoothness of the color map.  
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Figure 3. Contours and Grid for Airy function |Bi' (z)|. 
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Figure 4. Airy function |Bi' (z)|. 

 
The next three figures show grids and surfaces for several types of Weierstrass elliptic  
functions.    All the functions have several poles, making the computational domains of 
the functions somewhat complicated.  To ease the complexity of the grid generation 
problem, we use a block-structured approach, dividing the domains into several sections 
and creating a grid on each. Since we are not solving pdes, we are not concerned with 
matching boundary conditions across the separate grids. Furthermore, our VRML code, 
which governs interaction with the surfaces, accepts any number of grids and operates on 
each grid independently. 
 
Figure 5 shows the grid for Weierstrass elliptic function | )0,;7.3( iba +℘ | where 

.44,35 ≤≤−≤≤− ba  The bottom half of the grid (b<0) was reflected around the line 
b=0 to obtain the top half. We used an exponential function to concentrate the grid points.   
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 Figure 5. Grid for Weierstrass Elliptic Function | ),;( 0iba3.7 ++++℘℘℘℘ |. 
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 Once the coefficients are determined for the tensor product mapping we have an 
algebraic method which can be used to create a coarser, or finer, grid simply by 
evaluating fewer, or more, points on the unit square. To guarantee that key boundary 
points, such as those located at function zeros, are maintained regardless of grid size, we 
identify  “fixed points,”  that is,  boundary points which must always be kept. Grid lines 
are always drawn through these points. The resulting discontinuities in cell spacing do 
not appear to affect the quality of the 3D visualizations.  In Figure 6 we show a display of 
the function computed over the grid in Figure 5 inside a VRML Cosmo Player browser. 
Most VRML browsers have built-in capabilities for rotation, pan, and zoom, but also 
allow a programmer to add custom features. We have added user-controlled options for 
scaling, alternate color maps, and movable cutting planes. 
                      
 

                              
 

Figure 6. Weierstrass Elliptic Function | ),( 0iba;3.7 ++++℘℘℘℘ |. 

 
Figure 7 shows one of four sections of the grid for the Weierstrass −℘ function 

| i),iy;(x 41+℘ |, and  Figure 8 shows one of  two sections  of  the grid for the Weierstrass 

−℘ function | iy)(x +℘ |. For both grids the most time consuming part of the process was 

computing the contours for the grid boundaries, but the symmetry of the surface in Figure 
8 made the task somewhat easier.  In the Weierstrass grids we have set 03 =w  so that 

adaptive concentration of the grid lines is not applied, but in Figure 9 we show 
preliminary progress we have made in this area. 
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Figure 7.  Weierstrass Elliptic Function | ),( i41iy;x ++++℘℘℘℘ |. 

 
 
                        

           -6 -5 -4 -3 -2 -1 0

2

4

6

8

10

      

Figure 8. Weierstrass Elliptic Function | )( iyx ++++℘℘℘℘ |. 
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In Figures 7 and 8 the smoothness of the color map is satisfactory for both surfaces, but 
there are some shadowy areas caused by the skewness of the grids near the ends of the 
semicircular contours.  These areas might be improved by adaptively concentrating the 
grid lines according to gradient and curvature information obtained from the function. To 
date, we have successfully attracted grid lines to several pre-defined curves. In Figure 9 
we attract grid points in an equally spaced square grid to a circle by choosing Jacobian 
and orthogonality  weights, 1,3 21 == ww , respectively, and adaptive weight 33 =w .   

We define u on 2I by
222 ]64/9)5.()5.[(5005000),( −−+−−= ηξηξ eu .   Currently, we are working 

on adaptive movement based on function curvature, but several problems must be 
addressed.  Functional minimization routines, originally designed only for 03 =w , are 

being updated to accommodate a likely nonlinear dependence of u on the spline 
coefficients. Also, the specialized nature of many of the functions means that accessing 
and linking the codes needed to compute gradient and curvature data may not be a trivial 
task.  
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Figure 9. Grid adapted to circular shape. 

 
Conclusions 
 
We have successfully used boundary/contour fitted grid generation to create over one 
hundred 3D visualizations of complex mathematical functions for the NIST Digital 
Library of Mathematical Functions Project.  The grid generation technique has helped us 
address many of the problems such as poor clipping, inaccurate plots, and poor color 
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mapping that can come with using standard commercial packages for 3D graphics. We 
continue to improve the technique and have made significant progress toward 
implementing the adaptive movement of grid lines based on external information such as 
function curvature and gradient data. 
 
 
 
Disclaimer 
 
All references to commercial products are provided only for clarification of the results 
presented. Their identification does not imply recommendation or endorsement by NIST. 
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