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Velocity of transverse domain wall motion along thin, narrow strips
D. G. Portera) and M. J. Donahue
National Institute of Standards and Technology, Gaithersburg, Maryland 20899

~Presented on 6 January 2004!

Micromagnetic simulation of domain wall motion in thin, narrow strips leads to a simplified
analytical model. The model accurately predicts the same domain wall velocity as full
micromagnetic calculations, including dependence on strip width, thickness, and magnitude of
applied field pulse. Domain wall momentum and retrograde domain wall motion are both observed
and explained by the analytical model.@DOI: 10.1063/1.1688673#
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I. INTRODUCTION

The effects of the shape and small dimensions on m
netodynamics are important so that devices can be prod
to meet magnetization reversal design requirements. In
study we first use micromagnetic simulation to examine
main wall motion in thin, narrow strips of magnetic materi
Inspired by the simulation results, we then produce a sim
analytical model that agrees with the full micromagne
simulation remarkably well. Both models predict a few u
expected behaviors.

II. SIMULATION

Using theOOMMF micromagnetic software package,1 we
examined domain wall motion in a stripT55 nm thick and
L51250 nm long. Our simulations included strips of wid
W ranging from 5 to 35 nm. Material parameters appro
mating Permalloy were chosen, saturation magnetiza
MS5800 kA/m and exchange energy coefficientA
513 pJ/m. Crystalline anisotropy was not included in t
simulation of this soft material. Landau–Lifshitz magnetiz
tion dynamics are computed

dm

dt
5

g

11a2 m3Heff2
ag

11a2 m3Heff3m, ~1!

whereg52221 kHz/(A/m) is the gyromagnetic constant,a
is a dimensionless phenomenological damping param
m5M /MS is normalized magnetization, andHeff is the ef-
fective field representing the effect of all energies included
the simulation.

From a prior simulation study2 of static domain walls in
thin, narrow strips, we expect head-to-head domains to
separated by a transverse domain wall as illustrated in Fig
We have used the same technique as in that prior stud
suppress edge effects, to focus on the behavior of a dom
wall down the length of a strip, far removed from the end

The initial transverse domain wall is established in t
element. A field pulse is applied along the strip axis
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m0Hx~ t !5m0Happ~12cos 2p f t !, 0,t,1 ns, ~2!

where f 51 GHz, so that the 1 ns pulse includes one f
cosine period. Pulse magnitudesm0Happ from 1 to 10 mT
were applied. In response to each applied field pulse,
transverse domain wall moves in the positivex direction.
After the pulse ends, the domain wall continues to move w
a momentum of its own. Simulations witha50 demonstrate
that the domain wall motion is primarily a precessional
fect.

Because the transverse domain wall holds its shape
the domains remain uniformly magnetized along the s
axis, the wall velocity can be derived from the average m
netization of the whole element

v~ t !5
L

2

d^mx~ t !&
dt

. ~3!

Whena50, the domain wall momentum moves the wa
at constant velocity. Whena.0, the domain wall stops som
time after the pulse ends, although for large enough app
field pulses, the wall velocity increases after the pulse e
before slowing to a stop.

Figure 2 graphs constant wall velocities observed wh
a50 for several values of strip widthW and pulse magni-
tude m0Happ. For eachW, there is a pulse magnitude tha
maximizes wall velocity. For wider strips, a lesser pul
magnitude produces the maximum velocity and that ma
mum velocity is greater.

Another set of simulations applied a constant field rat
than a pulse. The remarkable observation was that for la
enough applied field, the domain wall velocity becom
negative part of the time, leading to a retrograde motion
the domain wall.

III. DOMAIN WALL STRUCTURE

As a first step toward deriving an analytical model
explain these simulation results, we examine the structur
the domain wall itself. First we note that within the scal
under study, the magnetization can be considered to v
along only thex axis, M (x,y,z)5M (x).

Exchange energy prefers to spread the wall along
entire length of the strip. The shape anisotropy of the st
however, tends to expand the domains at the expense o
wall. The actual width of the domain wall comes from
balancing of these two energies, in a manner precisely an
il:
9
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gous the the well-known one-dimensional domain w
model where exchange and crystalline anisotropy ener
are balanced.

Most of the shape anisotropy energy comes from surf
charges due to the transverse components of magnetiza
As an approximation, we neglect the magnetostatic ene
from bulk charges, and compute the demagnetization en
of an in-plane transverse wall as

E52
m0MS

2 E
V
my~x!Hy~x,y,z!dx dy dz, ~4!

whereHy(x) arising from the surface charges is

Hy~x,y,z!5E
0

LE
0

T

my~x8!MS$ f ~x2x8,y2W,z2z8!

2 f ~x2x8,y,z2z8!%dz8 dx8,

where

f ~x,y,z!5
y

@x21y21z2#3/2. ~5!

After rearrangement and simplification

E5
m0MS

2

2 E
0

LE
0

L

my~x!my~x8!F~x2x8!dx dx8, ~6!

whereF is integrable and has most weight near zero, so a
approximately as a Dirac delta function. Following the sa
calculus of variations analysis as for crystalline anisotro
energy,

E5KyE
0

L

my
2~x!dx ~7!

FIG. 1. Transverse domain wall in thin, narrow strip.

FIG. 2. Domain wall velocity for various strip widths and applied field pu
magnitudes.
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leads to the expression for an effective shape anisotropy
stant for a given strip widthW and thicknessT

Ky~W,T!5
m0MS

2

2 H 12
2

p
tan21S W

T D
1

1

2p

T

W
logS 11S W

T D 2D
2

1

2p

W

T
logS 11S T

WD 2D J . ~8!

By an analogous argument, the shape anisotropy constan
a domain wall directed out of the plane in thez direction is

Kz~W,T!5Ky~T,W!. ~9!

Following the classical analysis of one-dimension
models of domain walls, this approximation predicts t
width of a domain wall tilted at angleu out of the plane to be

a5pA A

Ky cos2u1Kz sin2u
. ~10!

From the simulations, we can compute a different estimat
the domain wall width of the magnetization state

â5L~^my&
21^mz&

2!1/2. ~11!

The â estimates from simulations are consistently sligh
larger ~10%–20%! than the predicted valuea, presumably
due to the neglected bulk charges. To compensate for
difference, in the remainder of the article we use a value oa
that is 15% greater than the value predicted by Eq.~10!.

IV. ANALYTICAL MODEL

Consider a partition of the strip into three regions: t
two domains, each uniformly magnetized, and the dom
wall uniformly magnetized in the transverse direction ove
lengtha of the strip. The domains are magnetized paralle
the applied field, so they do not respond to it. The dom
wall region does respond. Damping toward the applied fi
causes the domain wall to rotate toward the positivex axis.
Precession about the applied field causes the domain
magnetization to tilt out of the plane at an angleu. After the
magnetization tilts out of plane, it is no longer antiparallel
the demagnetization field. The component of demagnet
tion field perpendicular to the magnetization,HD

' , is

HD
'5MS~Nz2Ny!cosu sinu, ~12!

where Ny and Nz are the demagnetizing factors of thea
3W3T region containing the domain wall.3 For nonzerou,
HD

' is also nonzero, and the domain wall magnetization w
precess around it, contributing to the rotation toward
positivex axis. The complete expression for velocity of th
domain wall predicted by this simple model is

~11a2!v5~ ugu/p!~HD
'1aHapp!a. ~13!

After Happ returns to zero, the precession about the dem
netizing field sustains the momentum of the domain w
This phenomenon is completely analogous to the momen
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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predicted by a one dimensional model of a Bloch wa4

Damping will slowly draw energy from the system, an
eventually bring the domain wall to a stop.

It is clear from these expressions that for any particu
strip geometry, there is a tilt angleu that maximizes domain
wall velocity. The time rate of change of the tilt angle is

~11a2!
du

dt
5ugu~Happ2aHD

' !. ~14!

For the applied field pulses, the total tilt angleu achieved by
the end of the pulse is proportional to the area under
applied field pulse. It is also clear that larger velocities
expected as (Nz2Ny) grows larger; that is, as the width-to
thickness ratio of the strip increases. These relationships
plain the features of the micromagnetic simulation results
Fig. 2. When the applied field pulse creates a tilt angleu
greater than that which maximizes velocity, the model p
dicts that after the pulse, as damping decreasesu, the wall
velocity will actually increase before it decreases and
wall comes to a stop, just as observed in micromagn
simulation.

This analytical model can also explain the response
domain walls to a constant applied field. When the appl
field is small enough, its tendency to increase the tilt angu
will eventually be exactly balanced by the tendency of
damping to pushu back to zero. Specifically, forHapp

,a maxu HD
' , a constantu is reached and the wall moves

the constant velocity determined by that tilt angle.
For largerHapp, u will continue to grow as precessio

about the applied field continues past thez axis (u5p/2).
Onceu exceedsp/2, both precession and damping combi
to accelerate the magnetization back into the plane. Tho
precession continues clockwise aroundHD

' , the transverse
direction of magnetization is reversed, so that precess
moves the wall in the reverse direction. That is, the dom
wall velocity becomes negative. Asu exceedsp, the magne-
tization passes through the plane of the strip, and the di
tion of HD

' is reversed, causing the precession direction
reverse, yielding another reversal of wall direction. The sa

FIG. 3. Comparison of the predictions of the analytical model with
results computed by a full micromagnetic simulation. Response of a tr
verse domain wall to an applied field ramped up to a constant va
m0Happ525 mT, W515 nm, a50.001, anda50.01.
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pattern repeats as the precession about the applied field
tinues forp,u,2p. The number of cycles of domain wa
direction reversal is exactly twice the number of precess
rotations about the applied field.

For Happ.a21 maxu HD
' , we know from Eq.~13! that

wall velocity will not be negative, so for such large field
retrograde motion will cease, though the domain wall
angleu will continue to precess around the strip axis.

Figure 3 depicts how well the simple analytical mod
succeeds in predicting the same domain wall position a
function of time as a full micromagnetic calculation. Th
solid line is the wall trajectory predicted by numeric integr
tion of Eq. ~13!. Wall width a ranges from 24 to 39 nm
during each precession cycle. Figure 4 is a direct illustrat
of the retrograde motion of the domain wall in the presen
of a constant applied field.

Equations~12!–~14! are substantially similar to thos
derived in a previous study of domain wall dynamics
nanowires.5 However, in our work, we have derived the d
pendence ofHD

' on W, T, andu, while the previous work
assumed a simple uniaxial anisotropy form of the demag
tization energy. If we made the same assumptions,
threshold for observing retrograde domain wall moti
would beHapp,aMS(Nz2Ny)/2 which corresponds to the
‘‘Walker field’’ predicted by the earlier work. It should be
noted that although the analytical work in Ref. 5 is soun
the simulation results reported are invalid because the
magnetization fields are computed using a sampling te
nique rather than an averaging technique, a simulation e
we have fully described elsewhere.6
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FIG. 4. A sequence of magnetization patterns, illustrating retrograde dom
wall motion driven by a constant applied field. At 3470 ps the wall is tilt
up. At 4190 ps the wall is tilted down.
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