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tThe widespread use of high level mathemati
al fun
tions to solve problemsin the mathemati
al and physi
al s
ien
es has led the National Instituteof Standards and Te
hnology to engage in a massive proje
t to updateand expand the National Bureau of Standards Handbook of Mathemati
alFun
tions [1℄. The handbook, whi
h dis
usses the de�nition and 
omputa-tions of \spe
ial fun
tions", will be disseminated on the World Wide Webas the NIST Digital Library of Mathemati
al Fun
tions.A key feature of the digital library will be 3D visualization 
apabilitiesthat allow a user to intera
tively examine the unique features of 
om-pli
ated mathemati
al fun
tions. The 
omplex nature of these fun
tionsmakes the visualization task quite diÆ
ult. Many 
ontain singularities andpoles whi
h make the 
omputational domains irregular, dis
ontinuous, ormulti-
onne
ted. This paper dis
usses the use of grid generation te
hniquesto fa
ilitate the plotting of the 
ompli
ated 3D surfa
es that represent thesehigher mathemati
al fun
tions.



Introdu
tionHigh level mathemati
al fun
tions su
h as the Bessel fun
tions, the gammaand beta fun
tions, hypergeometri
 fun
tions and others are important forsolving many problems in the mathemati
al and physi
al s
ien
es. For ex-ample, the Airy fun
tions Ai and Bi, whi
h are Bessel fun
tions of fra
tionalorder, provide 
losed form solutions to �eld equations that arise in quantumme
hani
s, opti
s and ele
tromagnetism. The gamma and beta fun
tionsprovide the starting point for the 
omputation of more 
omplex fun
tionssu
h as the Riemann zeta fun
tion and others that o

ur in number theoryand mathemati
al physi
s. Be
ause of their importan
e, referen
es whi
hdis
uss the de�nition and 
omputations of these \spe
ial fun
tions" 
on-tinue to be widely used. One su
h referen
e is the National Bureau ofStandards (NBS) Handbook of Mathemati
al Fun
tions [1℄. Its popularityhas led the National Institute of Standards and Te
hnology (NIST), thesu

essor organization to NBS, to begin a large s
ale proje
t to updateand expand the handbook and disseminate it on the World Wide Web asthe NIST Digital Library of Mathemati
al Fun
tions (DLMF). A key fea-ture of the DLMF will be 3D graphi
s and visualization 
apabilities thatallow a user to intera
tively examine the unique features of 
ompli
atedmathemati
al fun
tions.The 
omplex nature of these fun
tions makes the visualization task quitediÆ
ult. The presen
e of singularities and poles usually means that the
omputational domain will be irregular, dis
ontinuous, or multi-
onne
ted.This paper dis
usses the use of grid generation te
hniques to fa
ilitate theplotting of surfa
es that are the graphs of fun
tions, that is, surfa
es that
an be des
ribed by equations of the form z = f(x; y). Some 
ommer
ialpa
kages have a few of the fun
tions built in and may allow the user toprodu
e a plot, usually over a re
tangular 
artesian mesh. However, thisoften produ
es a very poor and in many 
ases misleading graph of thefun
tion. In addition, the pa
kages often have problems 
lipping the surfa
eproperly when values fall outside the range of interest spe
i�ed by the user.Furthermore, we have often found that what looks satisfa
tory inside thepa
kage, may not when we transform the data to a format more suitablefor intera
tive graphi
s on the Web.We are looking at various te
hniques for solving the problems we have en-
ountered using 
ommer
ial pa
kages. These in
lude using a 
omputationalgrid whose boundary 
oin
ides with the 
ontours of the surfa
e, adaptingthe grid lines to obtain more 
on
entration in areas of large 
urvature, ordesigning the entire 
oordinate system so that the grid lines 
orrespond to
ontours of the surfa
e and the 
urves orthogonal to the 
ontours. This



paper dis
usses the grid generation te
hniques that have been tried to dateand in parti
ular looks at the e�e
tiveness of an updated version of a tensorprodu
t B-spline grid generation algorithm designed by one of the authors[2℄. The feasibility of using unstru
tured te
hniques and the a�e
t of theiruse on the translation of the data to other formats are also dis
ussed.3D Visualization in a Web-Based Digital LibraryFor the intera
tive visualizations in the DLMF we begin with a prepro-
essing stage, using available pa
kages su
h as MATLAB, MAPLE andMATHEMATICA to plot the data so that we 
an examine the graphi
alrepresentation and adjust the s
aling to bring out interesting features. Thedata is then 
onverted to VRML (Virtual Reality Modeling Language) for-mat. VRML [3℄ is a standard 3D �le format for des
ribing the behavior andgeometry of a 3D virtual world, or s
ene. Its a

essibility on the Internetand intera
tive 
apabilities make it an ideal 
andidate for this developmentwork. It is not a foregone 
on
lusion that the �nal version of the DLMF willuse VRML. This may depend on whether VRML browsers 
ontinue to bereadily available. We are looking at alternatives to VRML su
h as JAVA 3Dwhi
h would not require the download of a browser, but still would requirethe user to obtain the graphi
s pa
kage. In the mo
kup DLMF alreadydeveloped and available for viewing at http://dlmf.nist.gov, the user hasthe option of viewing a still 3D image if a VRML browser is not available.Figure 1 shows a VRML display from the prototype 
hapter on Airy fun
-tions in the mo
kup Web site. The display shows jAi(z)j. The CosmoPlayerbrowser 
ontrols allow the user to rotate the �gure, zoom in and out, andmove the �gure in an arbitrary dire
tion. We have added 
ustom v
r type
ontrols that let the user move a 
utting plane through the surfa
e andobserve the motion of the interse
tion 
urve. When investigating 
ommer-
ial pa
kages we were surprised to dis
over that many do not perform 3D
lipping properly when points fall outside the plotting range. In some 
asesthe default method of 
lipping is to reset values outside the plotting rangeto the same 
onstant. This produ
es the misleading shelf e�e
t seen in theMathemati
a plot of jBi(z)j over an equally spa
ed re
tangular domain inFigure 2. This te
hnique is extensively used by William J. Thompson inAtlas for Computing Mathemati
al Fun
tions [4℄. By 
omputing thefun
tion over a grid whose boundary mat
hes a 
ontour of the fun
tion, thisproblem 
an be eliminated. Also, the 
ontour �tted grid tends to produ
ea smoother shading when the data is translated to VRML format.



Figure 1: VRML display on CosmoPlayer.Grid Generation Te
hniquesTo date two te
hniques have been used to 
reate the grids used to developthe surfa
e plots: simple trans�nite interpolation and a tensor produ
tspline algorithm developed by one of the authors [2℄. The tensor produ
talgorithm uses the mappingT(�; �) = � x(�; �)y(�; �) � = � Pmi=1Pnj=1 �ijBij(�; �)Pmi=1Pnj=1 �ijBij(�; �) � ; (1)where 0 � �; � � 1 and ea
h Bij is the tensor produ
t of 
ubi
 B-splines.Hen
e, Bij(�; �) = Bi(�)Bj(�) where Bi and Bj are elements of 
ubi
 B-spline sequen
es asso
iated with �nite nonde
reasing knot sequen
es, say,fsigm+41 and ftjgn+41 , respe
tively. The initial 
oeÆ
ients are 
hosen sothat the mapping approximates trans�nite blending fun
tion interpolation.More spe
i�
ally, the 
oeÆ
ients are sele
ted to produ
e a variation dimin-ishing spline approximation to the trans�nite blending fun
tion interpolant.In short, this means the 
oeÆ
ients are obtained by evaluating the inter-polant at average knot values as dis
ussed in [5℄. If more orthogonality and
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Figure 2: Clipped version of jBi(z)j using Mathemati
a.smoothness are needed, the 
oeÆ
ients 
an be adjusted to minimize thedis
rete fun
tionalG = Xi;j w1 "�Ji+1;j � Jij4� �2 +�Ji;j+1 � Jij4� �2#4�4� (2)+Xi;j w2Dot2ij4�4�where Jij is the Ja
obian value and Dotij is the dot produ
t of �T=��and �T=�� at mesh point (�i; �j) on the unit square. The 
ode has beenupdated to handle larger problems. Both the trans�nite 
ode and the tensorprodu
t spline 
ode allow the user to easily 
hange the size of the grid whileguaranteeing that 
ertain boundary grid points are �xed to maintain thea

ura
y of the boundary approximation.ResultsThe results a
hieved to date have been very promising. Unfortunately, oneof the diÆ
ulties has been obtaining a

urate 
ontour data. Many 
ommer-




ial pa
kages display very a

urate 
ontours if enough points are requested,but outputting the data and translating it into boundary data that 
an beinput into grid generation 
ode 
an be a time 
onsuming pro
ess. The gridon the right in Figure 3 has a boundary formed by 
onne
ting the Z = 5
ontour 
urves of Airy fun
tion jBi0(z)j. Although a simple trans�niteinterpolation map was used to 
reate the boundary �tted mesh shown, amodi�ed map whi
h interpolated sele
ted interior 
urves was used to ensurethat grid lines hit the zeros of the fun
tion. After 
omputing the fun
tion
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urves where Z = 5 and Contour mesh.over the 
ontour mesh, the data was translated to VRML format to ob-tain the display in Figure 4. Both trans�nite interpolation and the tensor

Figure 4: jBi0(z)j.



produ
t algorithm were used to obtain the remaining grids shown. Verylittle di�eren
e 
ould be dete
ted in the grids developed by ea
h methodbe
ause the quality of the trans�nite grid was su
h that little or no op-timizing was needed to obtain a smoother grid. The main advantage ofthe tensor produ
t algorithm would appear when trans�nite interpolationprodu
es a grid in whi
h the lines overlap. The optimization 
ode in thetensor produ
t program 
ould then be used to eliminate the overlap andprodu
e less skewness and more orthogonality. Although the spa
ing wasuneven in most of the grids be
ause of the �xed points on the boundaries,the problem did not appear to be enough to e�e
t the smoothness of theshading when the data was translated to VRML format. The requirementfor orthogonality and smoothness is probably less stringent than it wouldbe if the grids were being used to solve 
omputational 
uid dynami
s prob-lems. In any 
ase, the tensor produ
t 
ode is 
apable of produ
ing smoothergrids if ne
essary.The last �gures show 
ontour meshes and surfa
es obtained for the gammafun
tion de�ned on the 
omplex plane and for a spe
ial type of Bessel fun
-tion 
alled the Hankel fun
tion. In both 
ases the mesh was formed byre
e
ting a grid de�ned for y < 0 along the y = 0 axis. An exponen-tial fun
tion is used to 
on
en
entrate the grid points around the 
ontourboundary.
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Figure 5: Contour mesh for Gamma Fun
tion.



Figure 6: Gamma Fun
tion.
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Figure 7: Contour mesh for Hankel fun
tion



Figure 8: Hankel fun
tion jH(1)3:5(z)jCon
lusionsThe use of grid generation appears to be an e�e
tive tool in fa
ilitating theplotting of 3D surfa
es, but the 
omplex nature of many spe
ial fun
tionsmakes it diÆ
ult to design tools that work for all types of domains. Thedevelopment of 
lear and informative visualizations for the NIST DLMFproje
t will provide 
ontinued opportunities and motivation for exploringthis problem. For the fun
tions examined to date, somewhat simple stru
-tured grids have suÆ
ed, but more advan
ed te
hniques will be neededfor domains 
ontaining more numerous poles, zeros and other singularities.Some testing of unstru
tured grids has been done, but the authors havefound that when the resulting data is translated to VRML, the surfa
eshading is not as smooth. This problem might be diminished with the useof blo
k stru
tured grids.After looking at o�-the-shelf pa
kages, it appears that 
ommer
ial devel-opers of 3D graphi
s pa
kages might be interested in this work, espe
iallyas it relates to the use of 
ontour meshes to eÆ
iently 
lip a fun
tion.Currently, we are exploring ways to feed the grid generation algorithminformation about the spe
ial fun
tion so that it 
on
entrates grid pointsin areas of high 
urvature. This will help the grid 
apture zeros of fun
tionsmore a

urately. Mu
h work remains to be done on the visualization aspe
ts



of the DLMF proje
t, but the hope is that what has been learned so farwill make the development of visualizations for more 
ompli
ated fun
tionssomewhat easier.Referen
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