
From 2D to 3D: Numerial GridGeneration and the Visualization ofComplex Surfaes
Bonita SaundersQiming WangNational Institute of Standards and Tehnology100 Bureau Drive Stop 8910Gaithersburg, MD 20899-8910bonita.saunders�nist.gov, qiming.wang�nist.govAbstratThe widespread use of high level mathematial funtions to solve problemsin the mathematial and physial sienes has led the National Instituteof Standards and Tehnology to engage in a massive projet to updateand expand the National Bureau of Standards Handbook of MathematialFuntions [1℄. The handbook, whih disusses the de�nition and omputa-tions of \speial funtions", will be disseminated on the World Wide Webas the NIST Digital Library of Mathematial Funtions.A key feature of the digital library will be 3D visualization apabilitiesthat allow a user to interatively examine the unique features of om-pliated mathematial funtions. The omplex nature of these funtionsmakes the visualization task quite diÆult. Many ontain singularities andpoles whih make the omputational domains irregular, disontinuous, ormulti-onneted. This paper disusses the use of grid generation tehniquesto failitate the plotting of the ompliated 3D surfaes that represent thesehigher mathematial funtions.



IntrodutionHigh level mathematial funtions suh as the Bessel funtions, the gammaand beta funtions, hypergeometri funtions and others are important forsolving many problems in the mathematial and physial sienes. For ex-ample, the Airy funtions Ai and Bi, whih are Bessel funtions of frationalorder, provide losed form solutions to �eld equations that arise in quantummehanis, optis and eletromagnetism. The gamma and beta funtionsprovide the starting point for the omputation of more omplex funtionssuh as the Riemann zeta funtion and others that our in number theoryand mathematial physis. Beause of their importane, referenes whihdisuss the de�nition and omputations of these \speial funtions" on-tinue to be widely used. One suh referene is the National Bureau ofStandards (NBS) Handbook of Mathematial Funtions [1℄. Its popularityhas led the National Institute of Standards and Tehnology (NIST), thesuessor organization to NBS, to begin a large sale projet to updateand expand the handbook and disseminate it on the World Wide Web asthe NIST Digital Library of Mathematial Funtions (DLMF). A key fea-ture of the DLMF will be 3D graphis and visualization apabilities thatallow a user to interatively examine the unique features of ompliatedmathematial funtions.The omplex nature of these funtions makes the visualization task quitediÆult. The presene of singularities and poles usually means that theomputational domain will be irregular, disontinuous, or multi-onneted.This paper disusses the use of grid generation tehniques to failitate theplotting of surfaes that are the graphs of funtions, that is, surfaes thatan be desribed by equations of the form z = f(x; y). Some ommerialpakages have a few of the funtions built in and may allow the user toprodue a plot, usually over a retangular artesian mesh. However, thisoften produes a very poor and in many ases misleading graph of thefuntion. In addition, the pakages often have problems lipping the surfaeproperly when values fall outside the range of interest spei�ed by the user.Furthermore, we have often found that what looks satisfatory inside thepakage, may not when we transform the data to a format more suitablefor interative graphis on the Web.We are looking at various tehniques for solving the problems we have en-ountered using ommerial pakages. These inlude using a omputationalgrid whose boundary oinides with the ontours of the surfae, adaptingthe grid lines to obtain more onentration in areas of large urvature, ordesigning the entire oordinate system so that the grid lines orrespond toontours of the surfae and the urves orthogonal to the ontours. This



paper disusses the grid generation tehniques that have been tried to dateand in partiular looks at the e�etiveness of an updated version of a tensorprodut B-spline grid generation algorithm designed by one of the authors[2℄. The feasibility of using unstrutured tehniques and the a�et of theiruse on the translation of the data to other formats are also disussed.3D Visualization in a Web-Based Digital LibraryFor the interative visualizations in the DLMF we begin with a prepro-essing stage, using available pakages suh as MATLAB, MAPLE andMATHEMATICA to plot the data so that we an examine the graphialrepresentation and adjust the saling to bring out interesting features. Thedata is then onverted to VRML (Virtual Reality Modeling Language) for-mat. VRML [3℄ is a standard 3D �le format for desribing the behavior andgeometry of a 3D virtual world, or sene. Its aessibility on the Internetand interative apabilities make it an ideal andidate for this developmentwork. It is not a foregone onlusion that the �nal version of the DLMF willuse VRML. This may depend on whether VRML browsers ontinue to bereadily available. We are looking at alternatives to VRML suh as JAVA 3Dwhih would not require the download of a browser, but still would requirethe user to obtain the graphis pakage. In the mokup DLMF alreadydeveloped and available for viewing at http://dlmf.nist.gov, the user hasthe option of viewing a still 3D image if a VRML browser is not available.Figure 1 shows a VRML display from the prototype hapter on Airy fun-tions in the mokup Web site. The display shows jAi(z)j. The CosmoPlayerbrowser ontrols allow the user to rotate the �gure, zoom in and out, andmove the �gure in an arbitrary diretion. We have added ustom vr typeontrols that let the user move a utting plane through the surfae andobserve the motion of the intersetion urve. When investigating ommer-ial pakages we were surprised to disover that many do not perform 3Dlipping properly when points fall outside the plotting range. In some asesthe default method of lipping is to reset values outside the plotting rangeto the same onstant. This produes the misleading shelf e�et seen in theMathematia plot of jBi(z)j over an equally spaed retangular domain inFigure 2. This tehnique is extensively used by William J. Thompson inAtlas for Computing Mathematial Funtions [4℄. By omputing thefuntion over a grid whose boundary mathes a ontour of the funtion, thisproblem an be eliminated. Also, the ontour �tted grid tends to produea smoother shading when the data is translated to VRML format.



Figure 1: VRML display on CosmoPlayer.Grid Generation TehniquesTo date two tehniques have been used to reate the grids used to developthe surfae plots: simple trans�nite interpolation and a tensor produtspline algorithm developed by one of the authors [2℄. The tensor produtalgorithm uses the mappingT(�; �) = � x(�; �)y(�; �) � = � Pmi=1Pnj=1 �ijBij(�; �)Pmi=1Pnj=1 �ijBij(�; �) � ; (1)where 0 � �; � � 1 and eah Bij is the tensor produt of ubi B-splines.Hene, Bij(�; �) = Bi(�)Bj(�) where Bi and Bj are elements of ubi B-spline sequenes assoiated with �nite nondereasing knot sequenes, say,fsigm+41 and ftjgn+41 , respetively. The initial oeÆients are hosen sothat the mapping approximates trans�nite blending funtion interpolation.More spei�ally, the oeÆients are seleted to produe a variation dimin-ishing spline approximation to the trans�nite blending funtion interpolant.In short, this means the oeÆients are obtained by evaluating the inter-polant at average knot values as disussed in [5℄. If more orthogonality and
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Figure 2: Clipped version of jBi(z)j using Mathematia.smoothness are needed, the oeÆients an be adjusted to minimize thedisrete funtionalG = Xi;j w1 "�Ji+1;j � Jij4� �2 +�Ji;j+1 � Jij4� �2#4�4� (2)+Xi;j w2Dot2ij4�4�where Jij is the Jaobian value and Dotij is the dot produt of �T=��and �T=�� at mesh point (�i; �j) on the unit square. The ode has beenupdated to handle larger problems. Both the trans�nite ode and the tensorprodut spline ode allow the user to easily hange the size of the grid whileguaranteeing that ertain boundary grid points are �xed to maintain theauray of the boundary approximation.ResultsThe results ahieved to date have been very promising. Unfortunately, oneof the diÆulties has been obtaining aurate ontour data. Many ommer-



ial pakages display very aurate ontours if enough points are requested,but outputting the data and translating it into boundary data that an beinput into grid generation ode an be a time onsuming proess. The gridon the right in Figure 3 has a boundary formed by onneting the Z = 5ontour urves of Airy funtion jBi0(z)j. Although a simple trans�niteinterpolation map was used to reate the boundary �tted mesh shown, amodi�ed map whih interpolated seleted interior urves was used to ensurethat grid lines hit the zeros of the funtion. After omputing the funtion
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Figure 4: jBi0(z)j.



produt algorithm were used to obtain the remaining grids shown. Verylittle di�erene ould be deteted in the grids developed by eah methodbeause the quality of the trans�nite grid was suh that little or no op-timizing was needed to obtain a smoother grid. The main advantage ofthe tensor produt algorithm would appear when trans�nite interpolationprodues a grid in whih the lines overlap. The optimization ode in thetensor produt program ould then be used to eliminate the overlap andprodue less skewness and more orthogonality. Although the spaing wasuneven in most of the grids beause of the �xed points on the boundaries,the problem did not appear to be enough to e�et the smoothness of theshading when the data was translated to VRML format. The requirementfor orthogonality and smoothness is probably less stringent than it wouldbe if the grids were being used to solve omputational uid dynamis prob-lems. In any ase, the tensor produt ode is apable of produing smoothergrids if neessary.The last �gures show ontour meshes and surfaes obtained for the gammafuntion de�ned on the omplex plane and for a speial type of Bessel fun-tion alled the Hankel funtion. In both ases the mesh was formed byreeting a grid de�ned for y < 0 along the y = 0 axis. An exponen-tial funtion is used to onenentrate the grid points around the ontourboundary.
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Figure 5: Contour mesh for Gamma Funtion.



Figure 6: Gamma Funtion.
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Figure 7: Contour mesh for Hankel funtion



Figure 8: Hankel funtion jH(1)3:5(z)jConlusionsThe use of grid generation appears to be an e�etive tool in failitating theplotting of 3D surfaes, but the omplex nature of many speial funtionsmakes it diÆult to design tools that work for all types of domains. Thedevelopment of lear and informative visualizations for the NIST DLMFprojet will provide ontinued opportunities and motivation for exploringthis problem. For the funtions examined to date, somewhat simple stru-tured grids have suÆed, but more advaned tehniques will be neededfor domains ontaining more numerous poles, zeros and other singularities.Some testing of unstrutured grids has been done, but the authors havefound that when the resulting data is translated to VRML, the surfaeshading is not as smooth. This problem might be diminished with the useof blok strutured grids.After looking at o�-the-shelf pakages, it appears that ommerial devel-opers of 3D graphis pakages might be interested in this work, espeiallyas it relates to the use of ontour meshes to eÆiently lip a funtion.Currently, we are exploring ways to feed the grid generation algorithminformation about the speial funtion so that it onentrates grid pointsin areas of high urvature. This will help the grid apture zeros of funtionsmore aurately. Muh work remains to be done on the visualization aspets



of the DLMF projet, but the hope is that what has been learned so farwill make the development of visualizations for more ompliated funtionssomewhat easier.Referenes[1℄ M. Abramowitz and I.A. Stegun, editors. Handbook of Mathemat-ial Funtions with Formulas, Graphs and Mathematial Ta-bles, Vol. 55, National Bureau of Standards Applied MathematisSeries. U.S. Government Printing OÆe, Washington, D.C., 1964.[2℄ B. V. Saunders, \A Boundary Fitted Grid Generation System for Inter-fae Traking," Numerial Grid Generation in ComputationalField Simulations (B.K. Soni et al., eds.), Mississippi State Univer-sity, Mississippi, 1996.[3℄ VRML. The Virtual Reality Modeling Language, InternationalStandard ISO/IEC 14772-1:1997.[4℄ W.J. Thompson, Atlas for Computing Mathematial Funtions,John Wiley and Sons, In., New York, 1997, pp. 414-432.[5℄ C. de Boor, A Pratial Guide to Splines, Springer-Verlag, NewYork (1978).


