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Abstract-Previous numerical studies based on the 
Landau-Lifshitz-Gilbert (LLG) equation have consid- 
ered the magnetization reversal of a uniaxial, single- 
domain particle due to an applied field pulse with a 
short rise time. When the LLG damping constant 
cy < 1, these studies have observed coherent switch- 
ing for applied field magnitudes below the Stoner- 
Wohlfarth limit. The switching field computed in 
these studies decreases as a + 0, with apparent con- 
vergence to a limiting value. In this paper, analytic 
methods determine the value of the switching field 
in the zero-damping limit for an applied field pulse 
with zero rise time. The locus of normalized switching 
fields in parametric form is h, = - sin @(cos @ - 1)/2; 

parametric form is also derived. One surprising impli- 
cation is that magnetization reversal may be caused 
by an applied field with easy axis component in the 
same direction as the initial magnetization (h, > 0 ) .  

Index Terms-Landau-Lifshitz dynamics, Stoner- 
Wohlfarth model, switching field, zero damping 

h, = - C O S @ ( ~ O S ~  + 1)/2; 101 5 2~13. A non- 

I. PROBLEM DEFINITION 

The model considered in this paper is the same one 
previously investigated by He, Doyle, and F’ujiwara [l]. 
In a Cartesian coordinate system with base vectors k,?, 
and 2, consider a uniaxial, single-domain particle with its 
easy axis parallel to 2. Let the particle magnetization M 
be uniform with magnitude M,  (A/m). The anisotropy 
of the particle is represented by an effective field, 

where K (J/m3) is the anisotropy energy density of the 
particle. Assume the magnetization begins at rest in the 
equilibrium value M = Ms2 with zero applied field. At 
time t = 0 an external pulse field is applied in the y-z 
plane. After a rise time At, (s), the pulse field reaches a 
constant value of H a  = [ 0 H,  ] (A/m). The ex- 
ternal field remains constant for a pulse duration of TH (s), 
and then returns to zero. The question to be answered is 
under what conditions the external field pulse will cause 
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the magnetization to reverse direction, so that its final 
equilibrium value is M = -M& 

11. STONER-WOHLFARTH ANALYSIS 

The magnetic energy W (J) of the particle in the pres- 
ence of the applied field is 

(2) 
POV 

= -poV(HyMy -t &Adz) - ---Mi, (3) 

W(M) = -poVH,. M - -Hk. M 
2 

KV 
w 

where V is the volume of the particle. An equilibrium 
magnetization is one which locally minimizes (3), subject 
to the constraint [MI = M S .  

The optimization problem is more conveniently stated 
in terms of normalized quantities, m = M/M,, h = 
(poMJ2K)H = H/Hk, and w = W/2KV. Then, equi- 
librium values of m are those which locally minimize 

‘w = -hymy - hzmI - -m, 1 2  
2 (4) 

subject to the constraint Iml = 1. The solutions are the 
well-known Stoner-Wohlfarth equilibria [2].  For small val- 
ues of h, there are two equilibrium magnetization values. 
When + h2I3 > 1, there is only one equilibrium mag- 
netization. 

When At, is large, so that the external field pulse is 
applied slowly, the particle magnetization will respond so 
as to keep an equilibrium value. A transition from two 
equilibria to one equilibrium is required for magnetization 
reversal. Thus, the external field pulse causes a reversal of 
the particle magnetization only when h, < 0 and hE/3 f 
h2I3 > 1. 

111. LANDAU-LIFSHITZ DYNAMICS 

When At,. is sufficiently small, the dynamics of the par- 
ticle magnetization in response to the external field pulse 
cannot be neglected [l]. The Landau-Lifshitz-Gilbert 
(LLG) equation [3], [4], also in normalized form, 

dm dm 
d t  - _  - -(yHhI(m x hT) + a(m x +> (5) 

predicts the motion of m in response to the total magnetic 
field hT = h, -I- hk, where y = -2.21 x lo5 (rad/s)/(A/m) 
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is the gyromagnetic ratio and Q is a dimensionless phe- 
nomenological damping parameter. During the interval 
At, < t < At, + r H ,  the external field pulse has the 
constant value ha, and the rate of energy dissipation is 

Only the second term of (5), the damping term, con- 
tributes to the energy dissipation rate. The rate of energy 
dissipation can be controlled by selecting the value of the 
damping parameter a. When the values of both a and 
At, are small, the increase in magnetic energy due to the 
application of the external field pulse outpaces the dissi- 
pation of energy and the trajectory of m is not confined 
to equilibrium values. 

Solutions to ( 5 )  in terms of the spherical coordinates 
of m [5] were computed numerically by He, Doyle, and 
Fujiwara [l] for several values of At, < 10 ns, and several 
values of a. They determined that the non-equilibrium 
trajectories of m allowed magnetization reversal by co- 
herent rotation to occur at smaller applied field magni- 
tudes than predicted by Stoner-Wohlfarth analysis. For 
a > 1, the energy dissipation rate is rapid enough that 
Stoner-Wohlfarth analysis computes the correct value for 
the critical magnitude of the external field pulse required 
for magnetization reversal for each applied field direction. 
For each rise time At, and applied field direction, as a 
decreases < 1, the critical field magnitude required for 
magnetization reversal decreases. As a + 0, a limiting 
value for the critical switching field is reached. In the 
next section, analytic methods are used to determine that 
limiting value, the zero-damping critical switching field. 

IV. ZERO-DAMPING SWITCHING FIELD 

When a = 0 in (5), the damping term disappears and 
the first term, the precession term, may be expanded, 

1 d m  -- - - (m,hy - myhz - mym,)2 (7) 
I r Hk I dt 

+ (mzhz + m,m,)g - m,hy2. 

As the magnetization follows the trajectory determined 
by (7),  there is no energy dissipation, so all points on 
that trajectory satisfy 

1 
2 

w(t) = -hymy(t) - h,m,(t) - -m:(t) = w(At,) (8) 

for At, < t < At, + 7-H. 

becomes 
Assume At, = 0. Recall that m, = 1 at t = 0, so (8) 

1 1 
-hymy(t) - hzmz(t) - -m:(t) = -h, - - 

2 2 ’  (9) 
or 

I 
my = --(m, - l)(mZ + 2h, + l), (10) 

the equation of a parabola, considered as a function of m,. 
The precession trajectory of constant energy is that por- 
tion of the intersection of this parabola with the sphere 

2hY 

)mi = 1 which includes the point m = 9 .  The inter- 
section can take the form of two closed curves, each sur- 
rounding one Stoner-Wohlfarth equilibrium, or a single 
closed curve, similar to the stitches on a baseball, which 
surrounds both Stoner-Wohlfarth equilibria. Of course, 
when the applied field is large enough that there is only 
one Stoner-Wohlfarth equilibrium, the intersection is a 
single closed curve which surrounds that equilibrium. 

For any small, positive value of a,  the magnetization 
trajectory will depart the constant energy trajectory and 
spiral toward a Stoner-Wohlfarth equilib 
by the constant energy trajectory. Assu 
tive value for a and a value for 7-H larg 
does not influence the final value of m. When there is only 
one equilibrium surrounded by the constant energy trajec- 
tory, there is no uncertainty about the final 
value. However, when both equilibria are surrounded by 
the constant energy trajectory, the spiraling magnetiza- 
tion trajectory could lead to either one, depending on the 
precise value of a. Thus, m ation reversal is pos- 
sible whenever the constant trajectory surrounds 
both Stoner-Wohlfarth equilibria. 

If the constant energy trajectory surrounds both 
Stoner-Wohlfarth equilibria, it must also 
saddle point in the energy surface which se 
That saddle point occurs at a magne 
[ m: m; m: 1 ,  which is a stationar 
equations of motion. Thus, 

m%h,-mjh,-mim; = 0 ,  
mHh,+mim% = 0 ,  (12) 

m:hy = 0. (13) 

To determine whether the constant energy trajectory sur- 
rounds one or two equilibria, we may test whether it sur- 
rounds the saddle point. Those constant energy trajecto- 
ries which surround the saddle point are separated from 
those which do not by the boundary case of those con- 
stant energy trajectories which intersect the saddle point. 
Clearly the saddle point lies in the y-z plane (m: = 0), 
and we may write 

m; = sinB, (14) 
m: = COSB. (15) 

The values of h for which the constant energy trajectory 
intersects the saddle point are determined by finding the 
common solutions of (9) and (11), 

h, = - sinB(cos0 - 1)/2, 
h, = - c o s B ( c o s B + ~ ) / ~ ,  

where 181 < 2 ~ 1 3 .  
Fig. 1 illustrates the critical switching fields for the two 

extreme cases. When At, is large or a > 1, the Stoner- 
Wohlfarth assumptions are valid, and the normalized ex- 
ternal field pulse must lie in the region below the solid 
curve in order to cause magnetization reversal. When 
At, = 0, 7-H is large, and the normalized external field 
pulse lies below the dashed curve, there exists some small 
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~ Stcner-WcMarG- smtching field 

, ‘\ P .  The zero-damping switching fields are those values of 
(hy, h,) for which the constant energy trajectory inter- 
sects a saddle point. That is, the constant energy trajec- 
tory contains a point at which (18) must equal zero. This 
point is clearly a minimum of (18), which is easily com- 
puted. An equation for the zero-damping switching field 
is the equation which sets the minimum value of (18) to 
zero. The solution is 

1 
8 

1 5  
0 5  1 5  y 8 2  

h2 = - + -h, - hi + -(1 - 8h,)3/2, (19) 4 5  
-1 5 

I 5  
hY 

Fig 1. For slowly applied field pulses, or large damping, Stoner- 
Wohlfarth analysis predicts magnetization reversal only for normal- 
ized applied fields below the solid curve. For an instantly applied 
field pulse and zero damping, magnetization reversal may occur for 
normalized applied fields below the dashed curve. 

positive value of a for which magnetization reversal will 
occur. Intermediate cases of short, but non-zero, Atr or 
larger values of a still less than 1 have switching fields 
between these two limiting curves, and can be calculated 
by the numerical methods of He, Doyle, and Fujiwara [l]. 
As observed in other numerical computations by He and 
Doyle [6], [7], when a is small the magnetization may os- 
cillate back and forth across the x-y plane several times 
before reaching an equilibrium. Whether or not reversal 
occurs depends on which side of the x-y plane the mag- 
netization is on when its energy falls below that of the 
energy barrier. Different values of a will yield different 
outcomes. 

One surprising conclusion to be drawn from Fig. 1 is 
that magnetization reversal may be caused by an exter- 
nal field pulses of appropriate magnitude applied on the 
same side of the hard plane as the initial magnetization, 
provided the field is applied at an angle greater than 
tan-’ 3& from the easy axis. 

V. NON-PARAMETRIC EXPRESSION 

Given an applied field (hy, h,), it is not easy to use (16) 
and (17) to determine if the switching field is exceeded 
because they are in terms of the unknown parameter 8. A 
non-parametric expression for the zero-damping switching 
field is desirable. 

Consider the squared magnitude of (7). This quantity is 
non-negative, and equals zero only at  stationary points of 
the motion of m. Substitution of the constraints Iml = 1 
and the constant energy trajectory (9) yields an expres- 
sion, 

for -1 < h, < 118. 

VI. CONCLUSIONS 

Analytic methods have confirmed the finding of previ- 
ous numerical studies that coherent magnetization rever- 
sal can be predicted by the LLG equation for applied field 
pulses with magnitude below the Stoner-Wohlfarth limit. 
The necessary conditions are short rise time of the ap- 
plied field pulse, and sufficiently small damping parameter 
that the rate of energy increase due to the applied field 
outpaces the rate of energy dissipation due to the LLG 
damping term. Both parametric and non-parametric ex- 
pressions for the switching field in the limit of zero rise 
time and zero damping have been derived. These analyt- 
ical solutions have utility as test cases for the verification 
of numerical solvers. 
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