

Targeted Search: Reducing the Time and Cost for Searching for Objects in

Multiple-Server Networks1

1The use of Gnutella, Ditella, or any other product described herein does not represent its endorsement by the US Federal Government.

Graciela Perera and Ken Christensen
Dept. of Computer Science and Engineering

University of South Florida
Tampa, FL 33620

{gpererao, christen}@csee.usf.edu

Allen Roginsky
National Institute of Standards and Technology

100 Bureau Drive, Stop 8930
Gaithersburg, MD 20899-8930

allen.roginsky@nist.gov

Abstract

In many applications – including peer-to-peer (P2P) file
sharing, content distribution networks, and grid
computing – a single object will be searched for in
multiple servers. In this paper, we find the provably
optimal search method for such applications and develop
analytical models for search time and cost. A client node
searching for objects maintains statistics on where (in
which servers) it has previously found objects. Using
these statistics to target future searches to popular
servers is provably optimal. For object location and
request distributions that are non-uniform, which has
been shown to be the case in P2P file sharing networks,
this method of targeted searching is found to be more cost
effective (i.e., use less server resources) than broadcast-
based searching. Our targeted search method is
implemented in a prototype Gnutella servent called
Ditella. Ditella can improve the scalability of file sharing
in P2P networks and reduce the amount of traffic in the
Internet by reducing file search query traffic.

1. Introduction

Efficiently finding a single object in multiple servers
is fundamental to many emerging applications. For
example, in peer-to-peer (P2P) file sharing a single file is
searched for in multiple “servent” nodes that act as
servers (a servent is a node in a P2P network with server
and client capabilities). An efficient search returns with
the location of the searched object quickly and with a low
cost. Cost can be measured as the total server utilization
per search. One means for an efficient search is to
maintain a centralized directory of objects. A centralized
directory is the approach Napster [6] used for P2P file
sharing in the Internet. However, for reasons of
robustness distributed solutions are typically sought. The

simple approach is a fully distributed search based on a
broadcast search query to all servers. Gnutella [8] uses
this broadcast approach in an overlay network on the
Internet. The time to find an object is small, however the
cost is significant – all Gnutella servents are queried
independently of the likelihood of (the servent) having
the searched object. It has been shown that broadcast-
based search does not scale well for systems with many
servers [10]. As the number of servers, N, in a system
increases linearly, the load on each server increases
exponentially. Currently, at least 20% of the traffic in the
Internet is P2P file query related [4]. Thus, to reduce load
on P2P nodes and reduce traffic in the Internet new ideas
in searching in P2P networks are needed.

A compromise between a centralized directory and
broadcast search is to have a fraction of the nodes act as
“super nodes” that contain partial or complete directories
of where objects are located. Kazaa [3] uses this
approach. Coordination between super nodes remains a
problem. Another method of reducing the number of
servers queried is to employ “random walk” [7] or other
limited search methods [12, 13] where a subset of servers
is queried in multiple iterations until the object is found.
The challenge in such limited searching is to determine
which subset of servers to query in each iteration. If
objects can be stored in predetermined servers then
searching becomes straightforward. Approaches such as
Chord [11], which uses the hash of an object name to
determine which server it is to be stored in, impose a
structure on where objects are stored (and thus also
found). These structured approaches depend on resilient
servers, which are not typical in P2P networks.

Characterization of P2P networks has shown that
connectivity of servents to other servents follows a power
law where very few servents are high degree and the
majority of servents are low degree [2]. File sharing also
follows a power-law where few servents contain the
majority of files shared (and many servents may share no

files at all and are so called “free riders”) [9]. These
characterizations clearly show that connectivity and file
distribution between servents are not uniformly
distributed. Exploiting these probabilistic characteristics
can result in greater search efficiency. Hybrid Periodical
Flooding [13] and Directed BFS [12] direct their queries
through neighbor nodes from where a query hit has been
received. We seek to exploit the non-uniform distribution
of objects in servers to improve multi-server search. Our
hypothesis is that individual nodes can “learn” the
distribution of objects in servers as a function of their
request distribution and use this learned knowledge to
improve searching.

The remainder of this paper is organized as follows.
Section 2 describes optimal search and our targeted
search method. Section 3 is a performance evaluation of
targeted search. In Section 4 we describe the Gnutella-
compatible Ditella P2P prototype servent we have
developed. Section 5 is a summary and future work. An
appendix contains proofs.

2. The targeted search method

In this section we show that an optimal search is
possible. We develop a targeted search method based on
optimal search. The targeted search method exploits a
non-uniform distribution of objects in nodes to achieve an
efficient search in terms of search time and cost. Fig. 1
shows a P2P network with multiple servents that share
objects. The number of objects that a servent shares
follows a distribution. This distribution is often peaked
(or may even follow a power law relationship) [9]. A
power law relationship between two quantities x and y is

kaxy = where a and k are constants. A power law

relationship appears as a linear fit on a log-log plot.
Pareto and Zipf distributions follow a power law
relationship. In fig. 1, servent (4) shares 15 objects,
servent (2) 5 objects, servent (3) 2 objects, and servents
(1) and (5) do not share any objects. Servents (1) and (5)
are thus free riders. Servent (4) shares more files than all
other servents combined. This attribute of few servents
sharing the most files and most servents sharing the least
files is characteristic of a power law.

2.1 Optimal search

We wish to determine the optimal search method for a

given time constraint k. That is, our search must
complete within no more than k steps. Each step can
comprise the sending of a query (to one or more servers)
and a wait for a response. The response will indicate
whether a queried node contains the searched for object.
Suppose that we have N servers and a single object that is
located in exactly one server and the probability of it
being located in any given server is N1 . At each of k
steps we check () () ()ksss ,2 ,1 l servers, so that

() () () .21 Nksss =+++ m (1)

The condition in eq. (1) assures us that all servers are
checked in the worst possible case (otherwise, the time
constraint of k would not be satisfied.) The choice of the

() s'is is our strategy. They can be any non-negative
integers as long as eq. (1) holds. The cost C of finding
our object is () () ()jsss 21 +++ m , where j is the step
where the object was discovered. The cost C is a random
variable. We want to find a strategy, that is a set of

() () ()jsss ,2 ,1 l that minimizes the expected value of C,
denoted here ()CE .

Lemma 1. The cost ()CE of strategy () () ()jsss ,2 ,1 l is

() () () ()() NksssNCE 2212 222 ++++= m . (2)

Lemma 2. The strategy () () ()jsss ,2 ,1 l where ()CE
takes its minimum is such that

A. If N is a multiple of k, () () () kNksss ==== l21

and () () kkNCE 21+= .

B. If N is not a multiple of k then we set

() () () () kmNmksss −=−=== l21 and we set
() () () () 121 +−===+−=+− kmNksmksmks l

where we define m as the smallest positive integer
such that ()kNm mod= .

P2P servent

(2)

Internet with P2P overlay

(3)

(4)

(5)
(1)

XXXXX
XXXXX
XXXXX

XXXXXXX

Notes:
1) X = shared object
2) Node (1) is sending queries
3) Node (4) has the most objects shared
4) Nodes (1) and (5) are free riders

query
query

query

Figure 1. P2P network showing shared objects

query

P2P servent

(2)

Internet with P2P overlay

(3)

(4)

(5)
(1)

XXXXX
XXXXX
XXXXX

XXXXXXX

Notes:
1) X = shared object
2) Node (1) is sending queries
3) Node (4) has the most objects shared
4) Nodes (1) and (5) are free riders

query
query

query

Figure 1. P2P network showing shared objects

query

Statement A is a special case of statement B. The optimal
cost does not depend upon the order of the () s'js . The
proofs of lemma 1 and lemma 2 are in the appendix.

If an object is found at step j then the cost of finding it
is () () () ()jsssja +++= m21 . For non-uniformly
distributed objects where the above lemmas hold, we now
weight the search as

 () ∑
=

==
k

i

iaCPiaCE
1

))(()(

 () ()() ()()()∑ +++−= ivpivpiv m11 (3)

where

∑
=

=
i

j

jsiv
1

)()(. (4)

Here ()ip is the probability of finding our file in bucket i,

)(...)2()1(Nppp ≥≥≥ and

∑
=

=
N

i

ip
1

1)(. (5)

2.2 Targeted search

The targeted search method uses a frequency list to
direct queries to servers with a high probability of
containing an object. The frequency list is a sorted list of
tuplets <server_id, hit_count> which is sorted in
descending order by hit_count. The value of hit_count
is how many previous queries were successful (i.e.,
resulted in an object being found in this server). Thus,
servers are ranked in the frequency list by order of
previous search success.

The targeted search method, which executes in a
searching node, is shown in fig. 2. In step #1 each query
sent is followed by a time-out period during which a
response is waited for. A response indicates that the
searched for object has been found and comes directly
from the server that contains the object. In step #2 a
time-out is also used to wait for a response. The
frequency list is updated at the end of step #3. In the
update, the tuplet with the matching server_id has its
number of hits incremented. If the server_id is not in the
list, then a new tuplet is created for the new server_id
with hit_count set to 1 and this tuplet added to the end of
the frequency list. Sorting of the frequency list is of low
complexity. For a non-uniform distribution of file
location, most sorting occurs in the topN entries and
involves at most one change in location to update the list.

3. Performance of targeted search

In this section we develop an analytical model of
targeted search for a peaked distribution of objects.
Using this analytical model, numerical results are
generated to show mean time and cost to find a object. A
simulation model is used to study performance for cases
where the analytical model cannot be used. We assume N
servers with all objects uniquely stored in these servers
(i.e., there are no duplicated objects between servers). A
requesting node will send queries directly (and one at a
time) to up to topN number of servers (NN top ≤) and
will then, if the object has not yet been found, broadcast a
query to all N servers. This is the basic function of
targeted search as described in the previous section.

3.1 Analytical model and numerical results

We first develop a distribution to be used to vary
object distribution from uniform in all servers to peaked
in one server. For N servers, a uniform distribution has

[] Ni 1server in filePr = for Ni l,2,1= . We introduce a
parameter K to adjust a uniform distribution so that

[]1server in filePr =i is K times greater than
[]1server in filePr > i . That is,

[]









=
−+

=
−+=

Ni
KN

i
KN

K

i
l,3,2

1
1

1
1server in filePr (6)

For 1=K , eq. (6) describes a uniform distribution. For K
increasing, []1server in filePr =i approaches 1 (and

[]1server in filePr >i approaches 0). This models a
peaked object distribution similar to that observed in
operational P2P networks used for file sharing [9]. We
assume that the frequency list in the targeted search

Step 1: Send a direct query iteratively to the
servers in the frequency list starting with
the first listed server. This step
terminates when Ntop servers have been
queried or the object has been found.

Step 2: If Step 1 did not find the object then
broadcast a query to all N servers.

Step 3: If Step 1 or Step 2 found the object in a
server then download the object and
update the frequency list.

Figure 2. The targeted search method

requesting node empirically matches the distribution of
files in servers. This will occur after “many” searches.
Later in this section we explore this assumption and
evaluate how many searches are needed for the frequency
list to approach the actual object location distribution.

The time to find an object is the number of queries
sent until the object is found. If the object is found in the
first query, the time is 1. For direct queries, the
maximum time is N (i.e., all servers are queried and the
object is found in the last server). For a broadcast query
the time to find an object is 1. The cost to find a object is
equal to the number of servers queried. A broadcast
query has cost N (and time 1). Thus, the tradeoff in the
targeted search method is time versus cost. The value of

topN can be used to control this tradeoff.
The mean time to find a object in targeted search is:

[] () () ()













−++⋅= ∑∑

==

toptop N

j
top

N

j

jfNjfjE
11

11time (7)

where () []iif server in filePr= . The first term in eq. (7)
is the mean time for direct queries, the second term
captures the probability of not finding the object in the

topN direct queries (and thus incurring an additional time

of 1 to the already expended time of topN). For ()if as
eq. (6), eq. (7) simplifies to the closed form:

[] ()12
2222

time
2

−+
−+⋅+−−

=
KN

KNNNNN
E toptoptop (8)

The mean cost to find an object is:

[] () () ()













−++⋅= ∑∑

==

toptop N

j
top

N

j

jfNNjfjE
11

1cost (9)

For direct queries cost and time are the same. For a
broadcast query, the cost is N (since all N servers are
queried). Thus, in the second term in eq. (9) an additional
cost of N is incurred to the already expended cost of topN
with the probability that the object was not found in the
first topN direct queries. For ()if as in eq. (6), eq. (9)
simplifies to:

[] ()12
222

cost
22

−+
−++−

=
KN

KNNN
E toptop (10)

These equations (eqs. (7) to (10)) were compared with
results from a simulation model and found to match.

Using the expressions for []timeE and []costE we
can study the effect of topN and K (peakness) on the
performance of targeted search compared to a fully
broadcast search. A broadcast search will always have

1time = and N=cost . For 10=N , K increasing, and
NNtop l,2,1= fig. 3 shows []timeE and fig. 4 shows

[]costE . It can be seen that as topN increases, the mean
time increases and the mean cost decreases. As K
increases, both the time and cost decrease. For K very
large the object is always found in the first server queried
and thus [] 1time =E and [] 1cost =E for all 0>topN .

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10
N top

M
ea

n
tim

e
to

 fi
nd

 fi
le

K = 1
K = 2 K = 4

K = 8

K = 16
K = 32

K = 1000

Figure 3. Mean time results for N = 10

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10
N top

M
ea

n
co

st
 to

 fi
nd

 fi
le

K = 1
K = 4

K = 8

K = 16

K = 32

K = 1000

K = 2

Figure 4. Mean cost results for N = 10

y = 3E+07x-1.2126

R2 = 0.9549

1

10
100

1000

10000

100000
1000000

10000000

100000000

1 10 100 1000 10000 100000

Server rank

N
um

be
r o

f f
ile

s i
n

se
rv

er

Figure 5. Rank versus number of files for trace

3.2 Numerical results for representative case

The evaluation of Section 3.1 used a theoretical
distribution. To evaluate targeted search for a
representative case, a trace file collected from a real
Gnutella network was used to empirically form a file
location distribution. The trace file used comes from an
eight day trace collected by Saroiu and Gribble from the
University of Washington [9]. The trace was collected
from May 6 to May 14, 2001 and contained the number
of files shared by each of 82281 Gnutella servents. The
total number of files shared was almost 85 million. The
average number of files shared was 1032. It was found
that 93.5% of the hosts shared less than 1000 files while
the maximum number of files shared was 33.5 million
and the minimum was 0. We do not know how many
files were unique (i.e., not duplicated between multiple
servents). Fig. 5 shows the rank versus number of files
shared on a log-log plot. The linear fit shown on the
graph indicates that file distribution in servents has the
power law property. For our performance evaluation, we
assumed that all files were unique. Duplication of files
between nodes can be expected. However, some of our
own trace results show that duplicates are rare. A trace of
987 Gnutella Servents was collected for 3 days in July
2004. Of the 331096 files discovered available for
sharing, 97.8% of them were unique.

Numerical results for targeted search for the Saroiu
and Gribble trace data are shown in fig. 6. The solid line
shows []timeE and the dashed line shows []costE for

100,2,1 l=topN . For a broadcast query the time is 1 and
cost is N (N = 82281 for this evaluation). The results
show that targeted search in a real P2P network can
significantly reduce search time and cost when compared
to broadcast search. For example, for 2=topN the
search time is roughly doubled, but the cost is reduced by
63% (on average 29769 nodes are queried and not the full
82281 nodes). This is seen in fig. 6 as a sharp drop in the

[]costE as topN increases.

3.3 Comparison to the random walk method

In random walk search [7] one or more “walking
queries” are routed through the P2P network. A walking
query randomly chooses nodes. Previously queried nodes
in a given search are not re-queried. Thus, random walk
is random sampling without replacement where there are
M samplers (walkers). The mean time and cost for a
single random walker is () 21+N and is independent of
the distribution of files. As the number of walkers,
M ,)1(NM ≤≤ is increased the time decreases
proportionally but the cost remains the same. For M
much less than N we have [] () ()MNE 21time += and

[] () 21cost += NE . For the trace data, random walk has
significantly greater []timeE for all values of M than
does targeted search for all values of topN . []costE is
greater for random walk for most values of topN .

3.4 Convergence of the learned frequency list

The targeted search nodes build their frequency lists

by learning from previous searches (see step 3 in the
targeted search method in fig. 2). We evaluate how fast
the learned frequency list converges to the actual
frequency list (the distribution of files by location).
Using simulation on the Saroiu and Gribble trace data, we
uniformly randomly choose 20, 40, and 80 files, located
them in the simulated servers, and then plotted the
resulting cumulative probability of the learned frequency
list. Fig. 7 shows this plot for the first 100 servers (of
82281 servers in the trace data). The heavy line is the
actual. It can be seen that after to 40 to 80 updates, the
learned frequency list is converging very closely to the
actual frequency list. This is expected for the heavy
tailed case where the first two servers contain almost 2/3
of all files shared. In fig. 7 we list the probability for a
file being found in the first server (“1”) and note how this
also converges quickly to the actual.

0
5

10
15

20
25

30
35

40

0 10 20 30 40 50 60 70 80 90 100

N top

M
ea

n
tim

e
to

 fi
nd

 fi
le

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

M
ea

n
co

st
 to

 fi
nd

 fi
leE[time]

E[cost]

Figure 6. Mean time and cost results for trace

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90 100

Server index

C
um

ul
at

iv
e

pr
ob

ab
ili

ty 20 hits

40 hits
80 hits

Actual (Gribble trace)

Pr[1 for 20 hits] = 0.500
Pr[1 for 40 hits] = 0.375
Pr[1 for 80 hits] = 0.375
Pr[1 for actual] = 0.395

Figure 7. Convergence to actual for trace data

4. Ditella – targeted search in Gnutella

We have implemented the targeted search method in a
servent software release named Ditella [1]. The name
Ditella comes from the prefix di and suffix tella meaning
that which is woven or the webbed communication
between peers. The Ditella servent is compatible with
Gnutella servents that use the Gnutella protocol v0.4.
Ditella is written in C (and is about 800 lines of code) for
the Microsoft WindowsXP platform. The Ditella
specification, source code, and executable can be found
on the project web site [1].

Ditella directly queries servents where a file has been
previously found (i.e., using the targeted search frequency
list) before broadcasting a query to all servents. The
connection to the P2P network is accomplished by a
three-way handshake and a bootstrapping procedure.
Once connected to the network, a Ditella servent can
issue and respond to messages in a Gnutella-like fashion.
Ditella will first use directed queries before a broadcast is
issued. The directly queried servents are selected using
the statistics of successful searches in a frequency list.
The purpose of the prototype is to test the feasibility of
directly asking a servent for a file before flooding.

Before a file search is issued the Ditella prototype
must first connect to the Gnutella network by asking the
user for the IP address of a known Gnutella servent. The
servent is then able to accept connections from other
servents, send Pings, send and forward Pongs, send a
Query, identify a QueryHit, and download a file using
HTTP. Each connection to a servent is handled by a
separate process so it can have parallel TCP connections
open and a separate process is created to accept user input
so performance can be optimized for response time. The
implementation maintains statistics on the nodes
responding to Pings as well as those responding with
QueryHits. The statistics are kept in two files. The
statistics.txt and the pong.txt files. The first
file maintains the IP address, the port number, the file
size and the file names received from QueryHits. This
file is used to create and update the frequency list for the
targeted search method. The second file stores the
responses to ping requests created or forwarded by the
servent and are used to verify connectivity to the network.
We are currently implementing targeted search in
LimeWire, a popular open source Gnutella client.

5. Summary and future work

The distribution of files to servers in P2P networks is
well known to follow a power law. Few servents have
most files and most servents have few files. This known
distribution of files can be exploited in order to reduce

search cost (e.g., the number of query packets in the
network) at only very small expense in increase of search
time. Our targeted search method outperforms broadcast
and random search by “remembering” in which servents
files have been found in and building from this a
frequency list. This frequency list is then used to send
direct queries to the topN highest ranked servents. If the
file is not found in these topN servers (and in the far
majority of cases the file is found due to the power law
distribution of files in servers), only then is a broadcast
search used. With targeted search, the reduction in traffic
(in Query packets) is directly proportional to the degree
of peakedness of this underlying distribution of files.

The value of topN affects the trade-off of time and
cost. Future work will address automatic setting of this
value. Future work will also further evaluate the
implementation of targeted search in a Ditella servent
(and in our new LimeWire implementation) and study the
influence of both network and overlay topology on P2P
system performance.

Acknowledgment

The authors thank Stefan Saroiu and Steven Gribble at
the University of Washington for sharing their trace data
used in the evaluation of targeted search. The authors
also thank Sasha Dos Santos at the University of South
Florida for her assistance in developing the Ditella
prototype.

References

[1] Ditella, 2004. URL:

http://www.csee.usf.edu/~gpererao/Ghybrid1001.htm.
[2] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power

Law Relationships of the Internet Topology,” Proceedings
of SIGCOMM, pp 251-262, 1999.

[3] Kazaa Media Desktop, 2004. URL:
http://www.kazaa.com/us/index.htm.

[4] T. Karagiannis, K. Claffy, and M. Faloutsos, “File-Sharing
in the Internet: A Characterization of P2P Traffic in the
Backbone,” Technical Report, UC Riverside, November
2003.

[5] LimeWire.org, 2004. URL: http://www.limewire.org.
[6] A. Loo, “The Future of Peer-to-Peer Computing,”

Communications of the ACM, Vol. 46, No. 9, pp. 56-61,
September 2003.

[7] L. Qin, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search
and Replication in Unstructured Peer-to-Peer Networks,”
Proceedings of the 16th International Conference on
Supercomputing, pp. 84-95, 2002

[8] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the
Gnutella Network: Properties of Large-Scale Peer-to-Peer
Systems and Implications for System Design,” IEEE
Internet Computing, Vol. 6, No. 1, pp. 50-57, January-
February 2002.

[9] S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement
Study of Peer-to-Peer File Sharing Systems,” Proceedings
of SPIE, pp. 156-170, 2001.

[10] R. Schollmeier and G. Schollmeier, “Why Peer-to-Peer
(P2P) Does Scale: An Analysis of P2P Traffic Patterns,”
Proceedings of the 2nd International Conference on Peer-
to-Peer Computing, pp. 112-119, 2002.

[11] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger., M.
Kaashoek, F. Dabek, and H. Balakrishnan,. “Chord: A
Scalable Peer-to-Peer Lookup Protocol for Internet
Applications,” IEEE/ACM Transactions on Networking,
Vol. 11, No. 1, pp. 17-32, February 2003

[12] B. Yang, P. Cao, and H. Molina, “Efficient Search in Peer-
to-Peer Networks,” Proceedings of the International.
Conference on Distributed Computing Systems, pp. 5-14,
2002.

[13] Z. Zhuang, Y. Liu, L. Xiao, and L. Ni, “Hybrid Periodical
Flooding Search in Unstructured P2P Systems,”
Proceedings of the International Conference on Parallel
Processing, 2003.

Appendix – Proofs for the lemmas

Proof of Lemma 1: If the object is found at step j, then
the cost of finding it is () () () ()jsssja +++= m21 . Let
us find the probability of finding our object at step j.

[is file theand 1 2, 1, stepsat foundnot is file thePr −jl
]j stepat found

([file the and 1 2, 1, stepsat foundnot is file thePr −= jl

1, stepsat foundnot is file that thegiven stepat found is j
)]1,2 −jl

() () ()()[] () () ()()[]ksjsjsNjsss ++−+++−= mm 1211

() () ()[] () () ()()[]ksjsjsksjsN ++++= mm1

() ./ Njs=

Therefore,

 () () ()[] ()
∑∑

==

===
k

i

k

i N
isiaiaCiaCE

11

)(Pr

() ()∑∑
= =

=
k

i

i

j

isjs
N 1 1

1 . (A1)

If ()CE is doubled, () () () () ()()[+++= 2122122 2 ssssCE

() () () ()() () () ()()] Nkssksssss +++++++ mm 1232132 =
[] NNksss 2222)()2()1(++++ m and the statement of
Lemma 1 now immediately follows from this. End of
proof of Lemma 1.

Proof of Lemma 2: Let () () ()ksss ,2 ,1 l be the optimal
strategy in terms of minimizing ()CE under the
constraint that the search time does not exceed k. Such an
optimal strategy exists since there are a finite number of
strategies. If more than one strategy leads to the same

()CE we can choose any one of them. We will show that
for any i, j, it is true that

() ()() 1abs ≤− usis (A2)

Indeed, if eq. (A2) were not true then we find some i, j,
such that () ()jsis − is greater than or equal to 2. Then
we can find another strategy with () 1−is instead of ()is
and () 1+js instead of ()js and the value of ()CE will
be reduced by () () ()() ()()[] Njsisjss 2111 2222 +−−−+

() ()[] ,01 >−−= Njsis so the initial strategy was not
optimal. Hence all () s'is are different by no more than
one and they also have to satisfy

() () () .21 Nksss =+++ m This defines them uniquely.
Let us prove this and find them. We suppose that mk −
of the () s'is are equal to some number n and the
remaining m of them are equal to 1+n . Then we have
() () ,1 Nnmmmk =++− hence ,Nmkn =+ so

()kNn mod= and () .kmNn −= This gives us the
values of the () s'is . End of proof of Lemma 2.

