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Abstract
We compare three approaches for quantifying uncertainty through a
measurement equation: the International Organization for Standardization
(ISO) Guide to the Expression of Uncertainty in Measurement (GUM), draft
GUM Supplement 1 and Bayesian statistics. For illustration, we use a
measurement equation for simple linear calibration that includes both
Type A and Type B input variables. We consider three scenarios: (i) the
measurement equation is linear with one Type B input variable having a
normal distribution, (ii) the measurement equation is non-linear with two
Type B input variables each having a normal distribution and (iii) the
measurement equation is non-linear with two Type B input variables each
having a rectangular distribution. We consider both small and large
uncertainties for the Type B input variables. We use each of the three
approaches to quantify the uncertainty in measurement for each of the three
scenarios. Then we discuss the merits and limitations of each approach.

1. Introduction

The Guide to the Expression of Uncertainty in Measurement
[1]3 has become a de facto international standard for
evaluating and expressing uncertainty in measurement. The
Guide is published by the International Organization for
Standardization (ISO) in the names of seven international
organizations and it is commonly identified as the ISO-GUM.
The ISO-GUM propagates the estimates and their associated
standard uncertainties for various input quantities through
a linear approximation of the measurement equation to
determine an estimate and its associated standard uncertainty
for the value of the measurand. A working group of the Joint
Committee for Guides in Metrology (JCGM) of the Bureau
International des Poids et Mesures (BIPM) has developed a

3 The Guide is published in the names of seven international scientific
organizations: International Bureau of Weights and Measures (BIPM),
International Electro-technical Commission (IEC), International Federation
of Clinical Chemistry (IFCC), International Organization for Standardization
(ISO), International Union of Pure and Applied Chemistry (IUPAC),
International Union of Pure and Applied Physics (IUPAP), and International
Organization of Legal Metrology (OIML).

draft Supplement 1 to the ISO-GUM (draft GUMS1) [2]. The
draft GUMS1 propagates probability distributions assigned
to various input quantities through a numerical simulation
of the measurement equation to determine a probability
distribution for the value of the measurand. The draft
GUMS1 is currently in circulation for review and comments
from the member organizations of the JCGM and national
measurement institutes (NMIs). Another approach is Bayesian
statistics [3], which regards the quantities involved in a
measurement process, including the measurand, as parameters
having state-of-knowledge probability distributions. Bayesian
statistics is an approach to update, on the basis of
current measurement data, a prior probability distribution
(representing the state of knowledge before measurement)
about a statistical parameter to obtain a posterior probability
distribution (representing the state of knowledge after
measurement).

In section 2, we describe a simple linear calibration model
using the terminology of the ISO-GUM. In sections 3, 4
and 5, we use the three approaches, the ISO-GUM, the draft
GUMS1 and Bayesian statistics, to quantify the uncertainty

0026-1394/06/040167+11$30.00 © 2006 BIPM and IOP Publishing Ltd Printed in the UK S167

http://dx.doi.org/10.1088/0026-1394/43/4/S02
mailto: raghu.kacker@nist.gov
http://stacks.iop.org/me/43/S167


R Kacker et al

associated with the estimate of a measurand determined
from the simple linear calibration model of section 2. In
section 6, we discuss the results from the three approaches
and in section 7 we discuss the merits and limitations of each
approach. Concluding remarks appear in section 8.

2. Simple linear calibration model

Suppose the object of measurement is to determine, on the
basis of the n measurements x1, . . . , xn, an estimate for the
value Y of a measurand and its associated uncertainty. Suppose
the measurements x1, . . . , xn are regarded as independent
realizations from a sampling distribution that is approximately
normal N(X, σ 2) with expected value X and variance σ 2,
both unknown quantities. There is no additional a priori
knowledge about the values ofX andσ 2. An estimate forX and
its associated standard uncertainty determined from statistical
analysis of x1, . . . , xn are Type A evaluations. A probability
distribution for X determined from the statistical analysis
of x1, . . . , xn is a Type A state-of-knowledge distribution.
(The concepts of Type A and Type B input variables and
probability distributions are discussed in section 3.) To
determine an estimate for Y , some assumption about the
relationship between X and Y is required. Such assumption is
generally based on scientific judgment. Suppose X and Y are
related by the following simple linear equation

X = B0 + B1Y. (1)

We will suppose that the states of knowledge about the
input quantities, the intercept B0 and the slope B1, may
be expressed as Type B probability distributions based on
scientific judgment and other information. The probability
distributions for X, B0 and B1 are assumed to be mutually
independent. A simple linear calibration model determined
from the equation (1) is

Y = X − B0

B1
=

(−B0

B1

)
+

(
1

B1

)
X, (2)

where Y , X, B0 and B1 are regarded as variables with state-
of-knowledge probability distributions. We will use the
calibration model (2) as the measurement equation for the
measurand Y . We will not consider any additional inputs for
evaluating Y . Note that the variables (1/B1) and (−B0/B1) in
the measurement equation (2) are, respectively, multiplicative
and additive corrections applied to X to determine Y .

As in the ISO-GUM, we use the symbols x and u(x) for the
expected value E(X) and standard deviation S(X) of a state-
of-knowledge probability distribution for X. Likewise, we use
the symbols b0 and u(b0) for the expected value E(B0) and
standard deviation S(B0) of a state-of-knowledge distribution
for B0. We use the symbols b1 and u(b1) for the expected value
E(B1) and standard deviation S(B1) of a state-of-knowledge
distribution for B1.

We will consider the following three scenarios.

Scenario 1. The slope B1 is known to be one. That is, the
measurement equation (2) is simply Y = X − B0. The state-
of-knowledge distribution for B0 is normal N(0, u2(b0)).

Table 1. The data sets for scenario 1 (normal distribution for B0).

Data sets x s b0 u(b0)

1 100.521 1.502 0 0.250
2 100.521 1.502 0 4.000

Scenario 2. The state-of-knowledge distribution for B0 is
N(0, u2(b0)) and the state-of-knowledge distribution for B1 is
N(1, u2(b1)).

Scenario 3. The state-of-knowledge distribution for B0 is
R(−u(b0)

√
3, u(b0)

√
3), a rectangular (uniform) distribution

on the interval (−u(b0)
√

3, u(b0)
√

3) with expected value zero
and variance u2(b0). The state-of-knowledge distribution for
B1 is R(1 − u(b1)

√
3, 1 + u(b1)

√
3) with expected value one

and variance u2(b1).

Our reasons for considering these three scenarios are as
follows. The measurement equation forY is linear in scenario 1
and non-linear for B1 in scenarios 2 and 3. Thus we investigate
both linear and non-linear measurement equations. The
expected values and standard deviations for B0 and B1 are
identical in scenarios 2 and 3; the only difference is the form of
probability distributions. The differences between the results
for scenarios 2 and 3 would indicate the sensitivity of the results
to the form of probability distributions. We will consider two
different standard deviations, one small and one large, for
the probability distributions for B0 and B1. The differences
between the results for small and large standard deviations
would indicate the sensitivity of the results to the size of
standard deviations for the input variables.

We will use the following data for the Type A evaluations
of x and u(x): the number of measurements is n = 5
and the measurements are 102.221 90, 99.294 46, 101.596 21,
100.811 06 and 98.679 92. (We regard these measurements as
experimental measurements. However, they were numerically
generated from a normal distribution.) The arithmetic
mean x = ∑

i xi/n, the estimated standard deviation s =√
[
∑

i (xi − x)2/(n − 1)] and the estimated standard deviation
of the mean s(x) = s/

√
n of these measurements are x =

100.521, s = 1.5023 and s(x) = 0.6718, respectively.
The expected value for B0 is b0 = 0. We will consider

the following two values for the standard deviation for B0:
u(b0) = 0.25 and u(b0) = 4.00. The expected value for B1

is b1 = 1. We will consider the following two values for the
standard deviation for B1: u(b1) = 0.05 and u(b1) = 0.20.
Thus in scenario 1, for the two parameters X and B0, we have
the data sets given in table 1, and in scenarios 2 and 3, for the
three parameters X, B0 and B1, we have the data sets given in
table 2.

Comment 1. In many practical applications the relationship
between X and Y is either X − Y = B0 or X/Y = B1. In
the former case B0 is additive bias (systematic error) in the
measurements x1, . . . , xn and B1 ≡ 1. In the latter case B1 is
fractional (multiplicative) bias in the measurements x1, . . . , xn

and B0 ≡ 0.

3. Review of the ISO-GUM

The ISO-GUM is based on the concept of a measurement
equation

Y = f (Q1, . . . , QN) (3)
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Table 2. The data sets for scenario 2 (normal distributions for B0

and B1) and scenario 3 (rectangular distributions for B0 and B1).

Data sets x s b0 u(b0) b1 u(b1)

1 100.521 1.502 0 0.250 1 0.050
2 100.521 1.502 0 0.250 1 0.200
3 100.521 1.502 0 4.000 1 0.050
4 100.521 1.502 0 4.000 1 0.200

that mathematically represents the process (ingredients and
recipe) for determining the estimate y and its associated
standard uncertainty u(y) from the estimates and their
associated standard uncertainties for various input quantities
Q1, . . . , QN . In the ISO-GUM the same symbols are
used for the input and output quantities as well as for the
corresponding input and output variables having state-of-
knowledge probability distributions concerning the input and
output quantities. In the measurement equation (3) the inputs
Q1, . . . , QN and the output Y are regarded as variables with
state-of-knowledge probability distributions.

The uncertainties evaluated by statistical methods are
referred to as Type A and the uncertainties evaluated by
other means are referred to as Type B [1, sections 2.3.2 and
2.3.3]. The terms Type A and Type B apply to the methods
of evaluation. The expected values, standard deviations,
correlation coefficients and probability distributions of the
input variables may be evaluated by statistical methods or
determined by other means. The Type A and Type B
classification naturally applies to the methods of evaluating the
expected values, standard deviations, correlation coefficients
and probability distributions of the input variables. We may
refer to an input variable as Type A or Type B depending on
whether its probability distribution or the parameters of its
probability distribution are determined by statistical methods
or by other means. We may also refer to the input quantities
estimated by statistical analyses of the current measurements
as Type A, and the input quantities estimated by other means
as Type B. The Type A and Type B classification of the input
variables and the input quantities is useful in our discussion
of the draft GUMS1 and Bayesian statistics in subsequent
sections.

A common Type A evaluation of an input quantity Qi is
the arithmetic mean of a series of mi measurements that may
reasonably be regarded as independent realizations from the
same sampling distribution which is assumed to be normal
with expected value Qi and some unknown standard deviation
σi . Suppose the arithmetic mean, the experimental (estimated)
standard deviation and the estimated standard deviation of the
mean of the mi measurements are qi , si and s(qi) = si/

√
mi ,

respectively. Then qi is a sampling theory estimate of
its expected value Qi and s(qi) is the estimated standard
deviation of the mean qi . The ISO-GUM recommends the
sampling theory estimate s(qi) as the standard uncertainty
u(qi) associated with qi [1, section 4.2], i.e. u(qi) = s(qi).
However, the ISO-GUM regards qi and u(qi) as the expected
value and approximate standard deviation of a state-of-
knowledge probability distribution for the input variable Qi ,
i.e. E(Qi) = qi and S(Qi) ≈ u(qi) = s(qi) [1, section 4.1.6].
Depending on the number mi of independent measurements,
the expression u(qi) = s(qi) is uncertain because of the

statistical reason of limited sampling [1, section E.4.3].
The uncertainty concerning u(qi) arising from a limited
number of measurements is quantified by degrees of
freedom. The degrees of freedom associated with u(qi) are
νi = mi − 1.

A Type B evaluation of an input quantity Qj is commonly
obtained by assigning a state-of-knowledge probability
distribution to the variable Qj [1, section 4.3]. Then
the estimate qj is the expected value E(Qj) and the
standard uncertainty u(qj ) is the standard deviation S(Qj)

of the assigned distribution. For example, if a rectangular
distribution on the interval (−a, a) is assigned to Qj , then
E(Qj) = qj = 0 and S(Qj) = u(qj ) = a/

√
3.

The estimate y is determined by substituting the estimates
q1, . . . , qN for the input quantities in the measurement equation
Y = f (Q1, . . . , QN). Thus,

y = f (q1, . . . , qN). (4)

The standard uncertainties u(q1), . . . , u(qN) associated with
the input estimates q1, . . . , qN are components of uncertainty
in determining y. The measurement equation (3) is
approximated about y by a linear Taylor series as

Y ≈ Ylinear = y +
∑

i

ci(Qi − qi), (5)

where c1, . . . , cN are partial derivatives of Y with respect to
Q1, . . . , QN evaluated at q1, . . . , qN , respectively. The partial
derivatives c1, . . . , cN are referred to as sensitivity coefficients.
If qi and u(qi) were the expected value and standard deviation
of a state-of-knowledge distribution for Qi , then the variance
of Ylinear would give the following expression for propagating
the uncertainties associated with the input values

u2(y) =
∑

i

c2
i u

2(qi) + 2
∑
(i<j)

cicju(qi)u(qj )r(qi, qj ), (6)

where r(qi, qj ) is the correlation coefficient between Qi and
Qj for i, j = 1, . . . , N and i �= j .

The correlation coefficients are Type A or Type B
depending on whether they are determined by statistical
analyses or by other means. If qi and u(qi) were the expected
value and standard deviation of Qi , for i = 1, . . . , N , then
the estimate y and the standard uncertainty u(y) would be
the expected value and the standard deviation of Ylinear. The
ISO-GUM regards y and u(y) as approximate expected value
and standard deviation of a state-of-knowledge probability
distribution for Y .

When it is necessary to express the uncertainty as an
interval, multiply the standard uncertainty u(y) by a coverage
factor k to obtain the expanded uncertainty U = ku(y) and
the uncertainty interval [y ± U ] ≡ [y ± ku(y)]. The coverage
probability of an uncertainty interval [y±ku(y)] is the fraction
of a state-of-knowledge distribution for Y that is encompassed
by this interval. The ISO-GUM [1, section 6.2.2] is very clear
that the interval [y ± ku(y)] is not to be interpreted as a
confidence interval of sampling theory. To the extent that a
state-of-knowledge probability distribution for Y represented
by y and u(y) is incompletely determined the coverage
probability of [y ± ku(y)] cannot be stated [1, section 2.3].
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The ISO-GUM does not specify a value for the coverage
factor k. However, a commonly used value of k is two [4, 5].

The ISO-GUM [1, section 7.2.3 and note of section 4.3.4]
stresses that when the uncertainty is expressed as an interval
[y ± U ], the coverage factor k should be explicitly stated in
order that the standard uncertainty u(y) may be recovered from
the expanded uncertainty U = ku(y).

The ISO-GUM [1, section 8, step 7] suggests selecting—
when possible—the coverage factor kp on the basis of the
coverage probability p required of the interval [y ± kpu(y)].
The caveat ‘when possible’ is very important because a
coverage factor kp that yields a specified coverage probability
p can be determined in very special conditions only. The
ISO-GUM [1, section 6.3.2] is very clear that the estimate
y and standard uncertainty u(y) are themselves insufficient
for determining the coverage factor kp for a required coverage
probability p. Guidance on specifying the coverage factor kp

based on a t-distribution with effective degrees of freedom
determined from the Welch–Satterthwaite (W–S) formula are
given in Annex G of the ISO-GUM. In metrology, the desired
coverage probability p is generally set as 95% [4, 5].

3.1. The Type A evaluations determined from Bayesian
statistics

The ISO-GUM’s definition of the Type A evaluations [1,
section 2.3.2] does not specify the statistical methodology
that may be used. Sampling theory (frequentist statistics) and
Bayesian statistics are two common statistical methodologies.
The use of Bayesian statistics fully agrees with the definition
of the Type A evaluations. Although the illustrations in the
ISO-GUM use sampling theory, nowhere does the ISO-GUM
state that only sampling theory should be used for the Type A
evaluations. Thus the ISO-GUM does not preclude use of
Bayesian statistics for the Type A evaluations.

The ISO-GUM is consistent only when the Type A
evaluations are interpreted as parameters of state-of-
knowledge probability distributions [6]. Then the Type A
and the Type B evaluations have common probabilistic
interpretation and they may be combined through a
measurement equation. The authors of the ISO-GUM made it
consistent by declaring [1, section 4.1.6] that the sampling
theory estimates qi and u(qi) = s(qi) be interpreted as
the parameters (expected value and approximate standard
deviation) of a state-of-knowledge probability distribution for
the input variable Qi . Bayesian estimates are parameters of
state-of-knowledge probability distributions. Therefore, when
Bayesian statistics is used for the Type A evaluations there is
no need of the ISO-GUM’s superficial declaration.

The Bayesian standard uncertainty associated with the
arithmetic mean qi of mi independent normally distributed
measurements based on a well-known set of independent non-
informative prior distributions for Qi and σi is uBayes(qi) =√

(mi − 1)/(mi − 3) × s(qi) = √
(mi − 1)/(mi − 3) × u(qi)

[3, 6, 7]. The arithmetic mean qi and uncertainty uBayes(qi)

are the expected value E(Qi) and standard deviation S(Qi) of
a Bayesian posterior state-of-knowledge distribution for Qi ,
which is a scaled and shifted t-distribution with degrees of
freedom νi = mi −1. When Bayesian statistics is used, qi and
uBayes(qi) are the exact expected value and standard deviation

of a state-of-knowledge distribution for Qi . Consequently,
y and u(y) are the expected value and standard deviation of
Ylinear defined by (5). Thus the expression (6) for propagating
the uncertainties—which is fundamental to the ISO-GUM—
is better justified with Bayesian statistics than with sampling
theory for the Type A evaluations.

The sampling theory estimate u(qi) = s(qi) may
be regarded as an approximation to the Bayesian estimate
uBayes(qi) based on non-informative prior distributions for Qi

and σi [6, 7]. The approximation u(qi) = s(qi) is poor when
mi is small but improves as mi increases. Thus sampling
theory estimates may still be used provided they are regarded
as approximations to the Bayesian estimates.

As indicated in the ISO-GUM [1, section E.4.3], the
sampling theory estimate u(qi) = s(qi) is uncertain when
the number mi of measurements is limited. The uncertainty
in u(qi) = s(qi) arising from the limited number mi of
measurements, may be large for practical values of mi .
Therefore, u(qi) = s(qi) is an incomplete expression of
the uncertainty associated with qi without an accompanying
statement of its degrees of freedom. The degrees of freedom
represent the uncertainty in u(qi) = s(qi) arising from the
limited number mi of measurements. Similarly, u(y) defined
by (6) is an incomplete expression of the uncertainty associated
with y without an accompanying statement of its effective
degrees of freedom. Unlike a standard uncertainty determined
from sampling theory, a Bayesian standard uncertainty has no
uncertainty arising from a limited number of measurements.
Thus the uncertainty uBayes(y) obtained from (6) by using
Bayesian statistics for the Type A evaluations is a complete
expression of the uncertainty associated with y. In particular,
a Bayesian standard uncertainty does not carry degrees of
freedom.

Annex G of the ISO-GUM describes an approach
(applicable in some special cases) for specifying a coverage
factor kp that yields an uncertainty interval [y ± kpu(y)]
with an approximate coverage probability p. The approach
is based on calculating effective degrees of freedom from
the Welch–Satterthwaite formula. An alternative to the
ISO-GUM’s approach based on Bayesian statistics is proposed
in [7]. The use of Bayesian statistics greatly simplifies the
expression of uncertainty by eliminating altogether the need
for calculating the effective degrees of freedom from the W–S
formula.

The object of this paper is to compare the ISO-GUM, the
draft GUMS1, and Bayesian statistics using, for illustration,
the measurement equation for simple linear calibration.
The draft GUMS1 propagates probability distributions and
Bayesian statistics updates prior probability distributions
using current measurements. The standard uncertainties
determined from the draft GUMS1 and Bayesian statistics are
exact standard deviations of completely specified probability
distributions. In particular, there is no uncertainty arising
from the limited number of measurements in the standard
uncertainties determined from the draft GUMS1 and Bayesian
statistics. A standard uncertainty determined from the
ISO-GUM where sampling theory is used for the Type A
evaluations is an approximate expression that is incomplete
without an accompanying statement of its effective degrees
of freedom. Thus the standard uncertainties determined
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from the ISO-GUM using sampling theory for the Type A
evaluations are qualitatively different entities from the standard
uncertainties determined from the draft GUMS1 and Bayesian
statistics. Thus it is difficult to compare the ISO-GUM
using sampling theory for the Type A evaluations on the one
hand and the draft GUMS1 and Bayesian statistics on the
other hand. To make the standard uncertainties determined
from the ISO-GUM comparable to the standard uncertainties
determined from the draft GUMS1 and Bayesian statistics, in
this paper we use Bayesian statistics for the Type A evaluations.

3.2. Application of the ISO-GUM to simple linear calibration

A Type A evaluation of the standard uncertainty associated
with the mean x = 100.521 based on sampling theory is
s(x) = 0.672 with four degrees of freedom [1, section 4.2].
The corresponding Bayesian standard uncertainty based on
exactly the same information is determined as follows. Since
there is no a priori information about X and σ 2, we use
independent non-informative prior distributions for X and σ 2.
It is convenient to use the following improper non-informative
prior distributions: the distribution for X is proportional to
one and the distribution for σ 2 is proportional to 1/σ 2.
These improper distributions yield an expression for Bayesian
standard uncertainty that is very similar to the sampling theory
estimate s(x). The measurements x1, . . . , xn are assumed to
be independent with a normal N(X, σ 2) sampling distribution.
This provides a likelihood function for X and σ 2 given the
measurements x1, . . . , xn. It can then be shown using the
Bayes’s theorem [3] that the Bayesian posterior probability
distribution for (X − x)/s(x), where s(x) = s/

√
n, is the

Student’s t-distribution with degrees of freedom (n− 1). Here
x and s(x) are regarded as known quantities. It follows that
the distribution for X is a scaled-and-shifted t-distribution
with degrees of freedom n − 1 that has been scaled by
s(x) and shifted by x. The expected value and standard
deviation of a t-distribution with degrees of freedom (n − 1)
are, respectively, zero and [(n − 1)/(n − 3)]1/2 [8]. So the
expected value and the standard deviation of X are E(X) = x

and S(X) = [(n − 1)/(n − 3)]1/2 × s(x), respectively. The
uncertainty u(x) = S(X) = [(n − 1)/(n − 3)]1/2 × s(x) is a
Bayesian standard uncertainty associated with x. A Bayesian
state-of-knowledge probability distribution for X is a scaled-
and-shifted t-distribution with expected value x and standard
deviation u(x).

For the data in tables 1 and 2, x = 100.521, s = 1.502,
s(x) = 0.672, [(n−1)/(n−3)]1/2 = 1.414 and u(x) = 0.950.
The sampling theory estimate s(x) = 0.672 may be regarded
as an approximation with four degrees of freedom for the
Bayesian uncertainty u(x) = 0.950. As discussed in the
ISO-GUM [1, section E.4.3], since s(x) has only four degrees
of freedom it is not very reliable. The Bayesian uncertainty
u(x) = 0.950 has no uncertainty arising from limited number
of measurements. Vaguely, we may think of the multiplicative
factor [(n − 1)/(n − 3)]1/2 = 1.414 built in the Bayesian
uncertainty u(x) = 0.950 as accounting for the fact that
s(x) = 0.672 is based on four degrees of freedom. In this paper
we use u(x) = 0.950 as the standard uncertainty associated
with the mean x = 100.521.

An estimate of Y based on the measurement equation (2) is

y = x − b0

b1
=

(−b0

b1

)
+

(
1

b1

)
x. (7)

Since b0 = 0 and b1 = 1, the estimate y for Y under all three
scenarios is y = (x − b0)/b1 = x = 100.521.

As discussed in the appendix, the relative standard
uncertainty ur(y) = u(y)/|y| associated with y defined by
equation (7) is

u2
r (y) = u2

r (x − b0) + u2
r (b1), (8)

where we use the symbol u(x−b0) for the standard uncertainty
S(X−B0) = [u2(x)+u2(b0)]1/2 and the symbol ur(x−b0) for
the relative standard uncertainty S(X − B0)/|E(X − B0)| =
u(x − b0)/|x − b0|. Thus the standard uncertainties under the
three scenarios are as follows.

Scenario 1. By substituting b1 = 1 and u(b1) = 0 in
equation (8), we get the following expression for the standard
uncertainty u(y)

u(y) = y

√
u2

r (x − b0) = (x − b0)
√

u2(x − b0)/(x − b0)

=
√

u2(x) + u2(b0). (9)

Scenario 2. The relative standard uncertainty ur(y) is
given by equation (8). Thus the standard uncertainty u(y) is
given by

u(y) = y

√
u2

r (x − b0) + u2
r (b1)

= y

√
(u2(x) + u2(b0))/(x − b0)2 + u2(b1)/b

2
1. (10)

Scenario 3. The expected values b0 and b1 and the
standard deviations u(b0) and u(b1) are identical in scenarios 2
and 3. Therefore, the standard uncertainty u(y) for scenario 3
is also given by equation (10).

The estimate y, standard uncertainty u(y) and the limits of the
2-standard uncertainty interval [y ± 2u(y)] for scenarios 1, 2
and 3 are displayed in tables 3, 4 and 5, respectively. The
quantities displayed in table 3 are determined from equation (9)
and the quantities displayed in tables 4 and 5 are determined
from equation (10).

The last column in tables 3, 4 and 5 displays the coverage
probabilities p associated with the uncertainty intervals [y ±
2u(y)] based on numerical simulation of the probability
distributions for Y discussed in section 4. In table 3
for scenario 1 (normal distribution for B0), the coverage
probabilities are about 95%. In table 4 for scenario 2 (normal
distributions for B0 and B1), when the standard deviation
u(b1) is small [u(b1) = 0.05] the coverage probabilities
are about 95% and when u(b1) is large [u(b1) = 0.20] the
coverage probabilities are about 92%. In table 5 for scenario 3
(rectangular distributions for B0 and B1), the coverage
probabilities exceed 95% when the standard deviation u(b1)

is small [u(b1) = 0.05], but the coverage probabilities drop in
the range of 91% to 92% when u(b1) is large [u(b1) = 0.20].
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Table 3. The estimate y, standard uncertainty u(y) and the limits of the uncertainty interval [y ± 2u(y)] for scenario 1 (normal distribution
for B0) based on the ISO-GUM.

u(x) u(b0) y u(y) y − 2u(y) y + 2u(y) 100 × p

1 0.950 0.250 100.521 0.982 98.556 102.486 95.3
2 0.950 4.000 100.521 4.111 92.298 108.743 95.4

Table 4. The estimate y, standard uncertainty u(y) and the limits of the uncertainty interval [y ± 2u(y)] for scenario 2 (normal distributions
for B0 and B1) based on the ISO-GUM.

u(x) u(b0) u(b1) y u(y) y − 2u(y) y + 2u(y) 100 × p

1 0.950 0.250 0.050 100.521 5.121 90.278 110.763 95.3
2 0.950 0.250 0.200 100.521 20.128 60.264 140.777 92.3
3 0.950 4.000 0.050 100.521 6.493 87.534 113.507 95.3
4 0.950 4.000 0.200 100.521 20.520 59.480 141.561 92.4

Table 5. The estimate y, standard uncertainty u(y) and the limits of the uncertainty interval [y ± 2u(y)] for scenario 3 (rectangular
distributions for B0 and B1) based on the ISO-GUM.

u(x) u(b0) u(b1) y u(y) y − 2u(y) y + 2u(y) 100 × p

1 0.950 0.250 0.050 100.521 5.121 90.278 110.763 99.3
2 0.950 0.250 0.200 100.521 20.128 60.264 140.777 91.3
3 0.950 4.000 0.050 100.521 6.493 87.534 113.507 96.5
4 0.950 4.000 0.200 100.521 20.520 59.480 141.561 91.8

4. The draft GUM Supplement 1

The basic algorithm of the draft GUMS1 [2] to evaluate the
estimate y and its associated uncertainty is as follows.

(1) Define the measurement equation Y = f (Q1, . . . , QN)

as in the ISO-GUM. The draft GUMS1 addresses
two situations: (i) the state-of-knowledge probability
distributions for the input variables Q1, . . . , QN are all
mutually independent and (ii) the joint state-of-knowledge
probability distribution for Q1, . . . , QN is a multivariate
normal distribution. In case (i), the joint pdf for
Q1, . . . , QN is the product of the individual univariate
pdfs for Q1, . . . , QN and the data may be numerically
simulated independently for each input variable. In
case (ii), the data are numerically simulated from the joint
multivariate normal distribution.

(2) Define a joint probability distribution for Q1, . . . , QN .
When Q1, . . . , QN are independently distributed, assign
a state-of-knowledge probability distribution to each of
the input variables Q1, . . . , QN then define the joint pdf
as a product of the independent pdfs.
The draft GUMS1 [2, clause 4, table 1] lists the following
six probability distributions for the input variables useful
for some common circumstances:

(i) Normal distribution with mean x and variance u(x).
(ii) Exponential distribution with expected value x.

(iii) Scaled-and-shifted t-distribution with degrees of
freedom n − 1 that has been scaled by s(x) and
shifted by x.

(iv) Multivariate normal distribution with expected value
x and variance-covariance matrix V(x).

(v) Rectangular distribution with end points a− and a+.
(vi) Scaled-and-shifted arcsine distribution with end

points a− and a+.

(3) Generate M simulated samples (q(r)
1 , . . . , q

(r)
N ), for r =

1, . . . , M , from the joint probability distribution for
Q1, . . . , QN . The draft GUMS1 recommends M = 106.

(4) Calculate the M simulated value y(r) = f (q
(r)
1 , . . . , q

(r)
N )

for Y .
(5) Calculate the estimate y and standard uncertainty u(y).

Following the ISO-GUM, y is defined as the arithmetic
mean and u(y) as the standard deviation of the M

simulated values y(1), . . . , y(M) for Y . In addition to
y, one may calculate other measures of centrality such
as the median, ymedian, and the mode, ymode (when the
distribution has a single mode).

(6) Calculate an uncertainty interval [ylow, yhigh] for Y by
determining the limits ylow and yhigh such that the interval
[ylow, yhigh] encompasses the desired fraction p of the
distribution for Y . Generally the desired p is 95%.

The draft GUMS1 refers to the uncertainty interval
[ylow, yhigh] as coverage interval. When the measurement
equation is non-linear, a simulated distribution for Y defined
by y(1), . . . , y(M) is asymmetric about y; therefore, the interval
[ylow, yhigh] is also asymmetric about y. The draft GUMS1
discusses two forms of the interval [ylow, yhigh]. The first form
is the interval [y(0.025), y(0.975)], where y(0.025) and y(0.975) are
the 0.025th quantile (2.5% percentile) and 0.975th quantile
(97.5% percentile) of the simulated distribution for Y . The
interval [y(0.025), y(0.975)] excludes equal probability 0.025
(2.5%) on each side and it is therefore a probabilistically
symmetric interval. The second form is the shortest width
interval [ylow, yhigh] having the coverage probability p =
95%. The draft GUMS1 seems to prefer the shortest width
interval [ylow, yhigh]. However, in this paper we will discuss
probabilistically symmetric intervals [y(0.025), y(0.975)] which
require fewer calculations.

Comment 2. Unlike the ISO-GUM, the draft GUMS1 does
not distinguish between the Type A and Type B state-of-
knowledge probability distributions for the input variables. We
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believe this distinction is important because some probability
distributions are determined from statistical analyses of the
current measurements (Type A) and some by other means
(Type B). We may identify the scaled-and-shifted t-distribution
(third in the list of the six distributions of the draft GUMS1 [2,
clause 4, table 1]) as a Type A Bayesian posterior distribution
based on non-informative prior distributions and normally
distributed measurements as indicated in the section 3.2 of
this paper and [3, 6, 7]. The other five distributions are
maximum entropy state-of-knowledge distributions, which
may be identified as Type B distributions if their parameters
are specified by non-statistical methods.

Comment 3. The BIPM/JCGM presents the draft GUMS1 as
a generalization of the ISO-GUM. The ISO-GUM applies for
all probability distributions for the input variables that have
the same expected values, standard deviations and correlation
coefficients. The GUMS1 applies to specific probability
distributions for the input variables. Thus the GUMS1 is not
a generalization of the ISO-GUM.

Comment 4. In the draft GUMS1, if a multivariate distribution
other than multivariate normal is to be used, then means for
numerical random sampling from it would need to be provided.

4.1. Application of the draft GUMS1 to simple linear
calibration

Following the draft GUMS1 [2, clause 4, table 1], the input
variable X is assigned a scaled-and-shifted t-distribution with
degrees of freedom n − 1 that has been scaled by s(x)

and shifted by x. This assignment of scaled-and-shifted t-
distribution toX is in agreement with section 3.2, where we saw
that this distribution is a Type A Bayesian posterior distribution
for X based on non-informative prior distributions for X and
σ 2 and normally distributed measurements x1, . . . , xn. The
input variables B0 and B1 are assigned Type B normal and
rectangular distributions. The parameters of the normal and
rectangular distributions B0 and B1 are set to agree with those
specified in section 2 for the three scenarios.

We generated one million (106) simulated random samples
from the joint probability distribution for X, B0 and B1 for
each of the data sets in tables 1 and 2 using the software
S-PLUS [9]. We then calculated the corresponding values
for Y using the measurement equation (2). Tables 6, 7 and 8
display the estimate y, standard uncertainty u(y) and the limits
of the uncertainty interval [y(0.025), y(0.975)] based on the draft
GUMS1 for the data sets in tables 1 and 2.

The results displayed in tables 6, 7 and 8 are inexact
because of the randomness inherent in numerical simulation.
However for comparison with the results from the other
two approaches, we will regard them as exact. The
coverage probabilities associated the uncertainty intervals
[y(0.025), y(0.975)] displayed in tables 6, 7 and 8 are 95% by
definition.

In tables 7 and 8, the mean y is larger than the
median ymedian. This indicates that the distribution for Y is
asymmetric with respect to y with a longer tail on the right
side. Consequently, the uncertainty intervals [y(0.025), y(0.975)]
displayed in tables 7 and 8 are not symmetric about y.

Table 6. The estimate y, standard uncertainty u(y) and the limits of
the probabilistically symmetric uncertainty interval [y(0.025), y(0.975)]
for scenario 1 (normal distribution for B0) based on the draft
GUMS1.

u(x) u(b0) y ymedian u(y) y(0.025) y(0.975)

1 0.950 0.250 100.522 100.522 0.984 98.602 102.441
2 0.950 4.000 100.529 100.524 4.116 92.479 108.604

5. Bayesian statistics

In Bayesian statistics [3] the quantities involved in a
measurement process are regarded as statistical parameters.
In particular, the value Q of the measurand is regarded
as a statistical parameter along with the other statistical
parameters τ = (τ1, . . . , τm). Let θ = (Q, τ ) be a vector
valued statistical parameter. The state of knowledge about θ
before current measurement data are available is represented
by a pdf p(θ) referred to as a prior distribution. Lack
of prior knowledge is represented by using non-informative
prior distributions. It is sometimes convenient to use non-
informative prior distributions that are not proper probability
distributions. The link between the statistical parameter θ and
the current measurement data is represented by a likelihood
function l(θ|data) conditional on the data. The likelihood
function l(θ|data) is determined from the sampling probability
distribution, g(data|θ), for the measurement data given θ.
The state of knowledge about θ after measurement data are
available is represented by a pdf p(θ|data) referred to as a
posterior distribution. The posterior distribution is obtained
using the Bayes’ theorem which states that the posterior
pdf is proportional to the product of the prior pdf and the
likelihood function. In symbols p(θ|data) ∝ l(θ|data)p(θ).
Substituting θ = (Q, τ ), we have

p(Q, τ |data) ∝ l(Q, τ |data)p(Q, τ ). (11)

Suppose the prior distributions for Q and τ are independent,
i.e. p(Q, τ ) = p(Q)p(τ ), where p(Q) and p(τ ) are prior
distributions for Q and τ before measurements are available.
Then the posterior distribution p(Q|data) for the value of the
measurand after measurements is obtained by integrating out
τ . Thus

p(Q|data) =
∫

p(Q, τ |data)dτ

∝
∫

l(Q, τ |data)p(Q)p(τ )dτ . (12)

The right side of (12) is normalized so it integrates to one,
making p(Q|data) a pdf. Often, the posterior distribution (12)
is determined by numerical analysis such as a Markov Chain
Monte Carlo using the software BUGS [10].

The posterior distribution p(Q|data) represents all that
is known about the value Q of the measurand based on
the prior distributions p(Q) and p(τ ), and the likelihood
function l(Q, τ |data). In accordance with the ISO-GUM,
the expected value and the standard deviation of the posterior
distribution p(Q|data) are the estimate q and its associated
standard uncertainty u(q) for Q. The interval [q(0.025), q(0.975)],
where q(0.025) and q(0.975) are the 2.5% and 97.5% percentiles
of the posterior distribution p(Q|data), may be taken as a
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Table 7. The estimate y, standard uncertainty u(y) and the limits of the probabilistically symmetric uncertainty interval [y(0.025), y(0.975)] for
scenario 2 (normal distributions for B0 and B1) based on the draft GUMS1.

u(x) u(b0) u(b1) y ymedian u(y) y(0.025) y(0.975)

1 0.950 0.250 0.050 100.774 100.523 5.169 91.351 111.628
2 0.950 0.250 0.200 105.142 100.516 25.097 72.216 165.284
3 0.950 4.000 0.050 100.781 100.522 6.546 88.675 114.331
4 0.950 4.000 0.200 105.149 100.527 25.443 71.453 166.079

Table 8. The estimate y, standard uncertainty u(y) and the limits of the probabilistically symmetric uncertainty interval [y(0.025), y(0.975)] for
scenario 3 (rectangular distributions for B0 and B1) based on the draft GUMS1.

u(x) u(b0) u(b1) y ymedian u(y) y(0.025) y(0.975)

1 0.950 0.250 0.050 100.784 100.531 5.152 92.592 109.813
2 0.950 0.250 0.200 104.874 100.536 22.101 75.602 149.867
3 0.950 4.000 0.050 100.786 100.541 6.528 89.022 113.732
4 0.950 4.000 0.200 104.876 100.535 22.512 73.897 151.509

probabilistically symmetric uncertainty interval with coverage
probability 95%. In Bayesian numerical analyses, the median,
qmedian, of the posterior distribution is also usually calculated.
The expected value q and the median qmedian are identical when
the pdf p(Q|data) is symmetric. When the pdf p(Q|data) is
asymmetric, one may prefer uncertainty intervals that are not
probabilistically symmetric.

5.1. Application of Bayesian statistics to simple linear
calibration

There are two approaches for doing a Bayesian analysis for
simple linear calibration.

(1) Bayesian analysis treating all unknown quantities as
statistical parameters.

(2) Bayesian analysis applied to the Type A input quantities
only.

We will illustrate both approaches.

5.1.1. Bayesian analysis treating all unknown quantities as
statistical parameters. The measurements x1, . . . , xn are
mutually independent and have the same normal sampling
distribution with expected value X and variance σ 2. The
expected value X is related to the value Y of the measurand by
the relationship X = B0 +B1Y . This approach regards B0, B1,
σ 2 and Y as statistical parameters and X as a function of B0, B1

and Y . The likelihood function l(B0, B1, σ 2, Y , |x1, . . . , xn) of
B0, B1, σ 2 and Y given the measurements x1, . . . , xn is taken
as the joint sampling pdf of x1, . . . , xn, where each xi has the
normalN(B0+B1Y , σ 2)distribution. We treat the Type B state-
of-knowledge distributions for B0 and B1 specified in section 2
as the prior probability distributions p(B0) and p(B1). The
posterior pdf p(Y |x1, . . . , xn) for Y based on equation (12) is

p(Y |x1, . . . , xn) =
[ ∫ ∫ ∫

l(B0, B1, σ
2, Y |x1, . . . , xn)

×p(B0)p(B1)p(σ 2)p(Y )dB0 dB1 dσ 2

]

×
[ ∫ ∫ ∫ ∫

l(B0, B1, σ
2, Y |x1, . . . , xn)p(B0)p(B1)

×p(σ 2)p(Y )dB0 dB1 dσ 2 dY

]−1

, (13)

Table 9. The estimate y, median ymedian, standard uncertainty u(y)
and the limits of the probabilistically symmetric uncertainty interval
[y(0.025), y(0.975)] for scenario 1 (normal distribution for B0) based on
Bayesian analysis treating all unknown quantities as statistical
parameters.

u(x) u(b0) y ymedian u(y) y(0.025) y(0.975)

1 0.950 0.250 100.511 100.510 0.974 98.588 102.409
2 0.950 4.000 100.343 100.332 4.172 92.172 108.544

where p(σ 2) and p(Y ) are prior distributions for σ 2 and
Y , respectively. The denominator in (13) is a normalizing
constant that makes p(Y |x1, . . . , xn) a Bayesian posterior
pdf. The posterior distribution (13) was numerically evaluated
using the software BUGS [10]. This software requires that
all prior probability distributions should be proper probability
distributions. So the prior distribution for Y was set as normal
with expected value 100 and variance 10 000; the large variance
makes this distribution practically non-informative. It is more
convenient to regard γ = 1/σ 2 as a statistical parameter. The
prior distribution for γ was set as a gamma distribution [8] with
both scale and shape parameters as 0.0001; the expected value
of this distribution is one and variance 10 000, which makes it
practically non-informative.

The expected value y, median ymedian, standard deviation
u(y) and the percentiles y(0.025) and y(0.975) of the posterior pdf
p(Y |x1, . . . , xn) for the three scenarios and data of tables 1
and 2 are given in tables 9, 10 and 11. These results are based
on 100 000 numerical iterations using BUGS [10].

We will regard the results displayed in tables 9, 10
and 11 as exact even though they are determined by numerical
simulation using BUGS [10]. The coverage probabilities
associated with the uncertainty intervals [y(0.025), y(0.975)] are
by definition 95%. In tables 10 and 11, the mean y is larger
than the median ymedian; therefore, the posterior distribution for
Y is asymmetric with respect to y with a longer tail on the right
side. The uncertainty intervals [y(0.025), y(0.975)] displayed in
tables 10 and 11 are not symmetric about y.

5.1.2. Bayesian analysis applied to the Type A input
quantities only. In the measurement equation (2), there
is only one Type A input quantity and it is the expected
value X of the measurement data. As noted in section 3.2,
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Table 10. The estimate y, median ymedian, standard uncertainty u(y) and the limits of the probabilistically symmetric uncertainty interval
[y(0.025), y(0.975)] for scenario 2 (normal distributions for B0 and B1) based on Bayesian analysis treating all unknown quantities as statistical
parameters.

u(x) u(b0) u(b1) y ymedian u(y) y(0.025) y(0.975)

1 0.950 0.250 0.050 100.760 100.525 5.150 91.319 111.559
2 0.950 0.250 0.200 101.396 98.338 20.099 70.963 152.971
3 0.950 4.000 0.050 100.366 100.126 6.490 88.238 113.687
4 0.950 4.000 0.200 101.176 98.070 20.404 70.255 153.282

Table 11. The estimate y, median ymedian, standard uncertainty u(y) and the limits of the probabilistically symmetric uncertainty interval
[y(0.025), y(0.975)] for scenario 3 (rectangular distributions for B0 and B1) based on Bayesian analysis treating all unknown quantities as
statistical parameters.

u(x) u(b0) u(b1) y ymedian u(y) y(0.025) y(0.975)

1 0.950 0.250 0.050 100.813 100.594 5.048 92.766 109.655
2 0.950 0.250 0.200 104.012 99.481 21.547 75.838 152.970
3 0.950 4.000 0.050 100.233 99.975 6.416 88.747 148.811
4 0.950 4.000 0.200 104.108 99.724 21.827 73.881 149.759

a Bayesian posterior distribution for X is a scaled-and-shifted
t-distribution with degrees of freedom n − 1 that has been
scaled by s(x) and shifted by x. The Type B probability
distributions for B0 and B1 are as specified in section 2 under
the three scenarios. Thus a pdf for Y may be determined
by propagating the probability distributions for X, B0 and B1

through the measurement equation (2) by numerical simulation
as suggested in the draft GUMS1. The pdf for Y so determined
can reasonably be interpreted as a state-of-knowledge pdf
p(Y |x1, . . . , xn). The probability distributions for X, B0

and B1 are identical to those assigned in section 4.1 on
application of the draft GUMS1 to simple linear calibration.
Therefore, the results of Bayesian analysis applied to the
Type A input quantity X in simple linear calibration are
identical to those presented in tables 6, 7 and 8 for the
draft GUMS1.

Comment 5. The measurement equation may have several
Type A input variables or be a system of equations. The
‘Bayesian analysis applied to the Type A input quantities only’
illustrated in section 5.1.2 is applicable to all measurement
equations. When Bayesian statistics is used for the Type A
input quantities only, the ISO-GUM may be regarded as an
extension of Bayesian statistics to incorporate non-statistical
(Type B) evaluations.

6. Discussion of the results

Tables 3, 6 and 9 display the results from the three approaches
for scenario 1 where the measurement equation is linear. The
results in these tables are identical subject to the vicissitudes
of numerical simulation. This affirms that the ISO-GUM
yields the correct expected value and standard deviation for
the value of the measurand when the measurement equation is
linear.

Tables 4 and 5 display the results based on the ISO-GUM
for scenarios 2 and 3, where the measurement equation is
non-linear and the expected values and standard deviations
for X, B0 and B1 are identical except for the forms of their
distributions. The results in these tables are identical. This
indicates that the results based on the ISO-GUM apply for

all probability distributions for the input variables that have
the same expected values, standard deviations and correlation
coefficients. In this sense the results based on the ISO-GUM
are robust with respect to the forms of probability distributions
for the input variables. The coverage probabilities of the
uncertainty intervals [y ± ku(y)] for a fixed coverage factor
k depend on the form of probability distributions for Y as
indicated in the last columns of tables 4 and 5.

The results in table 7 are exact for scenario 2
(normal distributions for B0 and B1), and table 4 displays
the corresponding approximate results based on linear
approximation of the measurement equation used in the
ISO-GUM. The results in rows one and three of these tables
are for the case where the uncertainty u(b1) for the non-linear
input variable B1 is small [u(b1) = 0.05]. We note that the
corresponding results in rows one and three of tables 4 and 7
are similar. The results in rows two and four are for the case
where the uncertainty u(b1) for the non-linear input variable
B1 is large [u(b1) = 0.20]. We note that the corresponding
results in rows two and four of tables 4 and 7 are different. A
similar pattern is observed in comparing exact and approximate
results in tables 8 and 5 for scenario 3 (rectangular distributions
for B0 and B1). This indicates that the linear approximation
of the measurement equation used in the ISO-GUM may
be adequate when the non-linear input variables have small
uncertainties; but, the results from the ISO-GUM are poor
approximations when the non-linear input variables have large
uncertainties.

The uncertainty intervals [y(0.025), y(0.975)] in table 8 for
rectangular distribution are narrower than the corresponding
intervals in table 7 for normal distribution. Similarly, the
uncertainty intervals [y(0.025), y(0.975)] in table 11 are narrower
than the intervals in table 10. This is because rectangular
distribution assigns all of its probability to a finite central
region.

The standard uncertainties u(y) in tables 7 and 8 are
correct values for scenarios 2 and 3 subject to the vicissitudes
of numerical simulation. The corresponding values in tables 4
and 5 determined from the ISO-GUM are underestimates.
The underestimation is small when u(b1) is small [u(b1) =
0.05]; however, when u(b1) is large [u(b1) = 0.20], the
underestimation is large.
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On comparing tables 10 and 7, we note that the standard
uncertainties u(y) determined from the Bayesian analysis
(based on the likelihood function (13)) of section 5.1.1 are
smaller. The differences are large when u(b1) is large
[u(b1) = 0.20]. Likewise, the standard uncertainties in
table 11 are smaller than in table 8. The results from the
two Bayesian approaches differ because they are based on
different assumptions. In the analysis of section 5.1.1, the
prior distribution for X depends on the prior distributions
for B0, B1 and Y through the relationship X = B0 + B1Y .
In the analysis of section 5.1.2, the prior distributions for
X, B0 and B1 are mutually independent (which is what we
had assumed in section 2) and the prior distribution for X is
non-informative.

7. Merits and limitations of the three approaches

In this section we discuss the merits and limitations of each of
the three approaches.

7.1. Merits of the ISO-GUM

The primary expression of uncertainty in the ISO-GUM is
standard uncertainty. A standard uncertainty is both internally
consistent and transferable [1, section 0.4]. In this sense,
standard uncertainty is a fundamental expression of uncertainty
in measurement.

When the measurement equation is linear, the estimate
y and standard uncertainty u(y) determined from the ISO-
GUM are correct values for all state-of-knowledge probability
distributions for the input variables Q1, . . . , QN that have the
specified expected values, qi , standard deviations, u(qi), and
correlation coefficients, r(qi, qj ). In this sense, y and u(y) are
the robust estimate and standard uncertainty for Y .

The estimate y and standard uncertainty u(y) determined
from the ISO-GUM may be reasonable when all non-linear
input variables have small uncertainties.

The ISO-GUM requires simple calculations that are
familiar to most metrologists.

7.2. Limitations of the ISO-GUM

When the measurement equation is non-linear and one or more
of the input variables have large uncertainties, the standard
uncertainty u(y) determined from a linear approximation of
the measurement equation based on the ISO-GUM may be a
poor approximation for the standard deviation S(Y ) for Y .

An uncertainty interval is a secondary expression of
uncertainty in the ISO-GUM. It is determined from the
standard uncertainty after the latter has been evaluated
[1, section 8, step 7]. Since the ISO-GUM propa-
gates the estimates and standard uncertainties rather than
probability distributions for the input variables, it does
not yield an uncertainty interval with a specific coverage
probability4.

4 In some cases when the assumptions that underlie the central limit theorem
are satisfied, an approximate coverage probability may be determined from
normal distribution.

7.3. Merits of the draft GUMS1

The primary expression of uncertainty in the draft GUMS1 is
an uncertainty interval with a stated coverage probability. The
draft GUMS1 propagates probability distributions assigned to
the input variables. Therefore it yields uncertainty intervals
for any desired coverage probability.

The draft GUMS1 may be used (when applicable)
to determine uncertainty intervals with desired coverage
probabilities for various choices of the input probability
distributions. The draft GUMS1 may also be used to assess
the coverage probabilities of the uncertainty intervals based on
the ISO-GUM for various input probability distributions.

7.4. Limitations of the draft GUMS1

When the current measurement data and available information
about the measurement process are limited, it may not be
possible to reliably specify the probability distribution for each
input variable. Some input variables may also be known to be
correlated and it may be possible to specify their correlation
coefficients but it may not be possible to specify their joint
probability distribution. Thus, requirements for using the draft
GUMS1 may not always be met.

The probability distribution and uncertainty interval
determined from the draft GUMS1 are likely to be
interpreted as exact and reliable, even though the joint
probability distribution for the input variables is generally an
approximation.

The draft GUMS1 applies when the input variables are
independent or their joint distribution is multivariate normal.
Sometimes not all input variables are independently distributed
and there is no basis to claim that their joint distribution is
multivariate normal.

The draft GUMS1 does not mention that different
approaches are needed to specify the Type A and the Type B
input probability distributions. The Type A distributions
are determined from statistical analyses of the current data
and the Type B distributions are determined by other means.
Therefore, different approaches are required for specifying the
two types of distributions.

The draft GUMS1 needs to be expanded to include wider
ranges of univariate and multivariate distributions for both the
Type A and the Type B input variables.

7.5. Merits of Bayesian statistics

The merits of Bayesian statistics in the context of the ISO-
GUM are discussed in section 3.1.

7.6. Limitations of Bayesian statistics

Bayesian analysis often requires numerical simulation because
closed form solutions are often not available.

8. Concluding remarks

1. The ISO-GUM’s declaration of the Type A evaluations
(determined from sampling theory) as expressions of the
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state-of-knowledge is not needed when Bayesian statistics
is used for the Type A evaluations. The sampling theory
estimates may be regarded as approximations to the
corresponding Bayesian estimates.

2. The ISO-GUM yields a robust estimate and standard
uncertainty for the value of the measurand when the
measurement equation is linear.

3. The draft GUM Supplement 1 may be used to assess
the uncertainty intervals based on the ISO-GUM and to
determine uncertainty intervals with required coverage
probabilities for various choices of the input probability
distributions.

4. We hope that a revised draft of the GUM Supplement 1
would classify the input probability distributions into
Type A and Type B because different approaches
are required for specifying the two types of input
distributions.

5. The use of Bayesian statistics for the Type A evaluations
greatly simplifies the expression of uncertainty by
eliminating the need for counting degrees of freedom.

6. For the Type A standard uncertainty associated with
the arithmetic mean x of m independent normally
distributed measurements x1, . . . , xm, the ISO-GUM
recommends the expression u(x) where u(x) = s/

√
m,

and s is the experimental standard deviation s =√
[
∑

i (xi − x)2/(m − 1)]. The expression u(x) is
incomplete without stating its degrees of freedom m − 1,
which represents the uncertainty in u(x) corresponding to
the number m of measurements. For the same situation
we recommend the Bayesian uncertainty uBayes(x),
where uBayes(x) = √

(m − 1)/(m − 3) × s/
√

m. The
Bayesian standard uncertainty is a complete expression.
A Bayesian uncertainty is never uncertain. In particular,
uBayes(x) carries no degrees of freedom. We note
that u(x) = 1/

√
m − 1 × √∑

i (xi − x)2/m and
uBayes(x) = 1/

√
m − 3 × √∑

i (xi − x)2/m. Thus
the only difference is the divisor

√
m − 1 used in

the ISO-GUM and the divisor
√

m − 3 used in the
Bayesian uncertainty. The Bayesian uncertainty requires
at least four independent measurements. As noted in
the ISO-GUM [1, table E.1], the standard uncertainty
u(x) = s/

√
m is unreliable when m = 2 or 3.

A judiciously determined Type B standard uncertainty
may be more reliable than the Type A uncertainty
u(x) = s/

√
m based on only two or three measurements

[1, section 4.3.2].
7. When Bayesian statistics is used for the Type A

input variables, the ISO-GUM may be regarded as
an extension of Bayesian statistics to incorporate non-
statistical (Type B) evaluations.
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Appendix

A linear approximation of the measurement equation (2) about
y is

Y ≈ Ylinear = y+cx(X−x)+cb0(B0−b0)+cb1(B1−b1), (14)

where cx = 1/b1, cb0 = (−1/b1) and cb1 = (−1/b1)y are the
first order partial derivatives of Y with respect to X, B0 and
B1, respectively, evaluated at X = x, B0 = b0 and B1 = b1.
The expected value and variance of Ylinear are

E(Ylinear) = y = (x − b0)/b1, (15)

and

V (Ylinear) = u2(y) = c2
xu

2(x) + c2
b0u

2(b0) + c2
b1u

2(b1). (16)

Equation (16) simplifies to u2(y) = (1/b1)
2[u2(x) + u2(b0)] +

(1/b1)
2y2u2(b1). By dividing both sides by y2, we get

[u(y)/y]2 = (1/b1y)2[u2(x) + u2(b0)] + [u(b1)/b1]2 =
[u2(x) + u2(b0)]/(x − b0)

2 + [u(b1)/b1]2. The ratio ur(y) =
u(y)/|y| is the relative standard uncertainty associated with y

and the ratio u(b1)/|b1| is the relative standard uncertainty
associated with b1. Using the symbol u(x − b0) for the
standard uncertainty S(X − B0) = [u2(x) + u2(b0)]1/2 and
the symbol ur(x − b0) for the relative standard uncertainty
S(X − B0)/|E(X − B0)| = u(x − b0)/|x − b0|, equation (16)
simplifies to the propagation of relative standard uncertainties
formula

u2
r (y) = u2

r (x − b0) + u2
r (b1). (17)
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