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Abstract 
 
In many applications – including peer-to-peer (P2P) file 
sharing, content distribution networks, and grid 
computing – a single object will be searched for in 
multiple servers.  In this paper, we find the provably 
optimal search method for such applications and develop 
analytical models for search time and cost.  A client node 
searching for objects maintains statistics on where (in 
which servers) it has previously found objects.  Using 
these statistics to target future searches to popular 
servers is provably optimal.  For object location and 
request distributions that are non-uniform, which has 
been shown to be the case in P2P file sharing networks, 
this method of targeted searching is found to be more cost 
effective (i.e., use less server resources) than broadcast-
based searching.  Our targeted search method is 
implemented in a prototype Gnutella servent called 
Ditella.  Ditella can improve the scalability of file sharing 
in P2P networks and reduce the amount of traffic in the 
Internet by reducing file search query traffic. 
 
 
1. Introduction 
 

Efficiently finding a single object in multiple servers 
is fundamental to many emerging applications.  For 
example, in peer-to-peer (P2P) file sharing a single file is 
searched for in multiple “servent” nodes that act as 
servers (a servent is a node in a P2P network with server 
and client capabilities).  An efficient search returns with 
the location of the searched object quickly and with a low 
cost.  Cost can be measured as the total server utilization 
per search.  One means for an efficient search is to 
maintain a centralized directory of objects.  A centralized 
directory is the approach Napster [6] used for P2P file 
sharing in the Internet.  However, for reasons of 
robustness distributed solutions are typically sought.  The 

simple approach is a fully distributed search based on a 
broadcast search query to all servers.  Gnutella [8] uses 
this broadcast approach in an overlay network on the 
Internet.  The time to find an object is small, however the 
cost is significant – all Gnutella servents are queried 
independently of the likelihood of (the servent) having 
the searched object.  It has been shown that broadcast-
based search does not scale well for systems with many 
servers [10].  As the number of servers, N, in a system 
increases linearly, the load on each server increases 
exponentially.  Currently, at least 20% of the traffic in the 
Internet is P2P file query related [4].  Thus, to reduce load 
on P2P nodes and reduce traffic in the Internet new ideas 
in searching in P2P networks are needed. 

A compromise between a centralized directory and 
broadcast search is to have a fraction of the nodes act as 
“super nodes” that contain partial or complete directories 
of where objects are located.  Kazaa [3] uses this 
approach.  Coordination between super nodes remains a 
problem.  Another method of reducing the number of 
servers queried is to employ “random walk” [7] or other 
limited search methods [12, 13] where a subset of servers 
is queried in multiple iterations until the object is found.  
The challenge in such limited searching is to determine 
which subset of servers to query in each iteration.  If 
objects can be stored in predetermined servers then 
searching becomes straightforward.  Approaches such as 
Chord [11], which uses the hash of an object name to 
determine which server it is to be stored in, impose a 
structure on where objects are stored (and thus also 
found).  These structured approaches depend on resilient 
servers, which are not typical in P2P networks.   

Characterization of P2P networks has shown that 
connectivity of servents to other servents follows a power 
law where very few servents are high degree and the 
majority of servents are low degree [2].  File sharing also 
follows a power-law where few servents contain the 
majority of files shared (and many servents may share no 



 

files at all and are so called “free riders”) [9].  These 
characterizations clearly show that connectivity and file 
distribution between servents are not uniformly 
distributed.  Exploiting these probabilistic characteristics 
can result in greater search efficiency.  Hybrid Periodical 
Flooding [13] and Directed BFS [12] direct their queries 
through neighbor nodes from where a query hit has been 
received.  We seek to exploit the non-uniform distribution 
of objects in servers to improve multi-server search.  Our 
hypothesis is that individual nodes can “learn” the 
distribution of objects in servers as a function of their 
request distribution and use this learned knowledge to 
improve searching.  

The remainder of this paper is organized as follows.  
Section 2 describes optimal search and our targeted 
search method.  Section 3 is a performance evaluation of 
targeted search.  In Section 4 we describe the Gnutella-
compatible Ditella P2P prototype servent we have 
developed.  Section 5 is a summary and future work.  An 
appendix contains proofs. 

 
2. The targeted search method 
 

In this section we show that an optimal search is 
possible.  We develop a targeted search method based on 
optimal search.  The targeted search method exploits a 
non-uniform distribution of objects in nodes to achieve an 
efficient search in terms of search time and cost.  Fig. 1 
shows a P2P network with multiple servents that share 
objects.  The number of objects that a servent shares 
follows a distribution.  This distribution is often peaked 
(or may even follow a power law relationship) [9].  A 
power law relationship between two quantities x and y is 

kaxy =  where a and k are constants.  A power law 

relationship appears as a linear fit on a log-log plot.  
Pareto and Zipf distributions follow a power law 
relationship.  In fig. 1, servent (4) shares 15 objects, 
servent (2) 5 objects, servent (3) 2 objects, and servents 
(1) and (5) do not share any objects.  Servents (1) and (5) 
are thus free riders.  Servent (4) shares more files than all 
other servents combined.  This attribute of few servents 
sharing the most files and most servents sharing the least 
files is characteristic of a power law. 
 
2.1 Optimal search 

 
We wish to determine the optimal search method for a 

given time constraint k.  That is, our search must 
complete within no more than k steps.  Each step can 
comprise the sending of a query (to one or more servers) 
and a wait for a response.  The response will indicate 
whether a queried node contains the searched for object.  
Suppose that we have N servers and a single object that is 
located in exactly one server and the probability of it 
being located in any given server is N1 .  At each of k 
steps we check ( ) ( ) ( )ksss  ,2 ,1 l  servers, so that  
 

( ) ( ) ( ) .21 Nksss =+++ m          (1) 
 
The condition in eq. (1) assures us that all servers are 
checked in the worst possible case (otherwise, the time 
constraint of k would not be satisfied.)  The choice of the 

( ) s'is  is our strategy.   They can be any non-negative 
integers as long as eq. (1) holds.  The cost C of finding 
our object is ( ) ( ) ( )jsss  21 +++ m , where j is the step 
where the object was discovered.  The cost C is a random 
variable.  We want to find a strategy, that is a set of 

( ) ( ) ( )jsss  ,2 ,1 l  that minimizes the expected value of C, 
denoted here ( )CE . 
 
Lemma 1.  The cost ( )CE of strategy ( ) ( ) ( )jsss  ,2 ,1 l is   
 

( ) ( ) ( ) ( )( ) NksssNCE 2212 222 ++++= m .         (2) 
 
Lemma 2.  The strategy ( ) ( ) ( )jsss  ,2 ,1 l  where ( )CE  
takes its minimum is such that  
 
A. If N is a multiple of k, ( ) ( ) ( ) kNksss ==== l21  

and ( ) ( ) kkNCE 21+= . 
 
B. If N is not a multiple of k then we set 

( ) ( ) ( ) ( ) kmNmksss −=−=== l21  and we set 
( ) ( ) ( ) ( ) 121 +−===+−=+− kmNksmksmks l

where we define m as the smallest positive integer 
such that ( )kNm  mod= . 
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Statement A is a special case of statement B.  The optimal 
cost does not depend upon the order of the ( ) s'js .  The 
proofs of lemma 1 and lemma 2 are in the appendix.   

If an object is found at step j then the cost of finding it 
is ( ) ( ) ( ) ( )jsssja +++= m21 .  For non-uniformly 
distributed objects where the above lemmas hold, we now 
weight the search as 
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Here ( )ip  is the probability of finding our file in bucket i, 
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2.2 Targeted search 
 

The targeted search method uses a frequency list to 
direct queries to servers with a high probability of 
containing an object.  The frequency list is a sorted list of 
tuplets <server_id, hit_count> which is sorted in 
descending order by hit_count.  The value of hit_count 
is how many previous queries were successful (i.e., 
resulted in an object being found in this server).  Thus, 
servers are ranked in the frequency list by order of 
previous search success.   

The targeted search method, which executes in a 
searching node, is shown in fig. 2.  In step #1 each query 
sent is followed by a time-out period during which a 
response is waited for.  A response indicates that the 
searched for object has been found and comes directly 
from the server that contains the object.  In step #2 a 
time-out is also used to wait for a response.  The 
frequency list is updated at the end of step #3. In the 
update, the tuplet with the matching server_id has its 
number of hits incremented.  If the server_id is not in the 
list, then a new tuplet is created for the new server_id 
with hit_count set to 1 and this tuplet added to the end of 
the frequency list.  Sorting of the frequency list is of low 
complexity.  For a non-uniform distribution of file 
location, most sorting occurs in the topN  entries and 
involves at most one change in location to update the list.   

3. Performance of targeted search 
 

In this section we develop an analytical model of 
targeted search for a peaked distribution of objects.  
Using this analytical model, numerical results are 
generated to show mean time and cost to find a object.  A 
simulation model is used to study performance for cases 
where the analytical model cannot be used.  We assume N 
servers with all objects uniquely stored in these servers 
(i.e., there are no duplicated objects between servers).  A 
requesting node will send queries directly (and one at a 
time) to up to topN  number of servers ( NN top ≤ ) and 
will then, if the object has not yet been found, broadcast a 
query to all N servers.  This is the basic function of 
targeted search as described in the previous section. 

 
3.1 Analytical model and numerical results 
 

We first develop a distribution to be used to vary 
object distribution from uniform in all servers to peaked 
in one server.  For N servers, a uniform distribution has 

[ ] Ni 1server  in filePr = for Ni l,2,1= .  We introduce a 
parameter K to adjust a uniform distribution so that 

[ ]1server  in filePr =i  is K times greater than 
[ ]1server in filePr > i .  That is,  
 

[ ]

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
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=
−+=
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i
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K

i
l,3,2     

1
1

1       
1server  in filePr   (6) 

 
For 1=K , eq. (6) describes a uniform distribution.  For K 
increasing, [ ]1server  in filePr =i  approaches 1 (and 

[ ]1server  in filePr >i approaches 0).  This models a 
peaked object distribution similar to that observed in 
operational P2P networks used for file sharing [9].  We 
assume that the frequency list in the targeted search 

Step 1: Send a direct query iteratively to the 
servers in the frequency list starting with 
the first listed server.  This step 
terminates when Ntop servers have been 
queried or the object has been found.  

Step 2: If Step 1 did not find the object then 
broadcast a query to all N servers.

Step 3: If Step 1 or Step 2 found the object in a 
server then download the object and 
update the frequency list.

Figure 2. The targeted search method



 

requesting node empirically matches the distribution of 
files in servers.  This will occur after “many” searches.  
Later in this section we explore this assumption and 
evaluate how many searches are needed for the frequency 
list to approach the actual object location distribution. 

The time to find an object is the number of queries 
sent until the object is found.  If the object is found in the 
first query, the time is 1.  For direct queries, the 
maximum time is N (i.e., all servers are queried and the 
object is found in the last server).  For a broadcast query 
the time to find an object is 1.  The cost to find a object is 
equal to the number of servers queried.  A broadcast 
query has cost N (and time 1).  Thus, the tradeoff in the 
targeted search method is time versus cost.  The value of 

topN  can be used to control this tradeoff.   
The mean time to find a object in targeted search is: 
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where ( ) [ ]iif server  in filePr= .  The first term in eq. (7) 
is the mean time for direct queries, the second term 
captures the probability of not finding the object in the 

topN  direct queries (and thus incurring an additional time 

of 1 to the already expended time of topN ).  For ( )if  as 
eq. (6), eq. (7) simplifies to the closed form: 
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The mean cost to find an object is: 
 

[ ] ( ) ( ) ( )
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For direct queries cost and time are the same.  For a 
broadcast query, the cost is N (since all N servers are 
queried).  Thus, in the second term in eq. (9) an additional 
cost of N is incurred to the already expended cost of topN  
with the probability that the object was not found in the 
first topN  direct queries.  For ( )if  as in eq. (6), eq. (9) 
simplifies to: 
 

[ ] ( )12
222

cost
22

−+
−++−

=
KN

KNNN
E toptop          (10) 

 
These equations (eqs. (7) to (10)) were compared with 
results from a simulation model and found to match.   

Using the expressions for [ ]timeE  and [ ]costE  we 
can study the effect of topN  and K (peakness) on the 
performance of targeted search compared to a fully 
broadcast search.  A broadcast search will always have 

1time =  and N=cost .  For 10=N , K increasing, and 
NNtop l,2,1=  fig. 3 shows [ ]timeE and fig. 4 shows 

[ ]costE .  It can be seen that as topN  increases, the mean 
time increases and the mean cost decreases.  As K 
increases, both the time and cost decrease.  For K very 
large the object is always found in the first server queried 
and thus [ ] 1time =E  and [ ] 1cost =E  for all 0>topN . 
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3.2 Numerical results for representative case 
 

The evaluation of Section 3.1 used a theoretical 
distribution.  To evaluate targeted search for a 
representative case, a trace file collected from a real 
Gnutella network was used to empirically form a file 
location distribution.  The trace file used comes from an 
eight day trace collected by Saroiu and Gribble from the 
University of Washington [9].  The trace was collected 
from May 6 to May 14, 2001 and contained the number 
of files shared by each of 82281 Gnutella servents.  The 
total number of files shared was almost 85 million.  The 
average number of files shared was 1032.  It was found 
that 93.5% of the hosts shared less than 1000 files while 
the maximum number of files shared was 33.5 million 
and the minimum was 0.  We do not know how many 
files were unique (i.e., not duplicated between multiple 
servents).  Fig. 5 shows the rank versus number of files 
shared on a log-log plot.  The linear fit shown on the 
graph indicates that file distribution in servents has the 
power law property.  For our performance evaluation, we 
assumed that all files were unique.  Duplication of files 
between nodes can be expected.  However, some of our 
own trace results show that duplicates are rare.  A trace of 
987 Gnutella Servents was collected for 3 days in July 
2004.  Of the 331096 files discovered available for 
sharing, 97.8% of them were unique.   

Numerical results for targeted search for the Saroiu 
and Gribble trace data are shown in fig. 6.  The solid line 
shows [ ]timeE  and the dashed line shows [ ]costE  for 

100,2,1 l=topN .  For a broadcast query the time is 1 and 
cost is N (N = 82281 for this evaluation).  The results 
show that targeted search in a real P2P network can 
significantly reduce search time and cost when compared 
to broadcast search.  For example, for 2=topN  the 
search time is roughly doubled, but the cost is reduced by 
63% (on average 29769 nodes are queried and not the full 
82281 nodes).  This is seen in fig. 6 as a sharp drop in the 

[ ]costE  as topN  increases.   

3.3 Comparison to the random walk method 
 

In random walk search [7] one or more “walking 
queries” are routed through the P2P network.  A walking 
query randomly chooses nodes.  Previously queried nodes 
in a given search are not re-queried.  Thus, random walk 
is random sampling without replacement where there are 
M samplers (walkers).  The mean time and cost for a 
single random walker is ( ) 21+N  and is independent of 
the distribution of files.  As the number of walkers, 
M ,)1( NM ≤≤  is increased the time decreases 
proportionally but the cost remains the same.  For M 
much less than N we have [ ] ( ) ( )MNE 21time +=  and 

[ ] ( ) 21cost += NE .  For the trace data, random walk has 
significantly greater [ ]timeE  for all values of M than 
does targeted search for all values of topN .  [ ]costE  is 
greater for random walk for most values of topN . 
 
3.4 Convergence of the learned frequency list 

 
The targeted search nodes build their frequency lists 

by learning from previous searches (see step 3 in the 
targeted search method in fig. 2).  We evaluate how fast 
the learned frequency list converges to the actual 
frequency list (the distribution of files by location).  
Using simulation on the Saroiu and Gribble trace data, we 
uniformly randomly choose 20, 40, and 80 files, located 
them in the simulated servers, and then plotted the 
resulting cumulative probability of the learned frequency 
list.  Fig. 7 shows this plot for the first 100 servers (of 
82281 servers in the trace data).  The heavy line is the 
actual.  It can be seen that after to 40 to 80 updates, the 
learned frequency list is converging very closely to the 
actual frequency list.  This is expected for the heavy 
tailed case where the first two servers contain almost 2/3 
of all files shared.  In fig. 7 we list the probability for a 
file being found in the first server (“1”) and note how this 
also converges quickly to the actual. 
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4. Ditella – targeted search in Gnutella 
 

We have implemented the targeted search method in a 
servent software release named Ditella [1].  The name 
Ditella comes from the prefix di and suffix tella meaning 
that which is woven or the webbed communication 
between peers.  The Ditella servent is compatible with 
Gnutella servents that use the Gnutella protocol v0.4.  
Ditella is written in C (and is about 800 lines of code) for 
the Microsoft WindowsXP platform.  The Ditella 
specification, source code, and executable can be found 
on the project web site [1].   

Ditella directly queries servents where a file has been 
previously found (i.e., using the targeted search frequency 
list) before broadcasting a query to all servents.  The 
connection to the P2P network is accomplished by a 
three-way handshake and a bootstrapping procedure.  
Once connected to the network, a Ditella servent can 
issue and respond to messages in a Gnutella-like fashion.  
Ditella will first use directed queries before a broadcast is 
issued.  The directly queried servents are selected using 
the statistics of successful searches in a frequency list.  
The purpose of the prototype is to test the feasibility of 
directly asking a servent for a file before flooding.   

Before a file search is issued the Ditella prototype 
must first connect to the Gnutella network by asking the 
user for the IP address of a known Gnutella servent.  The 
servent is then able to accept connections from other 
servents, send Pings, send and forward Pongs, send a 
Query, identify a QueryHit, and download a file using 
HTTP.  Each connection to a servent is handled by a 
separate process so it can have parallel TCP connections 
open and a separate process is created to accept user input 
so performance can be optimized for response time.  The 
implementation maintains statistics on the nodes 
responding to Pings as well as those responding with 
QueryHits.  The statistics are kept in two files.  The 
statistics.txt and the pong.txt files.  The first 
file maintains the IP address, the port number, the file 
size and the file names received from QueryHits.  This 
file is used to create and update the frequency list for the 
targeted search method.  The second file stores the 
responses to ping requests created or forwarded by the 
servent and are used to verify connectivity to the network.  
We are currently implementing targeted search in 
LimeWire, a popular open source Gnutella client.   
 
5. Summary and future work 
 

The distribution of files to servers in P2P networks is 
well known to follow a power law.  Few servents have 
most files and most servents have few files.  This known 
distribution of files can be exploited in order to reduce 

search cost (e.g., the number of query packets in the 
network) at only very small expense in increase of search 
time.  Our targeted search method outperforms broadcast 
and random search by “remembering” in which servents 
files have been found in and building from this a 
frequency list.  This frequency list is then used to send 
direct queries to the topN  highest ranked servents.  If the 
file is not found in these topN servers (and in the far 
majority of cases the file is found due to the power law 
distribution of files in servers), only then is a broadcast 
search used.  With targeted search, the reduction in traffic 
(in Query packets) is directly proportional to the degree 
of peakedness of this underlying distribution of files.   

The value of topN  affects the trade-off of time and 
cost.  Future work will address automatic setting of this 
value.  Future work will also further evaluate the 
implementation of targeted search in a Ditella servent 
(and in our new LimeWire implementation) and study the 
influence of both network and overlay topology on P2P 
system performance.   
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Appendix – Proofs for the lemmas 
 
Proof of Lemma 1: If the object is found at step j, then 
the cost of finding it is ( ) ( ) ( ) ( )jsssja +++= m21 .  Let 
us find the probability of finding our object at step j.   
 

[ is file  theand 1  2, 1, stepsat  foundnot  is file thePr −jl  
]j stepat  found  

 
([ file the and 1  2, 1, stepsat  foundnot  is file thePr −= jl

1, stepsat  foundnot  is file  that thegiven  stepat  found is j  
)]1,2 −jl  

 
( ) ( ) ( )( )[ ] ( ) ( ) ( )( )[ ]ksjsjsNjsss ++−+++−= mm 1211  
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If ( )CE  is doubled, ( ) ( ) ( ) ( ) ( )( )[ +++= 2122122 2 ssssCE  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )] Nkssksssss +++++++ mm 1232132 =  
[ ] NNksss 2222 )()2()1( ++++ m  and the statement of 
Lemma 1 now immediately follows from this.  End of 
proof of Lemma 1. 
 
Proof of Lemma 2: Let ( ) ( ) ( )ksss  ,2 ,1 l  be the optimal 
strategy in terms of minimizing ( )CE  under the 
constraint that the search time does not exceed k.  Such an  
optimal strategy exists since there are a finite number of 
strategies.  If more than one strategy leads to the same 

( )CE  we can choose any one of them.  We will show that 
for any i, j, it is true that  
 

( ) ( )( ) 1abs ≤− usis                              (A2) 
 

Indeed, if eq. (A2) were not true then we find some i, j, 
such that ( ) ( )jsis −  is greater than or equal to 2.  Then 
we can find another strategy with ( ) 1−is  instead of ( )is  
and ( ) 1+js  instead of ( )js  and the value of ( )CE  will 
be reduced by ( ) ( ) ( )( ) ( )( )[ ] Njsisjss 2111 2222 +−−−+  

( ) ( )[ ] ,01 >−−= Njsis  so the initial strategy was not 
optimal.  Hence all ( ) s'is  are different by no more than 
one and they also have to satisfy 

( ) ( ) ( ) .21 Nksss =+++ m   This defines them uniquely.  
Let us prove this and find them.  We suppose that mk −  
of the ( ) s'is  are equal to some number n and the 
remaining m of them are equal to 1+n .  Then we have 
( ) ( ) ,1 Nnmmmk =++−  hence ,Nmkn =+  so 

( )kNn  mod=  and ( ) .kmNn −=   This gives us the 
values of the ( ) s'is .  End of proof of Lemma 2. 
 


