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Abstract
This paper compares leading methods for combining information from
interlaboratory evaluations of a common measurand through a random
effects model of classical statistics. The leading methods are those of
Cochran, Paule and Mandel, and DerSimonian and Laird. We show that all
three methods are special cases of a unifying identity. The unifying identity
suggests a new two-step method. This makes four methods for comparison.
The comparison is based on six published data sets from three key
comparisons. The method of Paule and Mandel is optimal in the sense of
being conditionally restricted maximum likelihood under normality, the
condition being that the estimated intralaboratory variances be treated as the
true variances. The method of Paule and Mandel requires a simple iteration
that can be easily done on a spreadsheet program. Therefore, it is the
preferred method for combining results of interlaboratory evaluations
through a random effects model. We compare the other three methods
relative to the method of Paule and Mandel. The two-step method
approximates the optimal method of Paule and Mandel better than the earlier
methods of Cochran, and DerSimonian and Laird.

1. Introduction

A generic problem in combining information from interlabo-
ratory evaluations is as follows. We are given some number
m of individual laboratory results x1, . . . , xm and their associ-
ated standard uncertainties, s(x1), . . . , s(xm), in measurement
of the value µ of a common measurand. The results x1, . . . , xm

are often arithmetic means that have been corrected (adjusted)
for recognized systematic effects in the individual laborato-
ries. The uncertainties s(x1), . . . , s(xm) include components
of uncertainty associated with the corrections. The objective
of combining information is to determine a combined result xC

for µ and its associated standard uncertainty, s(xC), based on
the data x1, . . . , xm and s(x1), . . . , s(xm).

An assumed model1 for the relationship between the data
and µ is required for determining xC and s(xC). A classical

1 The statistical conclusions are conditional on the assumed model.
Therefore, the conclusions are justified only to the extent that the assumed
model is justified.

statistics approach is to assume a random effects model [1].
The results x1, . . . , xm are assumed to be realizations of
random variables2 having normal distributions with expected
values µ1, . . . , µm and variances σ 2

1 , . . . , σ 2
m, respectively, and

s2(x1), . . . , s
2(xm) are regarded as estimates of σ 2

1 , . . . , σ 2
m,

respectively. The variable xi may be parsed as xi = µi + ei ,
where ei is the normally distributed random error (xi −µi) with
expected value zero and variance σ 2

i for i = 1, 2, . . . , m. The
errors e1, . . . , em are assumed to be independently distributed.
We refer to µ1, . . . , µm as laboratory expected values and
refer to σ 2

1 , . . . , σ 2
m as intralaboratory variances. The variables

x1, . . . , xm are related to the value µ of the common measurand
by the following model:

xi = µi + ei = µ + (µi − µ) + ei = µ + bi + ei, (1)

where bi is the bias (µi − µ) in xi for i = 1, 2, . . . , m. The
model (1) constructed so far does not specify the relationship

2 The symbols x1, . . . , xm are used for both the results and the corresponding
random variables.
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between the data and µ. The classical statistics assumptions3

to relate the data to µ are as follows: the laboratory
biases, b1, . . . , bm, are assumed to be random variables
having the same normal distribution with expected value
zero and variance σ 2

b � 0, called interlaboratory variance;
and b1, . . . , bm are assumed to be mutually independent
and independent of the errors, e1, . . . , em. The numbers
n1, . . . , nm of observations used to determine the laboratory
results x1, . . . , xm may not be equal. So the model (1) may be
unbalanced. The intralaboratory variances, σ 2

1 , . . . , σ 2
m, may

be different. So the model (1) may be heteroscedastic. There
could be many reasons for different variances σ 2

1 , . . . , σ 2
m

including unequal n1, . . . , nm. According to the random
effects model (1), the expected value, E(xi), is µ, the
variance, V (xi), is σ 2

b + σ 2
i , and xi is normally distributed

for i = 1, 2, . . . , m. The model (1) accounts for the
laboratory biases b1, . . . , bm by introducing a new parameter,
σ 2

b , the interlaboratory variance component of the variances
V (x1), . . . , V (xm).

In determining xC and s(xC), it is difficult to quantify and
incorporate the uncertainty that arises from the use of estimates
s2(x1), . . . , s

2(xm) for σ 2
1 , . . . , σ 2

m. Therefore, in conjunction
with model (1), many metrologists make the following
simplifying assumption: the estimates s2(x1), . . . , s

2(xm)

are regarded as the true variances σ 2
1 , . . . , σ 2

m. The
conditional variances of x1, . . . , xm under this assumption are
σ 2

b + s2(x1), . . . , σ
2
b + s2(xm), respectively. The conditional

standard deviation of the combined result, xC, based on this
assumption is necessarily an underestimate of its unconditional
standard deviation [2]. This paper is based on the simplifying
assumption. Thus all statistical analyses and properties
discussed here are conditional.

Many metrologists use the following weighted mean, xW,
as the combined result, xC:

xW =
∑

i wixi∑
i wi

, (2)

where wi = 1/(s2
b + s2(xi)), for i = 1, 2, . . . , m, and

s2
b is an estimate of σ 2

b determined from the available data.
The maximum-likelihood (ML) estimate of the parameter µ

of model (1), conditional on the simplifying assumption, is
xW(σb) = ∑

i Wixi/
∑

i Wi , where Wi = 1/(σ 2
b + s2(xi)).

Thus xW of equation (2) is a good estimate of µ when
the random effects model (1) and the other assumptions are
justified and s2

b is a good estimate of σ 2
b . Many metrologists

use the quantity 1/
√∑

i wi , where wi = 1/(s2
b + s2(xi)),

as the estimated standard deviation, s(xW), of xW (Paule
and Mandel [3] and DerSimonian and Laird [4]). The
quantity 1/

√∑
i wi is an underestimate of the conditional

standard deviation of xW because it does not include the
component of uncertainty that arises from the use of estimate
s2

b for σ 2
b .

The objective of this paper is to compare leading methods
to determine an estimate, s2

b , for σ 2
b and the corresponding

combined result, xW, of equation (2). The leading methods are
those of Cochran [5], Paule and Mandel [3], and DerSimonian
and Laird [4]. Cochran’s method is based on analysis-
of-variance (ANOVA) of the data. Paule and Mandel’s

3 These are very strong assumptions that may or may not be reasonable for
the particular data.

method and its modifications have often been used to certify
Standard Reference Materials at the National Institute of
Standards and Technology (NIST) (Schiller and Eberhardt [6]).
DerSimonian and Laird’s method is a popular method for
combining information from clinical trials, where the clinical
trials take the role of interlaboratory evaluations4. Paule and
Mandel’s method requires a simple iteration. DerSimonian
and Laird’s method seems to be popular, in part because it is
non-iterative. We show that all three methods are special cases
of a unifying identity. The unifying identity suggests a new
two-step method. Together with the two-step method, we have
a pool of four methods for comparison. We use six data sets
from three key comparisons to compare the four methods for
estimating σ 2

b . Rukhin et al [7] show that the estimate of Paule
and Mandel is optimal in the sense that, under the simplifying
assumption, it is a restricted ML (REML) estimate of σ 2

b . So
we compare the other three methods relative to the method of
Paule and Mandel.

2. Unifying identity

Cochran’s ANOVA estimate for σ 2
b is

s2
b (CA) = max

{
0,

1

m − 1

∑
i

(xi − xA)2 − 1

m

∑
i

s2(xi)

}
,

(3)
where xA = (1/m)

∑
i xi is the arithmetic mean of the results.

The corresponding combined result, xW(CA), is obtained by
substituting s2

b (CA) for s2
b in equation (2).

The estimate proposed by Paule and Mandel is the solution
σ 2

b of the following estimating equation:

F(σ 2
b ) =

∑
i

Wi(xi − xW(σb))
2 − (m − 1) = 0, (4)

where Wi = 1/(σ 2
b + s2(xi)), for i = 1, . . . , m, and xW(σb) =∑

i Wixi/
∑

i Wi . The solution, s2
b (PM), of equation (4) is

determined through a simple iteration. When F (σ 2
b ) < 0 for all

σ 2
b � 0, the estimate, s2

b (PM), is set to zero. The corresponding
combined result, xW(PM), is obtained by substituting s2

b (PM)
for s2

b in equation (2).
The estimate proposed by DerSimonian and Laird for

σ 2
b is

s2
b (DL) = max

{
0,

[
∑

i wi0(xi − xw(0))2] − (m − 1)∑
i wi0 − ∑

i w
2
i0/

∑
i wi0

}
,

(5)
where wi0 = 1/s2(xi), for i = 1, 2, . . . , m, and xW(0) =∑

i wi0xi/
∑

i wi0. That is, wi0 and xW(0) are obtained by
substituting 0 for s2

b in the equation wi = 1/(s2
b + s2(xi))

and equation (2), respectively. The corresponding combined
result, xW(DL), is obtained by substituting s2

b (DL) for s2
b in

equation (2).
A two-step estimate for σ 2

b is as follows. First,
compute s2

b (CA) and xW(CA). Then compute the following

4 As of 15 October 2003, Paule and Mandel’s 1982 paper has been cited 27
times and DerSimonian and Laird’s 1986 paper has been cited 1543 times.
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estimate for σ 2
b ,

s2
b (C2) = max

{
0,

([ ∑
i

wiC(xi − xw(CA))2

]

−
[ ∑

i

wiCs2(xi) −
∑

i w
2
iCs2(xi)∑
i wiC

])

×
[ ∑

i

wiC −
∑

i w
2
iC∑

i wiC

]−1}
, (6)

where wiC = 1/(s2
b (CA) + s2(xi)) for i = 1, 2, . . . , m.

The corresponding combined result, xW(C2), is obtained by
substituting s2

b (C2) for s2
b in equation (2). The symbol C2

in s2
b (C2) indicates that it is a two-step estimate based on

Cochran’s ANOVA estimate, s2
b (CA).

It turns out that all four methods are special cases
of the following unifying identity. If x1, . . . , xm are
independent random variables with the same expected value,
µ, and variances σ 2

b + σ 2
1 , . . . , σ 2

b + σ 2
m, respectively,

σ 2
1 > 0, . . . , σ 2

m > 0, a1, . . . , am are positive constants, and
xC = ∑

i aixi/
∑

i ai , then

E
[ ∑

i

ai(xi − xC)2
]

=
∑

i

ai(σ
2
b + σ 2

i )−
∑

i a
2
i (σ

2
b + σ 2

i )∑
i ai

.

(7)
Alternatively,

E
[ ∑

i

ai(xi − xC)2
]

= σ 2
b

[∑
i

ai −
∑

i a
2
i∑

i ai

]

+

[ ∑
i

aiσ
2
i −

∑
i a

2
i σ

2
i∑

i ai

]
. (8)

This identity can be easily verified (appendix A). By
substituting s2(x1), . . . , s

2(xm) for σ 2
1 , . . . , σ 2

m in equation (8),
we get the following method-of-moments (MM) estimate,
s2

b (MM), for σ 2
b :

s2
b (MM) =

([ ∑
i

ai(xi − xC)2

]

−
[∑

i

ais
2(xi) −

∑
i a

2
i s

2(xi)∑
i ai

])[∑
i

ai −
∑

i a
2
i∑

i ai

]−1

.

(9)

Since σ 2
b � 0, the estimate s2

b (MM) is legitimate only when
it is non-negative. When equation (9) is negative, we set
s2

b (MM) = 0.

Estimate s2
b (CA): If we substitute ai = 1/m for i = 1, . . . , m

in equation (9), we get Cochran’s estimate, s2
b (CA).

Estimate s2
b (DL): If we substitute ai = 1/s2(xi) for i =

1, . . . , m in equation (9), we get DerSimonian and Laird’s
estimate, s2

b (DL).

Estimate s2
b (C2): If we substitute ai = 1/(s2

b (CA) + s2(xi))

for i = 1, . . . , m in equation (9), we get the two-step
estimate, s2

b (C2).

Estimate s2
b (PM): If we substitute ai = 1/(σ 2

b + σ 2
i ) for

i = 1, 2, . . . , m in equation (7), we get E[
∑

i ai(xi − xC)2] =
m − 1. Paule and Mandel’s estimating equation (4) is then
obtained by equating

∑
i ai(xi − xC)2 to its expected value,

m − 1, where ai = 1/(σ 2
b + σ 2

i ), and then substituting
s2(x1), . . . , s

2(xm) for σ 2
1 , . . . , σ 2

m.

3. Method of Paule and Mandel and its optimality

The method of Paule and Mandel to determine s2
b (PM) from

the estimating equation (4) is the classical Newton’s method of
calculus for approximating the zeros of real-valued functions.
The algorithm is as follows. Start with σ 2

b (previous) = 0 or
with a number slightly above zero.

(i) Calculate weights Wi = 1/(σ 2
b + s2(xi)) for

i = 1, 2, . . . , m and the function F(σ 2
b ).

(ii) If F(σ 2
b ) at σ 2

b = 0 is negative, set s2
b (PM) = 0.

If F(σ 2
b (previous)) = 0, set s2

b (PM) = σ 2
b (previous).

If F(σ 2
b (previous)) > 0, determine the correction

�σ 2
b =

∑
i Wi(xi − xW(σb))

2 − (m − 1)∑
i W

2
i (xi − xW(σb))2

. (10)

(iii) The next iterative value of σ 2
b is σ 2

b (next) =
σ 2

b (previous) + �σ 2
b .

(iv) Repeat (ii) and (iii) until F(σ 2
b (previous)) = 0. The final

value of σ 2
b is s2

b (PM).

This algorithm is simple enough to do on a spreadsheet
program. Paule and Mandel suggest that the starting value
of σ 2

b should be set slightly above zero. We suggest s2
b (CA)

as the starting value for σ 2
b . This often reduces the number

of iterations required unless s2
b (CA) is zero. The algorithm

of Paule and Mandel gives a unique solution for s2
b (PM)

(appendix B).
Paule and Mandel did not assume that the errors e1, . . . , em

and biases b1, . . . , bm are normally distributed, and they did
not investigate the statistical properties of s2

b (PM). Recently,
Rukhin and Vangel [8] and Rukhin et al [7] investigated
the properties of s2

b (PM) under normality. In particular,
Rukhin et al show that when the errors e1, . . . , em and biases
b1, . . . , bm are normally distributed and a weighted mean of
the form xW = ∑

i wixi/
∑

i wi , where wi = 1/(s2
b + s2(xi)),

is used as an estimate for the value µ of the common mea-
surand, the Paule and Mandel estimate s2

b (PM) is the condi-
tionally REML estimate of σ 2

b , the condition being that the
estimates s2(x1), . . . , s

2(xm) be regarded as the true variances
σ 2

1 , . . . , σ 2
m, respectively. A REML estimate is an improve-

ment over the ML estimate of a variance component because
it accounts for the loss in degrees of freedom resulting from
estimation of µ [9]. Rukhin et al also show that the combined
result, xW(PM), is an approximate generalized Bayes estimate
based on non-informative prior distributions for the parameters
µ, σ1, . . . , σm, and σb. Thus, s2

b (PM) is an optimal estimate of
the parameter σ 2

b of model (1) under normality.

4. Comparison based on key comparison data

Rukhin [10] showed that the methods of DerSimonian and
Laird, and Paule and Mandel are asymptotically similar.
Rukhin’s comparison does not apply when the number, m, of
laboratories is less than 30, which is frequently the case. In
order to compare the four methods for estimating σ 2

b , we have
used six data sets, two from each of the three key comparisons
labelled K2, K5, and K6 conducted by the International
Consultative Committee on Amount of Substance (CCQM)
(www.bipm.org). These data are suitable for comparison
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Table 1. Estimates sb(PM), sb(CA), sb(DL), and sb(C2).

sb(PM) sb(CA) sb(DL) sb(C2)

K2(Pb) 0.8399 1.1837 0.5359 0.9352
K2(Cd) 0.3095 0.0000 0.4675 0.4675
K5(N) 0.0376 0.0365 0.0438 0.0377
K5(F) 0.1579 0.1530 0.1980 0.1582
K6(A) 0.0336 0.0339 0.0292 0.0336
K6(B) 0.0175 0.0206 0.0103 0.0181

Table 2. Estimates xW(PM), xW(CA), xW(DL), and xW(C2).

xW(PM) xW(CA) xW(DL) xW(C2)

K2(Pb) 62.4078 62.4438 62.3906 62.4175
K2(Cd) 82.9000 82.5357 83.0390 83.0390
K5(N) 1.5212 1.5111 1.5210 1.5212
K5(F) 5.9960 5.9960 5.9959 5.9960
K6(A) 2.1976 2.1976 2.1974 2.1976
K6(B) 1.7306 1.7310 1.7294 1.7307

because the results x1, . . . , xm are direct measurements of a
common measurand, an amount of substance. The numbers of
participating laboratories in these key comparisons are nine,
ten, and seven, respectively. The comparison shown here
indicates the differences one might expect when the number
of laboratories is close to ten.

The measurands in the two data sets of the CCQM key
comparison K2 are the amount of lead (Pb) and the amount
of cadmium (Cd) in natural water measured in nmol kg−1.
The measurands in the two data sets of the CCQM key
comparison K5 are the mass fraction of pp′-dichlorodiphenyl-
dichloroethylene (DDE) in natural (N) and fortified (F) fish
oils measured in µg g−1. The measurands in the two data sets
of the CCQM key comparison K6 are the mass fraction of
cholesterol in human serum in two materials labelled as A
and B measured in mg g−1. We label the six data sets, two
from each key comparison, as K2(Pb), K2(Cd), K5(N), K5(F),
K6(A), and K6(B), respectively. These data are reproduced
in appendix C. Since s2

b (PM) is an optimal estimate of σ 2
b , we

compare the estimates s2
b (CA), s2

b (DL), and s2
b (C2) relative to

s2
b (PM) and the corresponding estimates xW(CA), xW(DL), and

xW(C2) relative to xW(PM). Table 1 exhibits sb(PM), sb(CA),
sb(DL), and sb(C2) for the six data sets. Table 2 exhibits
xW(PM), xW(CA), xW(DL), and xW(C2) for the six data sets.
For these six data sets, sb(C2) is closer to the optimum value,
sb(PM), than sb(DL). When sb(CA) is zero, sb(C2) is identical
to sb(DL). The combined result, xW(C2), is closer to xW(PM)
than xW(CA) and xW(DL).

5. Summary

A classical statistics approach for combining the results
from interlaboratory evaluations of a common measurand
of value µ is to use a random effects model where the
biases (µ1 − µ), . . . , (µm − µ) in the laboratory results
x1, . . . , xm, respectively, are regarded as random variables
having the same normal distribution with expected value zero
and interlaboratory variance σ 2

b . The variances of x1, . . . , xm

under the random effects model are σ 2
b + σ 2

1 , . . . , σ 2
b + σ 2

m,
respectively, where σ 2

1 , . . . , σ 2
m are intralaboratory variances.

The most commonly used combined result is the weighted

mean, xW, of the individual results, x1, . . . , xm, with weights
proportional to their estimated variances under the random
effects model. For simplicity of data analysis, many
metrologists treat the estimated intralaboratory variances
s2(x1), . . . , s

2(xm) as the true intralaboratory variances,
σ 2

1 , . . . , σ 2
m. Then determination of the combined result,

xW, reduces to the problem of estimating the interlaboratory
variance, σ 2

b . We compared leading methods for estimating
σ 2

b . The leading methods are those of Cochran, Paule and
Mandel, and DerSimonian and Laird. We show that all three
methods are special cases of a unifying identity. The unifying
identity suggests a new two-step method. We used six data sets
from three key comparisons for comparing the four methods
for estimating σ 2

b . Rukhin et al show that the estimate of Paule
and Mandel is optimal in the sense of being a conditionally
REML estimate under normality, the condition being that
the estimated variances s2(x1), . . . , s

2(xm) be treated as the
true variances, σ 2

1 , . . . , σ 2
m. So we compared the other three

methods relative to the method of Paule and Mandel. The
method of Paule and Mandel requires a simple iteration that
can be easily done on a spreadsheet program. Therefore, it is
the preferred method. If one must use a non-iterative method,
the two-step method proposed here approximates the optimal
method of Paule and Mandel better than the earlier methods of
Cochran, and DerSimonian and Laird.
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Appendix A

Since E(xi − xC) = 0 and

E(xi − xC)2 = V (xi − xC)

= V (xi) + V (xC) − 2cov(xi, xC)

= V (xi) +

∑
i a

2
i V (xi)

[
∑

i ai]2
− 2aiV (xi)∑

i ai

,

we have

E
[ ∑

i

ai(xi − xC)2
]

=
∑

i

aiE(xi − xC)2

=
∑

i

aiV (xi) +

∑
i a

2
i V (xi)∑
i ai

− 2
∑

i a
2
i V (xi)∑
i ai

=
∑

i

aiV (xi) −
∑

i a
2
i V (xi)∑
i ai

.

Appendix B

For simplicity, write y = σ 2
b in the function F(σ 2

b ) defined
by equation (4). The function F(y) is continuous. The first
derivative is dF(y)/dy = −1 × ∑

i w
2
i (xi − xW)2. This

cannot be zero; otherwise F(y) is not a function of y. So
dF(y)/dy is negative and F(y) is strictly decreasing. The
second derivative is d2F(y)/dy2 = 2 × [

∑
i wi(zi − zW)2],
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Table A1. Key comparison CCQM K2: the measurands in the two
data sets are, respectively, the amount of lead (Pb) and cadmium
(Cd) in natural water measured in nmol kg−1.

NMI Pb x Pb s(x) Cd x Cd s(x)

PTB 61.00 0.45 82.38 0.11
NMi 61.40 1.10 82.70 1.10
NIMC 62.21 0.30 82.90 0.63
KRISS 62.30 0.45 83.07 0.30
LGC 62.34 0.62 83.40 1.25
NRC 62.60 0.75 83.70 1.10
IRMM 62.70 0.26 83.90 0.90
NIST 62.84 0.15 84.60 1.00
LNE 65.90 1.35 84.80 1.95

Table A2. Key comparison CCQM K5: the measurands in the two
data sets are, respectively, the mass fraction of pp′-DDE in natural
(N) and fortified (F) fish oils measured in µg g−1.

NMI N x N s(x) F x F s(x)

BAM 1.498 0.011 6.090 0.037
KRISS 1.525 0.006 6.001 0.012
LGC 1.554 0.012 5.989 0.111
NARL 1.493 0.032 5.905 0.066
NIMC 1.480 0.007 5.873 0.038
NIST 1.500 0.011 6.046 0.025
NRC 1.529 0.013 5.679 0.013
NRCCRM 1.481 0.008 6.035 0.022
PTB 1.535 0.008 6.037 0.033
VNIIM 1.606 0.007 6.301 0.032

Table A3. Key comparison CCQM K6: the measurands in the two
data sets are, respectively, the mass fraction of cholesterol in human
serum in material A and material B measured in mg g−1.

NMI A x A s(x) B x B s(x)

LGC 2.214 0.0096 1.732 0.0066
NARL 2.250 0.0131 1.777 0.0170
NIST 2.215 0.0043 1.735 0.0033
NMi–VSL 2.137 0.0068 1.729 0.0045
NMIJ 2.195 0.0050 1.718 0.0039
NRCCRM 2.197 0.0062 1.736 0.0062
PTB 2.179 0.0114 1.705 0.0086

where zi = wi(xi − xW) and zW = ∑
i wizi/

∑
i wi . Since∑

i zi = 0, the second derivative cannot be zero; otherwise
F(y) is not a function of y. So d2F(y)/dy2 is positive
and F(y) is concave up. Thus, the maximum of F(σ 2

b )

occurs at σ 2
b = 0 and F(σ 2

b ) → −(m−1) as σ 2
b → ∞. When

F (0), i.e. the value of F(σ 2
b ) at σ 2

b = 0, is positive, then by the
intermediate value theorem of calculus a value of σ 2

b exists for
which F(σ 2

b ) = 0. Since F(σ 2
b ) is strictly decreasing, such a

value of σ 2
b is unique. When F (0) is negative, equation (4)

has no positive solution. When F (0) is zero, the solution
is σ 2

b = 0.

Appendix C

In tables A1, A2 and A3, column 1 contains abbreviations
of the participating national measurement institutes (NMIs),
columns 2 and 3 contain the first data set, and columns 4
and 5 contain the second data set. In each data set,
the result of measurement and its associated standard
uncertainty are denoted by x and s(x), respectively. Source:
http://kcdb.bipm.fr/BIPM-KCDB/.
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