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Abstract. This paper examines a wide class of ill-posed initial value problems for partial differ-
ential equations, and surveys logarithmic convexity results leading to Hölder-continuous dependence
on data for solutions satisfying prescribed bounds. The discussion includes analytic continuation in
the unit disc, time-reversed parabolic equations in Lp spaces, the time-reversed Navier–Stokes equa-
tions, as well as a large class of nonlocal evolution equations that can be obtained by randomizing
the time variable in abstract Cauchy problems. It is shown that in many cases, the resulting Hölder-
continuity is too weak to permit useful continuation from imperfect data. However, considerable
reduction in the growth of errors occurs, and continuation becomes feasible, for solutions satisfying
the slow evolution from the continuation boundary constraint, previously introduced by the author.
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1. Introduction. The problem of reconstructing the past behavior of a system,
given knowledge of its current state, is of interest to many branches of science. For
evolution equations, such backwards in time continuation is typically ill-posed in
the presence of dissipative terms. Other spatial continuation problems in elliptic or
parabolic equations exhibit similar characteristics. This paper is concerned with the
Hölder-continuous dependence on data that results when certain ill-posed continuation
problems in partial differential equations are stabilized by prescribed bounds [14], [21].

Because the Hölder exponent must decay to zero as the continuation boundary
is approached, there is an unavoidable growth of errors originating from imperfect
data. In some cases, such errors may preclude continuation into a region of partic-
ular interest. The slow evolution from the continuation boundary (SECB) constraint
introduced in [6], [7] is an a priori statement about the rate of change of the desired
solution near the continuation boundary. This information supplements information
provided by prescribed bounds on the solution. As a consequence, stronger stability
estimates can be obtained for solutions satisfying the SECB constraint than is oth-
erwise possible. This constraint was shown to be effective in controlling the growth
of noise in certain image deblurring problems, in which backwards in time continua-
tion in diffusion equations involving fractional Laplacians plays a key role. In these
problems, the Hölder exponent decays linearly to zero.

The present self-contained paper deals with a much wider class of problems. We
survey important classes of equations, including the Navier–Stokes equations, where
logarithmic convexity inequalities can be shown to hold. Using the theory of holomor-
phic semigroups, we consider parabolic equations in Lp spaces, as well as a large class
of nonparabolic problems, typically involving nonlocal differential operators, that can
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be constructed by subordination [8]. The resulting Hölder exponents are particularly
instructive in their dependence on the continuation variable. Linear decay to zero is
the exception, the behavior being generally sublinear, and rapid exponential decay is
possible in some cases. In time-dependent problems, such Hölder exponents are in-
dicative of the rate at which the evolution equation has forgotten the past, and hence,
of the subsequent difficulty of reconstructing the past from imperfect knowledge of
the present.

It is shown that the SECB constraint, when applicable, becomes progressively
more significant the faster the Hölder exponent decays to zero. Considerable error re-
duction is possible in many cases. Indeed, continuation problems that were heretofore
intractable may become amenable to numerical computation, provided their solutions
satisfy an SECB constraint. The paper concludes with a simple, explicit example of
backwards in time continuation in an evolution equation with exponentially decaying
Hölder exponent.

The following problem is important in its own right and serves to motivate the
subsequent discussion.

1.1. Analytic continuation in the unit disc. Let A be the class of complex-
valued functions u(z) that are continuous in the closed unit disc and holomorphic in
its interior, and let

‖ u(r) ‖∞= max
0≤θ≤2π

|u(reiθ)|.(1)

Fix a with 0 < a < 1, and consider the problem of determining u(reiθ) for a < r < 1
from approximate knowledge of u(z) on the circle r = a. Hadamard’s three-circle
theorem asserts that log ‖ u(r) ‖∞ is a convex function of log r for a ≤ r ≤ 1. If

ω(r) = log r/ log a, 0 < a ≤ r ≤ 1,(2)

then

‖ u(r) ‖∞≤‖ u(1) ‖1−ω(r)
∞ ‖ u(a) ‖ω(r)

∞ , 0 < a ≤ r ≤ 1.(3)

We have equality in (3) for u(z) = zn. This convexity inequality is the basis for
stabilizing the ill-posed continuation problem when noisy data are given on r = a.
Restrict the class of admissible continuations to functions u(z) ∈ A satisfying a pre-
scribed bound,

‖ u(1) ‖∞≤M.(4)

Fix ε > 0, ε�M , and let data f(θ) be given on r = a such that for some u(z) ∈ A
satisfying (4), we have

‖ u(a)− f ‖∞≤ ε.(5)

If now u1(z), u2(z) ∈ A are any two objects satisfying (4) and (5), we get from (3)

‖ u1(r)− u2(r) ‖∞≤ 2M1−ω(r)εω(r), a ≤ r ≤ 1.(6)

For fixed r0 < 1, the difference between any two possible continuations at r = r0

can be made arbitrarily small in the L∞ norm by giving sufficiently accurate data
at r = a, i.e., by making ε > 0 sufficiently small in (5). On the other hand, no
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matter how small one chooses ε in (5), the inequality (6) cannot ensure accurate
results at the continuation boundary r = 1, since ω(1) = 0. Indeed, with M given in
(4), and ε > 0 given in (5), consider continuing the function u(z) ≡ M/2 from data
f(θ) = M(1 + aneinθ)/2 at r = a, where n is such that an < 2ε/M . At r = 1, the
continuation v(z) = M(1+zn)/2 satisfies the prescribed bound, but approximates the
desired continuation u(z) ≡M/2 with a relative error of 100% in the L∞ norm. The
inequality (6) establishes Hölder-continuous dependence on the data only on compact
subsets of the region where bounds are prescribed. This situation prevails in diverse
classes of improperly posed problems in partial differential equations stabilized by
a priori bounds. Use of such bounds, together with the analysis of the resulting
continuity with respect to the data, was pioneered by Fritz John in a landmark paper
[14].

A basic difficulty with the above Hölder-continuity is the following. In most
applications, ε > 0 is determined by the accuracy of the instrumentation used to
acquire the data. While ε is usually small, it is fixed and cannot be made arbitrarily
small. In such applications, the dependence of the Hölder exponent µ(t) on the
continuation variable t plays a crucial role. In some cases, such as backwards in time
continuation in the heat equation, we have µ(t) = t/T , so that µ(t) decays linearly to
zero as continuation progresses from t = T > 0 to the continuation boundary t = 0.
More typically, µ is sublinear in the continuation variable. If µ decays too rapidly
to zero, useful continuation becomes impossible, even in regions well away from the
continuation boundary. This is the case in (2), for example, when a > 0 is small.
In the case of evolution equations, as will be seen below, rapid decay of µ to zero
can be brought about by various factors, including nonlinearity, non-self-adjointness,
diffusion coefficients that grow with time, or adverse spectral properties in the spatial
differential operator.

It develops that while prescribed bounds are necessary to stabilize ill-posed initial
value problems, they are frequently insufficient to allow continuation far enough into
the region of interest. Further a priori information must be provided for this purpose.
In this paper we show that knowing the rate of change of the desired solution near
the continuation boundary is slow can be very helpful.

2. Slow evolution from the continuation boundary (SECB). We consider
linear or nonlinear continuation problems in a single variable t, 0 ≤ t ≤ T , with con-
tinuation boundary at t = 0. In spatial continuation problems with radial symmetry,
t is a radial coordinate, e.g., t = 1− r in (1). In applications involving continuation
in the time variable, t is related to time. In an appropriate Banach space X with
norm ‖ ‖, the continuation u(t) is an X-valued function with norm ‖ u(t) ‖ for fixed
t. Let u1(t), u2(t), be any two continuations from the given data f(x) at t = T , with
‖ ui(T ) − f ‖≤ ε, and satisfying a prescribed bound, ‖ ui(0) ‖≤ M at t = 0. Here,
ε, M > 0 are both known, and ε � M . Let w(t) = u1(t) − u2(t). We assume w(t)
satisfies a convexity inequality

‖ w(t) ‖≤‖ w(0) ‖1−µ(t)‖ w(T ) ‖µ(t), 0 ≤ t ≤ T(7)

with known exponent µ(t), 0 ≤ µ(t) ≤ 1. For given K with 0 < K �M/ε, define µ∗

by

µ∗ = log{M/(M −Kε)}/ log(M/ε).(8)

The SECB constraint is expressed as follows: There exists a known small constant
K > 0, and a known fixed s > 0, with µ(s) > µ∗, such that ‖ u(s)− u(0) ‖≤ Kε.
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By continuity as t ↓ 0, given any ε > 0, there always exists a sufficiently small
s > 0 such that the last inequality holds with a small K. However, the requirement
that s be known and be such that µ(s) > µ∗, constitutes further a priori information
about the continuation problem. It will turn out to be desirable that µ(s)� µ∗.

There are several sets of circumstances that can result in solutions satisfying
SECB. As an example, consider linear parabolic initial value problems with time-
independent coefficients, homogeneous boundary conditions, and no forcing term. If
the coefficients are small and the initial values are not dominated by very high fre-
quency components, the solution will evolve slowly from these data at the continuation
boundary t = 0. This situation prevails in some important biomedical image deblur-
ring problems, where the blurring kernel is a Gaussian distribution with small vari-
ance. In that case, the blurred image can be viewed as the solution at time t = T > 0,
of an initial value problem for a diffusion equation with a small diffusivity, the data
at t = 0 being the desired unblurred image. See [6], [7, Fig. 2]. Despite the small
diffusivity, fine scale information that may be of vital significance typically cannot be
discerned in the blurred image. Hence the need for deblurring. More generally, in
parabolic problems with time-dependent coefficients, consider the case where the co-
efficients are initially small but grow with time. Again, the solution will evolve slowly
from the initial values, while it may change rapidly at later times. See the example
in section 8 below. Inhomogeneous boundary conditions provide another mechanism
that can produce solutions satisfying SECB, even when the coefficients are not small.
Thus, if a body in thermal equilibrium at t = 0 is subjected to a boundary heat flux
b(t), where, with b(0) = 0, b(t) increases slowly in the interval 0 ≤ t ≤ T/4; increases
rapidly between T/4 and T/2; and decreases rapidly to zero between T/2 and 3T/4,
the solution at time T will differ considerably from its initial values, while evolving
slowly near t = 0. Similar behavior can occur in the Navier–Stokes initial value prob-
lem. Consider flows in lid-driven cavities as in [20] and the references therein. If the
velocity of the driving lid has a time dependence similar to that in the heat flux b(t)
above, the solution of the Navier–Stokes system at time T > 0 will differ substantially
from its initial state, while having evolved slowly near t = 0. Examples of SECB may
likewise be found in spatial continuation problems.1

Lemma 1. For 1 > µ(s) > µ∗, let Γ(K, s) be the unique root of the transcendental
equation

x = K + x1−µ(s).(9)

Then

K + 1 < Γ < M/ε,

{K/µ(s)} ≤ Γ log Γ ≤ {K/µ(s)}{Γ/(Γ−K)},

Γ log Γ ≈ K/µ(s) ≤ {µ∗/µ(s)}(M/ε) logM/ε, K � Γ.

(10)

Moreover, if K + 1 ≤ x0 ≤M/ε, the iteration xn+1 = K + x
1−µ(s)
n converges to Γ.

Proof. The curve y = x intersects the curve y = K + x1−µ(s) at a single point,
Γ. From (8), we have M/ε = K + (M/ε)1−µ∗ , so that M/ε is the root of (9) when

1In spatial continuation for the heat equation in the quarter plane, or sideways heat equation
problem [10], large, rather than small, diffusivities near x = 0 are conducive to slow evolution from
that boundary.
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µ(s) = µ∗. The roots of (9) decrease monotonically as µ(s) increases. Therefore,
Γ < M/ε. Evidently, Γ > 1, which implies Γ > K + 1. Using the inequality w ≤
log{1/(1 − w)} ≤ w/(1 − w), 0 ≤ w < 1, we get K/Γ ≤ µ(s) log Γ ≤ K/(Γ − K).
Thus, Γ log Γ ≈ K/µ(s) if K � Γ. Next, Kε/M ≤ µ∗ log(M/ε), which leads to the
last inequality in (10). The last statement in Lemma 1 is a standard result called
“fixed point iteration.”

Theorem 1. Let ε, M, K be given positive constants with ε < M and Kε < M .
Let X be a Banach space with norm ‖ ‖, and let f ∈ X. Let C be a linear or nonlinear
continuation problem from the data f for the X-valued function u(t), 0 ≤ t ≤ T , where
‖ u(0) ‖≤ M and ‖ u(T )− f ‖≤ ε. Let C be such that the difference w(t) of any two
possible continuations satisfies

‖ w(t) ‖≤‖ w(0) ‖1−µ(t)‖ w(T ) ‖µ(t), 0 ≤ t ≤ T,(11)

with known µ(t), 0 ≤ µ(t) ≤ 1. If the solutions of C also satisfy ‖ u(s)− u(0) ‖≤ Kε
for some known s > 0 with µ(s) > µ∗, where µ∗ is defined in (8), then

‖ w(t) ‖≤ 2Γ1−µ(t)ε, 0 ≤ t ≤ T,(12)

where Γ is the constant defined in Lemma 1. Moreover, Γ�M/ε if µ∗ � µ(s).
Proof. From (11), the difference of any two continuations satisfies

‖ w(t) ‖≤ Λ1−µ(t)δµ(t), 0 ≤ t ≤ T,

‖ w(s)− w(0) ‖≤ Kδ, s > 0, µ(s) > µ∗,
(13)

where Λ = 2M, δ = 2ε. From

‖ w(t) ‖ ≤ ‖ w(0) ‖1−µ(t)‖ w(T ) ‖µ(t)

≤ {‖ w(s)− w(0) ‖ + ‖ w(s) ‖}1−µ(t) ‖ w(T ) ‖µ(t),(14)

together with (13), we get

‖ w(s) ‖≤ {Kδ + Λ1−µ(s)δµ(s)
}1−µ(s)

δµ(s).(15)

The initial estimate for w(s), ‖ w1(s) ‖≤ Λ1−µ(s)δµ(s), has been used in (14) to produce
a new estimate, ‖ w2(s) ‖, given by (15). We may insert (15) back into (14) to
produce a third estimate for w(s), and so on. At the nth step of that iteration, we

get ‖ wn(s) ‖≤ Z1−µ(s)
n δµ(s), where

Z1 = Λ, Zk/δ = K + (Zk−1/δ)
1−µ(s), k > 1.(16)

We have Zn → Γδ as n ↑ ∞, where Γ is defined in Lemma 1. Thus, ‖ w(s) ‖≤ Γ1−µ(s)δ.
Inserting this back into (14), and using (13), we get

‖ w(t) ‖≤ 2Γ1−µ(t)ε, 0 ≤ t ≤ T.(17)

Finally, the last inequality in (10) shows that Γ log Γ � (M/ε) log(M/ε) provided
µ(s)� µ∗.

To illustrate the SECB constraint, we return to analytic continuation in the unit
disc, as discussed in the Introduction. Let M = 4, ε = 10−5, a = 0.1, and consider
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continuing the function u(z) = 1 + 0.1z from data f(θ) = 1 + 0.1aeiθ + 2a6e6iθ at
r = a. Let v(z) = 1 + 0.1z + 2z6. Then,

‖ u(1) ‖∞= 1.1 < M, ‖ u(a)− f ‖∞= 2× 10−6 < ε,

‖ v(1) ‖∞= 3.1 < M, ‖ v(a)− f ‖∞= 0 < ε.
(18)

Thus, both u(z) and v(z) satisfy the a priori constraints (4), (5). However, at r = 3/4,
we find ‖ u(3/4)−v(3/4) ‖∞ / ‖ u(3/4) ‖∞= 33%, and ‖ u(1)−v(1) ‖∞ / ‖ u(1) ‖∞=
182% at r = 1. These are unacceptable relative errors. Additional a priori information
about u(z) near the continuation boundary r = 1 can reduce this uncertainty. With
K = 12 and s = 0.001, we have

‖ u(1)− u(1− s) ‖∞= 0.1s ≤ Kε,(19)

while

‖ v(1)− v(1− s) ‖∞ = max
θ
|0.1seiθ + 2{1− (1− s)6}e6iθ|

= max
θ
|10−4eiθ + 1.197× 10−2e6iθ|

> 10−2 > Kε.(20)

Therefore, the SECB constraint (19), with s = 0.001 and K = 12, eliminates v(z)
as a possible continuation. With ω(r) as in (2), let µ(t) = ω(1 − t), 0 ≤ t ≤ 1 − a.
Since µ(s) = 4.345 × 10−4, while µ∗ = 2.326 × 10−6, we have µ(s)/µ∗ = 187, and
Γ log Γ ≈ K/µ(s) = 27618. This gives Γ = 3397 while M/ε = 400, 000 = 118Γ.
Let w(r, θ) be the difference between any two possible continuations from data at
r = a = 0.1 satisfying (4), (5), with M = 4 and ε = 10−5. Without the SECB
constraint (19), we have ‖ w(1) ‖∞≤ 2M = 8. With the SECB constraint, we have
‖ w(1) ‖∞≤ 2 Γ ε = 0.0679.

Theorem 1 leads to the following corollary to the Hadamard three-circle theorem.
Theorem 2 (corollary). In the analytic continuation problem in the unit disc,

let u1(z), u2(z) be as in (6), let 0 < s < 1 − a, let ω(r) be as in (2), and let
µ(s) = ω(1− s). If

‖ ui(1)− ui(1− s) ‖∞≤ Kε, i = 1, 2,(21)

with known K, 0 < K < M/ε, and known s such that µ(s) > µ∗, where µ∗ is defined
in (8), then

‖ u1(r)− u2(r) ‖∞≤ 2Γ1−ω(r)ε, a ≤ r ≤ 1,(22)

where Γ < M/ε is the constant in Lemma 1. Moreover, Γ�M/ε if ω(1−s)� µ∗.
Remark 1. The SECB constraint does not imply differentiability of u(1, θ), as a

function of θ, on the circle r = 1. More generally, at the continuation boundary t = 0,
u(t) need not be differentiable in its remaining variables in order to satisfy an SECB
constraint. This point is emphasized in [6], [7, Fig. 2], and again in the example in
section 8 below.

3. An approach to logarithmic convexity. The following method has been
widely used to obtain continuous dependence inequalities in linear and nonlinear ini-
tial value problems, typically in a Hilbert space setting [2], [16], [17]. Let H be a
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Hilbert space, and let S be an initial value problem for a system of partial differential
equations, with solutions u(t) ∈ H for each t ∈ (0, T ]. Let F (t) be a real-valued twice
continuously differentiable function of t, defined on the set of solutions u(t) of S and
satisfying

F (t) ≥ 0, F (t) = 0⇐⇒ u(t) = 0, 0 ≤ t ≤ T,

F (t)F ′′(t)− {F ′(t)}2 ≥ −a1 F (t)F ′(t)− a2 F
2(t), 0 < t < T,

(23)

where a1 and a2 are constants. If a1 = a2 = 0 in (23), then

F (t) ≤ {F (0)}(T−t)/T {F (T )}t/T , 0 ≤ t ≤ T.(24)

More typically, a1 6= 0 in (23). In that case, let

m = −a2/a1, µ(t) = {e−a1t − 1}{e−a1T − 1}−1, 0 ≤ t ≤ T.(25)

Then (see [2], [17])

e−mtF (t) ≤ {F (0)}1−µ(t){e−mTF (T )}µ(t), 0 ≤ t ≤ T.(26)

We now give two examples of the use of this technique in L2, with F (t) =‖ u(t) ‖2.
Many other examples, and choices for F (t), may be found in [2], [16], [24], and the
references therein.

4. Self-adjoint parabolic problems with time-dependent coefficients.
Let Ω be a bounded domain in Rn with sufficiently smooth boundary ∂Ω. For x ∈ Rn
and t ≥ 0, let a(t;u, v) and ȧ(t;u, v) be symmetric bilinear forms on Hm

0 (Ω) given by

a(t;u, v) =
∑

|p|,|q|≤m

∫
Ω

apq(x, t)D
quDpvdx,

ȧ(t;u, v) =
∑

|p|,|q|≤m

∫
Ω

ȧpq(x, t)D
quDpvdx,

(27)

where the coefficients apq depend smoothly on x and t, apq = aqp, and ȧpq denotes
∂apq/∂t. We assume a(t;u, v) to be uniformly strongly coercive on Hm

0 (Ω), i.e., there
exists α > 0, independent of t, such that

a(t; v, v) ≥ α ‖ v ‖2m, v ∈ Hm
0 (Ω).(28)

Both a(t;u, v) and ȧ(t, u, v) are continuous on Hm
0 (Ω)×Hm

0 (Ω), uniformly in t; i.e.,
there exist β, γ > 0, independent of t, such that

|a(t;u, v)| ≤ β ‖ u ‖m‖ v ‖m, |ȧ(t;u, v)| ≤ γ ‖ u ‖m‖ v ‖m, u, v ∈ Hm
0 (Ω).(29)

The bilinear form a(t, u, v) defines a positive self-adjoint operator A(t) in L2(Ω), [28],
with domain DA = H2m(Ω) ∩Hm

0 (Ω) such that

(A(t)v, v) = a(t : v, v), (Ȧ(t)v, v) = ȧ(t; v, v), v ∈ DA,

|(Ȧ(t)v, v)| ≤ (γ/α)(A(t)v, v), v ∈ DA,

(30)
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where ( , ) denotes the scalar product in L2(Ω). The operator A(t) is the closed
extension of the strongly elliptic symmetric differential operator

A(x, t,D)u =
∑

|p|,|q|≤m
(−1)|p|Dp(apq(x, t)D

qu), x ∈ Ω, t > 0,(31)

with zero Dirichlet data on ∂Ω. We distinguish two cases: a) the case where diffusion
is constant or decreases with time and (Ȧ(t)v, v) ≤ 0, and b) the case where diffusion
increases at least some of the time and (Ȧ(t)v, v) ≤ γ ‖ v ‖2m. The theorem below is
due to Agmon and Nirenberg [1].

Theorem 3. Let α and γ be the positive constants in (28) and (29). Let u(t) ∈
L2(Ω) be a solution of ut = −A(t)u, t > 0. If (Ȧ(t)v, v) ≤ 0, 0 < t ≤ T , let
µ(t) = t/T . If (Ȧ(t)v, v) ≤ γ ‖ v ‖2m, 0 < t ≤ T , let c = γ/α and let µ(t) =
{ect − 1}{ecT − 1}−1. Then,

‖ u(t) ‖≤‖ u(0) ‖1−µ(t)‖ u(T ) ‖µ(t), 0 ≤ t ≤ T.(32)

Proof. With F (t) =‖ u(t) ‖2, we have F ′(t) = −2(A(t)u, u), and

FF ′′ − {F ′}2 = −2(Ȧ(t)u, u)F + 4 ‖ A(t)u ‖2‖ u ‖2 −4|(A(t)u, u)|2
≥ −2(Ȧ(t)u, u)F(33)

on using Schwarz’s inequality. If (Ȧ(t)u, u) ≤ 0, we have the case a1 = a2 = 0 in
(23) and the result follows from (24). If (Ȧ(t)u, u) ≤ γ ‖ u ‖2m, we use (30) to obtain
−2(Ȧ(t)u, u)F ≥ (γ/α)FF ′ in (33). This is the case a2 = 0, a1 = −γ/α in (23), and
the result follows from (26) with m = 0.

Evidently, growing diffusion coefficients can result in exponential decay in µ(t).
In section 8 below, we study a simple explicit example where this is indeed the case.
Applying Theorem 1 to the Agmon–Nirenberg result, we have the following corollary.

Theorem 4 (corollary). In Theorem 3, let positive constants ε, M, be given,
with ε < M. Let f ∈ L2(Ω) be given data at time T > 0, and let u1(t), u2(t) be
two solutions of ut = −A(t)u + g(t), 0 < t ≤ T, such that ‖ ui(T ) − f ‖≤ ε, and
‖ ui(0) ‖≤M, i = 1, 2. Let w(t) = u1(t)− u2(t). Then, with µ(t) as in Theorem 3,

‖ w(t) ‖≤ 2M1−µ(t)εµ(t), 0 ≤ t ≤ T.(34)

If, in addition, ‖ ui(s) − ui(0) ‖≤ Kε, i = 1, 2, with known K, 0 < K < M/ε, and
known s > 0 such that µ(s) > µ∗, where µ∗ is defined in (8), then

‖ w(t) ‖≤ 2Γ1−µ(t)ε, 0 ≤ t ≤ T,(35)

where Γ < M/ε is the constant in Lemma 1. Moreover, Γ�M/ε if µ(s)� µ∗.

5. Navier–Stokes equations backwards in time. With i = 1, 3, and summa-
tion convention understood, consider the Navier–Stokes system in a bounded domain
Ω ⊂ R3, with smooth boundary ∂Ω,

ui,t = ν∆ui − ujui,j − ρ−1p,i +Gi(x, t)
uj,j = 0

}
(x, t) ∈ Ω× (0, T ],

ui(x, T ) = fi(x), x ∈ Ω, ui = gi(x, t), (x, t) ∈ ∂Ω× [0, T ].

(36)

Here, differentiation is denoted by a comma, ν is the kinematic viscosity, ρ is the con-
stant density, p the unknown pressure, ui(x, t) is the ith component of fluid velocity,



ILL-POSED INITIAL VALUE PROBLEMS 487

Gi(x, t) is a prescribed body force per unit mass, and gi(x, t) are prescribed boundary
values. In [18], Knops and Payne study the stability of reconstructing the solution of
(36) on [0, T ), under small perturbations of the solution values fi(x) at some positive
time T . Let P and Q be prescribed positive constants. A function ui(x, t) is said to
belong to the set P provided

sup
Ω×[0,T ]

uiui ≤ P 2,(37)

while it belongs to the set Q whenever

sup
Ω×[0,T ]

{uiui + (ui,j − uj,i)(ui,j − uj,i) + ui,tui,t} ≤ Q2.(38)

In [25], the same stability problem is studied under weaker constraints. Let u1
i (x, t)

and u2
i (x, t) denote classical solutions of (36) corresponding to terminal data f1

i (x)
and f2

i (x) at time T > 0. Let vi(x, t) = (u1
i − u2

i )(x, t). Define the spatial L2 norm of
vi(x, t) at time t by

‖ v(t) ‖=
{∫

Ω

vi(x, t)vi(x, t)dx

}1/2

.(39)

Knops and Payne [18] show that if u1
i (x, t) ∈ P and u2

i (x, t) ∈ Q, and if F (t) =
‖ v(t) ‖2,

F (t)F ′′(t)− {F ′(t)}2 ≥ 2ν−1(P 2 + 1)F (t)F ′(t)−Q2{2ν−2(P 2 + 1) + 1}F 2(t)

= −a1F (t)F ′(t)− a2F
2(t).(40)

Hence, with

c = −a1 = 2ν−1(P 2 + 1),

µ(t) = (ect − 1)(ecT − 1)−1,

wi(x, t) = e−mtvi(x, t), m = −a2/2a1, 0 ≤ t ≤ T,

(41)

it follows from (40) and (26) that

‖ w(t) ‖≤‖ w(0) ‖1−µ(t)‖ w(T ) ‖µ(t), 0 ≤ t ≤ T.(42)

Applying Theorem 1 to the Knops–Payne result (42), we have the following corollary.
Theorem 5 (corollary). For the given positive ε,M , with ε < M , let wi(x, t) in

(41) satisfy ‖ w(0) ‖≤M, ‖ w(T ) ‖≤ ε, and let µ(t) be as in (41). Then

‖ w(t) ‖≤M1−µ(t)εµ(t), 0 ≤ t ≤ T.(43)

If, in addition, ‖ w(s)−w(0) ‖≤ Kε, with known K, 0 < K < M/ε, and known s > 0
such that µ(s) > µ∗ ≡ log{M/(M −Kε)}/ log(M/ε), then

‖ w(t) ‖≤ Γ1−µ(t)ε, 0 ≤ t ≤ T,(44)

where Γ < M/ε is the unique root of x − x1−µ(s) −K = 0. Moreover, Γ � M/ε if
µ(s)� µ∗.
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For large c, the rapid exponential decay of µ(t) as t decreases from t = T makes
it unlikely that the most general solutions satisfying the constraints (37) or (38) can
be continued very far into the past. However, it may be possible to continue so-
lutions that have evolved slowly near t = 0. Consider the following example. Let
P = 1, ν = 10−1, T = 0.25, M = 20, and ε = 10−6. Then, c = 40 and µ(t) =
{e40t − 1}{e10 − 1}−1, 0 ≤ t ≤ 0.25. In particular, µ(T/2) = 6.693 × 10−3. Conse-
quently, (43) gives

‖ w(T/2) ‖≤ 19.603× 0.911681 = 17.872(45)

On the other hand, suppose that the solutions to be reconstructed are known to
have evolved slowly enough near t = 0 that with s = 0.01T and K = 10, we have
‖ w(s) − w(0) ‖≤ Kε. Then µ(s) = 4.775 × 10−6, while µ∗ = 2.974 × 10−8. Thus,
{µ(s)/µ∗} = 160.55. From Γ log Γ ≈ K/µ(s), we find Γ ≈ 173, 600 and M/ε = 115Γ.
From (44), we get

‖ w(T/2) ‖≤ 160, 134× 10−6 = 0.16.(46)

Thus, the difference between any two solutions satisfying the SECB constraint is over
one hundred times smaller at t = T/2 than it is in the more general case of (45).

6. Holomorphic semigroups and evolution equations. Let X be a complex
Banach space, let A be a closed linear operator with domain DA dense in X, and
consider the evolution equation ut = −Au, t > 0, for the X-valued function u(t).
We assume that −A generates a holomorphic semigroup e−tA in an open sector of
the complex t-plane, Σφ = {Re t > 0, |Arg t| < φ}, for some fixed φ, 0 < φ ≤ π/2.
Moreover, for any 0 < σ < φ, e−tA is strongly continuous at t = 0 within Σφ−σ,
reduces to the identity operator at t = 0, and satisfies ‖ e−tA ‖≤ Bσ < ∞ for
t ∈ Σφ−σ. Thus, e−tA is a bounded holomorphic semigroup as defined in [15].

Parabolic initial boundary value problems constitute the best-known area of ap-
plication of holomorphic semigroups. We briefly sketch this connection below, and
refer the reader to [12] and [28] for a complete treatment. Less well known are appli-
cations to a wide class of nonparabolic equations, typically involving nonlocal partial
differential operators, that are obtained by “subordination” in well-posed Cauchy
problems [4], [11], [8]. This class of problems, mentioned in section 6.1, is drawing
increasing interest from physical scientists working in certain areas of fractal analysis.

Let Ω be a bounded domain in Rn with a sufficiently smooth boundary ∂Ω. For
x ∈ Rn, let A(x,D) =

∑
|α|≤2m aα(x)Dα be a linear partial differential operator with

coefficients aα(x) continuous in the closure of Ω. If A(x,D) is strongly elliptic, and
zero Dirichlet data are given on ∂Ω, a closed linear operator A in L2(Ω), with dense
domain DA = H2m(Ω) ∩Hm

0 (Ω), can be defined by

(Au)(x) = A(x,D)u(x), u ∈ DA.(47)

Moreover, as shown in [12], [28], for some k ≥ 0 the linear operator−(A+kI) generates
a bounded holomorphic semigroup in L2(Ω). If A(x,D) is a symmetric differential
operator, then A+ kI is self-adjoint, and we may choose φ = π/2 in Σφ.

More general boundary conditions can be handled and parabolic equations of
order 2m can be considered in Lp(Ω), 1 ≤ p < ∞. Let Hj,p(Ω) denote the Sobolev
space of functions in Lp(Ω) whose weak derivatives of order less than or equal to j
exist and belong to Lp(Ω). Let {Bj}mj=1 be m boundary operators of respective orders
mj < 2m, given by



ILL-POSED INITIAL VALUE PROBLEMS 489

Bj(x,D) =
∑
|α|≤mj

bjα(x)Dα,(48)

and consider the boundary value problem

A(x,D)u = g, x ∈ Ω,

Bj(x,D)u = 0, x ∈ ∂Ω, 1 ≤ j ≤ m.
(49)

A closed linear operator A with dense domain DA = H2m,p(Ω; {Bj}), consisting of
the closure in H2m,p(Ω) of the set of functions u ∈ C2m(Ω) that satisfy the boundary
conditions in (49), can be defined via

(Au)(x) = A(x,D)u, u ∈ DA.(50)

If the system Bj is normal, and satisfies further complementary conditions, and
if A(x,D) is strongly elliptic, one obtains a regular elliptic boundary value problem,
(A, {Bj},Ω), such that for some k ≥ 0, the linear operator −(A + kI) generates a
bounded holomorphic semigroup in Lp(Ω). See [12], [28].

6.1. Subordinated semigroups. LetH(y) denote the Heaviside unit step func-
tion, and consider the family py(t) given by

py(t) =
tH(y)e−t

2/4y√
4πy3

, t > 0.(51)

For each fixed t > 0, py(t) is a probability density function on y ≥ 0, and py(t) tends
to the Dirac δ-function δ(y) as t ↓ 0. Moreover, if ∗ denotes convolution with respect
to y, then py(t) ∗ py(s) = py(t+ s), for s, t ≥ 0. The Laplace transform with respect
to y of py(t) is given by

L{py(t)} ≡
∫ ∞

0

e−yzpy(t)dy = e−t
√
z, Re z > 0.(52)

The “inverse Gaussian” family in (51) is just one example of an infinitely divisible
family of probability density functions on the half-line y ≥ 0, [11].

Let T (t) = e−tA, t ≥ 0, be a uniformly bounded, not necessarily holomorphic, C0

semigroup on a complex Banach space X. Using (51), one may construct a new C0

semigroup U(t) on X, with ‖ U(t) ‖≤‖ T (t) ‖≤ B <∞, t ≥ 0, by means of

U(0) = I, U(t)g =

∫ ∞
0

py(t)T (y)g dy, t > 0, g ∈ X.(53)

Indeed, it turns out that U(t) = e−tA
1/2

and that U(t) can be extended to a bounded
holomorphic semigroup in some sector Σω.

The construction in (53) amounts to randomization of the time variable t in the
original semigroup T (t). A wide variety of infinitely divisible families qy(t) may be
used in (53). The new semigroup U(t) is said to be “subordinated” to T (t) through
the “directing process” qy(t) [11]. This concept originated in [4] and was subsequently
refined into a functional calculus in [26], [23], and [3]. The observation that U(t) is
holomorphic whenever the directing process qy(t) = L−1{e−tzα}, 0 < α < 1, was
made in [29]. In that case, U(t) = e−tA

α

. Subordinated processes and fractional
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differential operators are of interest in polymer science [9], while diffusion equations
with fractional Laplacians play a role in image deblurring [6]. Further applications
are discussed in [5, pp. 140–156] and [11].

An arbitrary infinitely divisible family qy(t) on y ≥ 0 can be characterized in terms
of its Laplace transform [11]. We have L{qy(t)} = e−tψ(z), t ≥ 0, where the exponent
ψ(z) is holomorphic for Re z > 0 and continuous for Re z ≥ 0, with Re ψ(z) ≥ 0.
Moreover, ψ(0) = 0, and ψ′(x) is completely monotone for x > 0. In [8], the results
of [29] are extended. A necessary and sufficient condition on qy(t) is given, in order
that the subordinated semigroup U(t) = e−tψ(A) be holomorphic on X, whenever
T (t) is C0 and uniformly bounded on X. In addition, a necessary condition on the
exponent ψ(z) is obtained for that to be the case. In [13], a sufficient condition on
ψ(z) is given that ensures analyticity of U(t). As a consequence of [29], [8], and [13],
a rich class of exponents ψ(z) is known, with the property that −ψ(A) generates a
bounded holomorphic semigroup on X whenever −A generates a uniformly bounded
C0 semigroup on X. As one example, consider the symmetric hyperbolic system,

ut =

n∑
i=1

ai(x)uxi + b(x)u, x ∈ Rn, t > 0,

u(x, 0) = f(x),

(54)

where u(x) is an N -component vector, ai(x), b(x) are N×N matrices with boundedly
differentiable entries on Rn, and ai(x) is Hermitian. The differential operator on the
right-hand side of (54) can be extended into a closed densely defined linear operator
−A in L2(Rn)N . As shown in [28], for some k ≥ 0, −(A+kI) generates a contraction
semigroup on L2(Rn)N . It follows from [29], [8] that if

ψ1(A) = (A+ kI)α, 0 < α < 1, ψ2(A) = Log{A+ (k + 1)I},(55)

then each of −ψ1(A),−ψ2(A), generates a holomorphic semigroup on L2(Rn)N . If
{αn}∞n=1 and {an}∞n=1 are any two sequences satisfying an ≥ 0, a1 > 0, 1 > α1 >
α2 > · · · > αn > · · · > 0,

∑∞
n=1 an/αn <∞, and if

ψ3(A) =
∞∑
n=1

an(A+ kI)αn ,(56)

it follows from [13] that −ψ3(A) generates a holomorphic semigroup on L2(Rn)N .
None of the ψi(A), i = 1, 3, are elliptic operators when −A is the differential oper-
ator on the right-hand side of (54). This shows that holomorphic semigroup theory
encompasses a class of initial value problems in partial differential equations that is
considerably wider than the class of parabolic problems.

7. Logarithmic convexity and holomorphic semigroups. In Banach space,
approaches different from those used in sections 3–5 appear necessary to obtain log-
arithmic convexity inequalities. Following the basic work in [19], further convexity
results were obtained in [1], [12], and [22]. Theorems 6 and 7 below are a reformulation
of results originating with these authors.

For any a ≥ 0, and 0 < ξ ≤ 1, let S(a, ξ) be the set in the complex τ -plane given
by

S(a, ξ) = {τ = t+ is; t ≥ a; |s| ≤ (t− a) tan(πξ/2)} .(57)
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Let T > 0. Then, S(T, ξ) ⊂ S(0, ξ). Let G(T, ξ) = S(0, ξ) \ S(T, ξ), and let ΛL, ΛR
be, respectively, the left and right boundary arcs of G(T, ξ). Let ωξ(t, s) be the unique
bounded continuous function on G(T, ξ) which is harmonic in the interior of G(T, ξ),
equals zero on ΛL, and equals one on ΛR. Let µξ(t) = ωξ(t, 0), 0 ≤ t ≤ T .

Lemma 2. µ1(t) = t/T, and, if 0 < ξ < η ≤ 1, µξ(t) < µη(t), 0 < t < T .
Proof. Let H(ξ, η) = S(0, η) \ S(T, ξ). Then G(T, ξ) ⊂ H(ξ, η), and G(T, η) ⊂

H(ξ, η). Let Λ′L be the left boundary arc of H(ξ, η), and let Λ′R be the right boundary
arc of G(T, η). Let ω̃(t, s) be the unique bounded continuous function on H(ξ, η)
which is harmonic in the interior of H(ξ, η), equals zero on Λ′L, and equals one on
ΛR. The harmonic function ω̃−ωξ in G(T, ξ) has value zero on ΛR, is nonnegative on
ΛL and hence must be strictly positive in the interior of G(T, ξ). Therefore µξ(t) <
ω̃(t, 0), 0 < t < T . A similar argument, applied to the harmonic function ωη − ω̃ in
G(T, η), shows that µη(t) > ω̃(t, 0), 0 < t < T . Finally, if ξ = 1, then G(T, 1) is the
vertical strip 0 ≤ Re τ ≤ T , and ω1(t, s) = t/T .

We now consider the evolution equation ut = −Au, t > 0, in a complex Ba-
nach space X with norm ‖ ‖, under the assumption that −A generates a bounded
holomorphic semigroup in an open sector Σφ in the complex τ = t + is plane. With
0 < απ/2 < φ ≤ π/2, let S(0, α), defined in (57), be a closed subsector of Σφ, and let
‖ e−τA ‖≤ Bα <∞, τ ∈ S(0, α). Introduce the equivalent norm ‖ ‖α on X defined
by

‖ x ‖α≡ sup
τ∈S(0,α)

‖ e−τAx ‖, x ∈ X.(58)

Then, as is easily verified,

‖ x ‖≤‖ x ‖α≤ Bα ‖ x ‖, x ∈ X, ‖ e−τA ‖α≤ 1, τ ∈ S(0, α).(59)

Theorem 6. Let X be a complex Banach space with norm ‖ ‖, let u(t) be
a solution of ut = −Au, 0 < t ≤ T , where −A generates a bounded holomorphic
semigroup on X. Then, with ‖ ‖α as in (58) and µα(t) as in Lemma 2,

‖ u(t) ‖α≤‖ u(0) ‖1−µα(t)
α ‖ u(T ) ‖µα(t)

α , 0 ≤ t ≤ T,(60)

and

‖ u(t) ‖≤ Bα ‖ u(0) ‖1−µα(t)‖ u(T ) ‖µα(t), 0 ≤ t ≤ T.(61)

Proof. Let l be a linear functional on X with |l|α = 1, where | |α denotes the norm
on X∗ corresponding to the norm ‖ ‖α on X. Let h(τ) = l(e−τAu(0)) for τ ∈ S(0, α).
We have that h(τ) is continuous and bounded on S(0, α), with |h(τ)| ≤‖ u(0) ‖α, and
h(τ) is holomorphic in the interior of S(0, α). The same is true for h(τ) in S(T, α),
with |h(τ)| ≤‖ u(T ) ‖α. This follows from e−τA = e−(τ−T )Ae−TA for τ ∈ S(T, α). Let
G(T, α) and ωα(t, s) be as defined above, and consider the function v(t, s) in G(T, α)
where

v(t, s) = log |h(τ)| − ωα(t, s) log ‖ u(T ) ‖α +(ωα(t, s)− 1) log ‖ u(0) ‖α .(62)

The function v(t, s) is upper semicontinuous and bounded above on G(T, α), subhar-
monic in the interior of G(T, α), and nonpositive on the left and right boundary arcs
of G(T, α). Therefore v(t, s) ≤ 0 on G(T, α). Using

‖ u(τ) ‖α= sup
l∈X∗, |l|α=1

|h(τ)|,(63)
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we obtain

‖ u(τ) ‖α≤‖ u(0) ‖1−ωα(τ)
α ‖ u(T ) ‖ωα(τ)

α , τ ∈ G(T, α),(64)

which implies, on using (59),

‖ u(τ) ‖≤ Bα ‖ u(0) ‖1−ωα(τ)‖ u(T ) ‖ωα(τ), τ ∈ G(T, α).(65)

Finally, (60), (61), follow from the above on putting τ = t.
Remark 2. The inequality (61) follows from (60) but not vice versa. From Lemma

2, we see that µα(t) is sublinear in t, and this sublinearity becomes more severe as α
becomes smaller. The choice of α depends on the spectrum of the spatial operator A.
Since −A generates a holomorphic semigroup in the open sector Σφ, the spectrum of
A must be contained in the closed sector Arg |z| ≤ β = π/2−φ in the right half-plane.
As β increases, φ, and hence α, must decrease. Theorem 6 does not yield the explicit
dependence of µα(t) on t, which is necessary for applying the SECB constraint. The
next result is more useful in that regard.

Theorem 7. With u(t) and α as in Theorem 6, let 0 < σ < α < 1, and let

λ = inf0≤θ≤π/2 {cosσθ [1− tanσθ/ tan(απ/2)] /(cos θ)σ},

ρσ(t) = (λt/T )1/σ, 0 ≤ t ≤ T.
(66)

Then,

‖ u(t) ‖α≤‖ u(0) ‖1−ρσ(t)
α ‖ u(T ) ‖ρσ(t)

α , 0 ≤ t ≤ T,(67)

and

‖ u(t) ‖≤ Bα ‖ u(0) ‖1−ρσ(t)‖ u(T ) ‖ρσ(t), 0 ≤ t ≤ T.(68)

Proof. Note that λ in (66) satisfies 0 < λ < 1 and may be found graphically
given α and σ. Let Y > 0, let l be a linear functional on X with |l|α = 1, and let
h(τ) = l(e−τAu(0)) for τ ∈ S(0, α). As in Theorem 6, h(τ) is continuous and bounded
on S(0, α) (resp., S(Y, α)) and holomorphic in its interior, with |h(τ)| ≤‖ u(0) ‖α,
(resp., |h(τ)| ≤‖ u(Y ) ‖α). Let 0 < σ < α, let V be the vertical strip 0 ≤ Re τ ≤ Y ,
and consider the function ψ(τ) = h(τσ) for τ ∈ V . We have that ψ(τ) is continuous
and bounded on V , holomorphic in its interior, with |ψ(τ)| ≤‖ u(0) ‖α. A more
precise estimate for |ψ(τ)| on the line Re τ = Y will now be obtained. We first show
that with λ as in (66),

Re τ = Y =⇒ τσ ∈ S(λY σ, α).(69)

Indeed, with τ = Y + is = reiθ, 0 ≤ |θ| < π/2, we have τσ = rσ(cosσθ + i sinσθ),
and Y = r cos θ. Therefore, τσ ∈ S(λY σ, α) if and only if

rσ| sinσθ| ≤ {rσ cosσθ − λ(r cos θ)σ} tan(απ/2), 0 ≤ |θ| < π/2,(70)

i.e., if and only if ∀ 0 ≤ θ < π/2, we have

λ ≤ cosσθ {1− tanσθ/ tan(απ/2)} /(cos θ)σ.(71)
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But this is guaranteed from the definition of λ. It follows that

|ψ(τ)| ≤‖ u(0) ‖α, Re τ = 0, |ψ(τ)| ≤‖ u(λY σ) ‖α, Re τ = Y.(72)

We may now apply the “three lines theorem,” [27, p. 244], to ψ(τ) in the strip V and
conclude that

|ψ(y)| ≤‖ u(0) ‖1−y/Yα ‖ u(λY σ) ‖y/Yα , 0 ≤ y ≤ Y.(73)

Using (63), we obtain

‖ u(yσ) ‖α≤‖ u(0) ‖1−y/Yα ‖ u(λY σ) ‖y/Yα , 0 ≤ y ≤ Y.(74)

Putting t = yσ, T = λY σ, ρσ(t) = (λt/T )1/σ in (74) gives

‖ u(t) ‖α≤‖ u(0) ‖1−ρσ(t)
α ‖ u(T ) ‖ρσ(t)

α , 0 ≤ t ≤ T/λ.(75)

Since T/λ > T , (75) implies (67) which implies (68).
Remark 3. When X is a Hilbert space, ρσ(t) in (66) may be viewed as expressing

the penalty for non-self-adjointness in the spatial operator A. When A is self-adjoint,
we have ρ(t) = t/T . If the spectrum of A leaves the nonnegative real axis and expands
into the sector Arg |z| ≤ π/2− φ, ρσ(t) decays to zero faster than t/T, through the
exponent 1/σ. It is remarkable that (66) actually holds in any complex Banach space
X. The next theorem summarizes the main results of this section.

theorem 8 (corollary). Let X be a complex Banach space with norm ‖ ‖. Let
−A generate a holomorphic semigroup e−τA on X, satisfying ‖ e−τA ‖≤ Bα < ∞,
in a closed sector |Arg τ | ≤ απ/2 of the complex τ = t + is plane, for suitable α
with 0 < α < 1. Let ‖ ‖α be the equivalent norm on X defined in (58), (59).
Let 0 < σ < α, and let λ and ρσ(t) be as in (66). For given ε,M, with ε < M ,
let f ∈ X be given data at time T > 0, and let ui(t), i = 1, 2, be two solutions of
ut = −Au + g(t), 0 < t ≤ T , with ‖ ui(T ) − f ‖≤ ε/Bα, and ‖ ui(0) ‖≤ M/Bα.
Finally, let w(t) = u1(t)− u2(t). Then

‖ w(t) ‖≤‖ w(t) ‖α≤ 2M1−ρσ(t)ερσ(t), 0 ≤ t ≤ T.(76)

If, in addition, ‖ ui(s) − ui(0) ‖≤ Kε/Bα, i = 1, 2, with known K, 0 < K < M/ε,
and known s > 0 such that ρσ(s) > µ∗, where µ∗ is defined in (8), then

‖ w(t) ‖≤‖ w(t) ‖α≤ 2Γ1−ρσ(t)ε, 0 ≤ t ≤ T,(77)

where Γ < M/ε is the unique root of x −K − x1−ρσ(s) = 0. Moreover, Γ � M/ε if
ρσ(s)� µ∗.

Proof. From (59), we have ‖ w(0) ‖α≤ 2M, ‖ w(T ) ‖α≤ 2ε. Hence, (76) follows
from (67). Likewise, ‖ w(s) − w(0) ‖α≤ 2Kε. Applying Theorem 1 with the ‖ ‖α
norm on X, we obtain (77) from (67).

8. An example. In the Navier–Stokes equations, where the Hölder exponent
µ(t) in (41) depends on 1/ν, it is not known whether or not there can be equality
in the Knops–Payne inequality (42). However, the following example demonstrates
that rapid exponential decay in µ(t) can be realized in quite simple problems. With
positive constants a, c, Q, consider the 1-D parabolic initial value problem in L2(0, π),

ut = aectuxx, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t ≥ 0,

u(x, 0) = Q sinmx, 0 ≤ x ≤ π.
(78)
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The unique solution of (78) is

u(x, t) = Q e−am
2(ect−1)/c sinmx, t ≥ 0.(79)

Moreover, u(x, t) satisfies

‖ u(t) ‖=‖ u(0) ‖1−µ(t)‖ u(T ) ‖µ(t), 0 ≤ t ≤ T,(80)

where µ(t) = {ect− 1}{ecT − 1}−1 and ‖ ‖ is the norm on L2(0, π). This shows that
Theorem 3 is sharp. By choosing c > 0 sufficiently large in (78), we can expect to
simulate some of the difficulties that would attend backwards in time continuation in
the Navier–Stokes equations.

Let a = 2× 10−5, let c = 10, and, for any positive integer m, let

gm(t) = e−am
2(ect−1)/c, t ≥ 0.(81)

Let p =
√

2/π. With M = 10, and ε = 2× 10−7, consider the initial data

u(x, 0) = p
√

(1− ε2)/2 M sin 2x+ p

∞∑
n=1

b2n+1 sin(2n+ 1)x,(82)

where

∞∑
n=1

b22n+1 = ε2M2/2,
∞∑
n=1

nqb22n+1 =∞ ∀ q > 0.(83)

Thus, u(x, 0) is an L2 function on (0, π) which is not in Hq(0, π) for any q > 0, and
‖ u(0) ‖= M/

√
2. We may think of the second term in (82) as representing highly

localized, nondifferentiable singularities that are superimposed onto the first term.
With these initial data in (78), the unique solution is

u(x, t) = p
√

(1− ε2)/2 Mg2(t) sin 2x+ p
∞∑
n=1

b2n+1 g2n+1(t) sin(2n+ 1)x.(84)

Given an a priori L2 bound for u(x, t) at t = 0, consider recovering the solution (84)
on 0 ≤ t < 1, from approximate data f(x) at t = 1, with ‖ u(1)− f ‖≤ ε. Let

‖ u(0) ‖≤M = 10(85)

be this prescribed bound, and let the data f(x) at t = 1 be given by

f(x) = u(x, 1) + p(M/
√

2) g20(1) sin 20x.(86)

Then

‖ u(1)− f ‖= (M/
√

2)g20(1) = 1.574× 10−7 < ε,

‖ u(1)− f ‖ / ‖ u(1) ‖< g20(1){√1− ε2 g2(1)}−1 = 2.66× 10−8.

(87)

Evidently, the given data f(x) approximates u(x, 1) extremely closely in both absolute
and relative terms. However, if v(x, t) is the function

v(x, t) = u(x, t) + p(M/
√

2) g20(t) sin 20x, 0 ≤ t ≤ 1,(88)
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then v(x, 1) = f(x), v(x, t) is a solution, and, since ‖ v(0) ‖= M , v(x, t) is an equally
valid continuation. Noteworthy is the substantial qualitative difference between u(x, t)
and v(x, t), which emerges as early as t = 1/2, as continuation unfolds backwards from
t = 1. While g2(1) = 0.8384 and g20(1) = 2.226 × 10−8, we find g2(1/2) = 0.9988
and g20(1/2) = 0.8888. Consequently, while the primary component in u(x, t) is
the large amplitude sin 2x oscillation for 0 ≤ t ≤ 1, the sin 2x and sin 20x terms have
approximately equal amplitudes in v(x, t), for 0 ≤ t ≤ 1/2. Clearly, Hölder-continuous
data dependence is simply too weak to distinguish u(x, t) from v(x, t) in this example,
even though ‖ u(1/2)− v(1/2) ‖= 6.285 is roughly the same size as ‖ u(0 ‖.

We shall show that an SECB constraint can easily distinguish between u(x, t) and
v(x, t), although neither function is differentiable in x at t = 0. Indeed, with K = 35
and s = 0.01, we find

‖ u(s)− u(0) ‖2 = (1− ε2)(M2/2)(1− g2(s))2 +
∞∑
n=1

b22n+1 (1− g2n+1(s))2,

≤ (1− ε2)(M2/2)(1− g2(s))2 + ε2M2/2,

= (6.115× 10−6)2 < K2 ε2.(89)

On the other hand, with s = 0.01,

‖ v(s)− v(0) ‖2 = ‖ u(s)− u(0) ‖2 +(M2/2)(1− g20(s))2,

> (M2/2)(1− g20(s))2 = (5.949× 10−4)2,

> (2974)2 ε2.(90)

Therefore, the SECB constraint

‖ u(0.01)− u(0) ‖≤ 35 ε(91)

eliminates v(x, t) in (88) as a possible continuation, while allowing u(x, t) in (84).
Here, µ(s)/µ∗ = 121, Γ = 554, 235, and M/ε = 90Γ. It follows from Theorem 1 and
(80) that if u1(x, t) is any other continuation satisfying (91), then ‖ u(t) − u1(t) ‖
≤ 2Γ1−µ(t)ε, 0 ≤ t ≤ 1. Hence, ‖ u(1/2) − u1(1/2) ‖≤ 0.203, and ‖ u(0) − u1(0) ‖
≤ 0.222. Since ‖ u(1/2) ‖> {(1 − ε2)/2}1/2 Mg2(1/2) = 7.063, and ‖ u(0) ‖= 7.071,
the maximum L2 relative errors in approximating u(x, t) at t = 1/2 and at t = 0,
are, respectively, 2.87% and 3.14%. Without the SECB constraint (91), these relative
errors are, respectively, 251% and 283%.
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