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Abstract:  Automation of construction processes can result in reduced project costs and increased worker safety.  
A process that lends itself to automation is the picking and placing of objects.  However, determining the pose 
(position and orientation) of an object is critical.  LADAR (laser detection and ranging) data provides 3D 
information of a scene, but the data are noisy, contain outliers, and have phantom points along edges of  objects.  
A preliminary algorithm to preprocess the data and to compute the object pose is presented.  The algorithm was 
validated through comparison with experimental measurements.  
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1.  INTRODUCTION 
 
Inefficiencies in component, material, and trades 
tracking on construction sites has been repeatedly 
voiced at the National Institute of Standards and 
Technology (NIST) workshops (Automated Steel 
Construction, Data Exchange Standards at the 
Construction Site) as a top concern.  Improved asset 
tracking systems will enable both leaner construction 
and enhanced security, as well as lay the foundation 
for levels of automation envisioned in an Intelligent 
and Automated Construction Job Site.  The 
combination of LADAR scanning technology, real-
time object recognition, automatic identification, and 
tracking technologies provide powerful potential 
mechanisms for assessing real-time status of 
construction site operations and lay ground work for 
autonomous construction systems. 
 
The Construction Metrology and Automation Group 
(CMAG) of NIST has an ongoing effort in 
Construction Object Recognition and Tracking [1].  
Current efforts in this project are focused on 
determining the pose of an object given a point cloud 
(in the form of x, y, z data) of a scene as obtained 
from a LADAR.  The objective of these efforts is to 
rapidly determine the pose of an object, without user 
intervention, so that an automated crane can locate 
the object, move towards it, and align itself (i.e., 
gripping mechanism) to pick-up the object.  A more 
exact position and orientation of the object will be 
determined as the crane nears the object using on-
board sensors. 
 
The current efforts include developing an algorithm 
to segment the data (remove data not belonging to 
the object of interest) and to determine the pose of a 
targeted object, an I-beam in this case.  The I-beam 
specifications are inputs to the algorithm and are 
used to create a bounding box that encloses the I-
beam.  This bounding box is used as a means to 
eliminate extraneous objects from the scene by 

comparing the bounding boxes of identified objects 
with that formed from the I-beam specifications. 
 
This paper presents a summary of the initial work 
involved in implementing an algorithm to post-
process data obtained from a data base of I-beam 
specifications as well as data obtained from 
experiments conducted to quantify the uncertainty of 
the algorithm. The overall algorithm is composed of 
several separate sub-algorithms. These will be 
discussed in the next sections. 
 

2.  DATA SETS 
 
Two data sets are involved with the processing.  The 
first is a set containing known objects and is the I-
beam data base, which is a file that consists of groups 
of I-beam specifications, such as the beam name or 
identifier, its length, its depth, flange width, and web 
and flange thicknesses.  After reading the data base, 
the main program converts the information to 24 
points that represent each I-beam (Fig. 1). 
 

 
 

Fig.1.  I-Beam vertex  representation.
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The second data set is one of the scanned LADAR 
data sets that are given as files of x, y, z points, one 
triplet per line, relative to the scanner axis system. 
The number of points in these data sets ranges from 
about 10 000 to about 80 000 (highest scanner 
resolution). 
 

3.  BINNING ALGORITHM 
 
In order to make the scanned data sets more 
manageable, the data points are accumulated into 
volume cubes or voxels that encompass the entire 
range of the data set. This process is called binning. 
The algorithm prompts the user for the number of x, 
y, and z axes partitions which are used to determine 
voxel size.  The size of each voxel is calculated as a 
triplet (dx, dy, dz), e.g., dx = (xmax – xmin)/(# of 
partitions in x).  Each (x, y, z) point is associated with 
an (i, j, k) value for each bin.  In terms of x, for 
example, this is computed for each point r of the 
scanned data as i(r) = fix[(x(r) – xmin)/dx] + 1, with 
due consideration of the boundary voxels.  Similar 
index calculations are performed for j(r) and k(r) for 
each of say N points.  Once the (i(r), j(r), k(r)) 
indices are computed for each point, the bin count 
(number of points) per voxel can be determined.  The 
bin count of all voxels is initially set to zero.  Due to 
the binning, many (x, y, z) points will have the same 
(i(r), j(r), k(r)) indices. The algorithm iterates by 
starting with index triplet (i(1), j(1), k(1)) and finding 
all matches of this triplet by a simple linear search. 
The number of matches, say M, gives the bin count 
for the (i(1), j(1), k(1)) voxel. These matched indices 
are then eliminated from the (i(r), j(r), k(r)) list and a 
new allocated list is formed of length N-M. The old 
list is deallocated.  This begins to reduce the number 
of (i(r), j(r), k(r)) triplets that need to be linearly 
searched.  The algorithm then begins again with the 
new (i(1), j(1), k(1)) triplet, finds the matches, counts 
them for that voxel and then eliminates those triplets. 
The process continues until there are no more (i(r), 
j(r), k(r)) triplets.  All voxels would then have a bin 
count associated with them.  Many would have a bin 
count of zero. 
 
The binning process was selected instead of surface 
fitting for several reasons.  It allows objects to be 
modeled by polygon structures, since it is not 
necessary to develop a detailed model of an object in 
order to align an automated crane with the object. 
Polygon models provide sufficient structure for 
alignment and they allow fast comparisons with 
similar polygon models of the ideal structures by 
only needing to match relatively few vertices. 
 

4.  VERTICAL VOXEL STRINGS 
 
LADAR scans can generate a large number of mixed 
or phantom pixels in a scan [2] (see Fig. 6).  These 
phantom pixels are usually caused by a portion of the 

beam being reflected from an edge of an object and 
the other portion being reflected from another object 
behind the first.  The resulting measurement places a 
point somewhere between the two objects. This 
section describes a process used to eliminate these 
points as well as eliminate such points as ground hits. 
 
The algorithm is based on the idea that those 
columns with floor hits or phantom pixels would 
have a number of voxels with small bin counts and in 
general very few voxels connected to them in the 
column.  It should be noted that voxels can have 
more than one phantom pixel in them depending on 
voxel resolution.  By a connected voxel, we mean 
one with a nonzero bin count either directly above or 
directly below. These are also referred to as 
neighboring voxels.  A vertical string of voxels is 
defined to be the set of non-zero voxels in one 
column that are direct neighbors of each other.  The 
most significant vertical voxel string in a column is 
the longest string in each column.  This is determined 
by examining each vertical column of voxels and 
associating a value of one in a buffer for that column 
if a bin is non-zero, otherwise the buffer is set to 
zero.  The string length and maximum string length 
for the column are initialized to zero.  Each voxel up 
the column is examined.  If the buffer value is one 
then the string length is incremented and the 
maximum string length is set to the current string 
length if it is longer than a previous string length in 
the column.  Once the buffer becomes zero the 
current string length is reset to zero and the next 
voxel is examined until the column is finished.  The 
maximum string length per column is automatically 
produced.  Also, the maximum overall string length 
is the maximum of all of the column string lengths. 
Columns that include those voxels that are to be 
eliminated are determined by comparing the 
maximum string length up a column with the 
maximum overall string length. If the maximum 
column string length is less than a prescribed fraction 
of the maximum overall string length then the bin 
counts in that column are all set to zero. Currently 
that factor is selected interactively, but future 
algorithm enhancements will include a more general 
factor determination. Columns with floor hits or 
phantom pixels usually have maximum column 
string lengths of one or two as opposed to maximum 
column string lengths of 40 or 50 or more for tall 
objects, again depending on voxel resolution. 
 

5.  SEGMENTING OBJECTS 
 
Once the outlier voxels, such as phantom pixels and 
ground hits have been eliminated, entities called 
objects can be identified. The basic premise of the 
object segmentation portion of the overall algorithm 
is that objects are made of neighboring voxels. Thus 
this portion of the algorithm accumulates 
neighboring voxels into object structures. The sub-



algorithm used here is based on one proposed in 
Nikolaidis and Pitas [5] for calculating the volume of 
connected components in 3-D. The process starts by 
constructing a three dimensional array, called the 
mask array, of the same size as the voxel array and 
assigning the value one to the mask element (i, j, k) 
associated with the voxel indexed (i, j, k) if that 
voxel element is non-zero, otherwise the mask array 
element is set to zero. The segmentation proceeds by 
first finding a non-zero mask element and setting it to 
zero after storing its voxel information on a stack. It 
then proceeds with setting to zero each of the mask 
array elements for every neighboring non-zero mask 
element that is found, and then placing the associated 
voxel information associated with each of those mask 
elements on a temporary holding stack.  For those 
neighbors, their neighbors are examined in an 
outward expanding group of neighboring voxels. 
When there are no more non-zero neighboring mask 
elements to be set to zero, the stack is unloaded into 
an object structure.  Setting the mask array elements 
to zero for all of the voxels in an object means that 
when the algorithm goes back to the mask array to 
start another object it won’t find a mask element 
associated with the object just created.  

 
6.  PRINCIPAL AXES 

 
In order to determine the pose of a defined object, it 
is useful to identify a set of axes that represent the 
distribution of the voxel centers about the center of 
data mass.  If an object is defined by a group of 
voxels, each with a center (x, y, z) associated with it, 
then a set of orthogonal axes relative to the center of 
data mass can be determined that extend in the 
directions of the longest axis of data, the second 
longest, and the third longest.  These are called the 
principal axes.  For a further discussion of this 
algorithm and its other applications in graphics see 
Lengyel [3].  Objects that are only linear or planar do 
not have a full set of principal axes and will not be 
considered as legitimate objects in this study.  The 
principal axes are representative of the directions in 
which the data varies.  To determine the principal 
axes assume that points P1, P2, … , PN  represent N 
points in 3D Euclidean space.  We first calculate the 
mean position or center of data mass m by 
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We then construct a 3 x 3 matrix called the 
covariance matrix 
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This covariance matrix is a symmetric matrix that 
represents the correlation between each pair of  Pi  = 
(xi, yi, zi)  points.  The natural axes of the set of points 
are determined as follows.  First, the eigenvalues of 
C are found and ordered largest to smallest.  The 
associated eigenvectors are then found.  The 
eigenvector associated with the largest eigenvalue 
points in the direction of the points having the largest 
variation, generally the longest axis.  The eigenvector 
associated with the next largest eigenvalue points in 
the direction of the next longest axis and similarly 
with the third.  The process of developing the 
principal axes is related to the statistical technique 
called principal components analysis. For a 
discussion of this topic see Montgomery, et al. [4]. 
 

7.  CREATING BOUNDING BOXES 
 
Although there are uncertainties in locating the 
boundaries of LADAR scanned objects, it is  possible 
to establish reference surfaces and vertices that can 
be used to compare against associated reference 
surfaces and vertices on the I-beams given in the data 
base.  Due to the statistical uncertainties of locating 
object edges, we use polygons to bound the object.  
One advantage of this approach is that if a polygon is 
also constructed around the ideal object from the 
database, such as an ideal I-beam, then comparisons 
can be made between well defined polygons.  In the 
case of I-beams, polygons defined as bounding boxes 
are used.  The approach is relatively straightforward. 
Every legitimate object is defined in terms of voxels 
and each of the voxels has a center (x, y, z) point.  
Once an object, in particular the I-beam, has been 
identified in terms of voxels then the vector from the 
LADAR scanner origin to each voxel center in the I-
beam is projected against the principal axes. The 
lengths of the different sides of a box enclosing all of 
the voxels defining the I-beam is given by the 
difference between the maximum and minimum 
values of the projections along each of the principal 
axes. The vertices of this box are then easily 
determined.  Next the specifications for an I-beam in 
the database can be used to construct the 24 points 
defining the I-beam (Fig. 1).  These points can also 
be used to generate the principal axes for the 
reference I-beam. Once these principal axes are 
known and the distance to the center of data mass of 
the measured I-beam from the scanner is known, it is 
then possible to construct the x-, y-, and z-rotations 
to transform the reference I-beam model and map it 
over the bounding box of the measured I-beam data 
(Fig. 4).  Then a sum of squared errors function can 
be used to compute the error between the associated 
vertices of the reference I-beam model and the 
measured I-beam bounding box.  The segmented 
object will be associated with the known object 
which yields the smallest error.  
 



8.  EXPERIMENTS 
 

A series of scans were conducted to determine the 
uncertainty of the pose calculations, the influence of 
point density on pose uncertainty, the influence of 
point of view of the scanner relative to the object on 
pose uncertainty, and the ability of the algorithm to 
differentiate between two objects of similar shape.  
In these experiments, an I-beam in an uncluttered 
environment was scanned using a LADAR with a 
manufacturer specified range uncertainty of ± 2.5 cm 
(best case) and ± 5 cm (worst case).  The 
experimental parameters include type of I-beam (2 I-
beams),  angle of the I-beam in its coordinate frame 
(0°, 30°, 45°, 60°, and 90°, see Fig. 2a), and point 
density (3 levels).  
 
For each I-beam rotation, three scanner angular 
increments (horizontal and vertical) between points 
were used:  0.072°, 0.108°, and 0.18°.  The lowest 
increment corresponds to the highest point density.  
Three scans were obtained at each angular increment 
for a total of 9 scans for each I-beam rotation angle.  
A total of 90 scans were obtained. 
 
To measure the rotation of the I-beam, the four 
corners of the top flange were measured with a laser-
based site measurement system (SMS) that has a 
manufacturer stated accuracy of less than 2 mm.  
These measurements were taken every time the beam 
was moved.  Additionally, there were three spheres 
(see Fig. 2b) located within the scene for registration 
purposes and several points on each sphere were 
measured.  This allows for the determination of the 
transformation matrix between the two coordinate 
frames (LADAR and SMS).  Points on the scanner 
were also measured using the SMS to locate the 
scanner in the SMS coordinate frame. 
 

9. POINT REGISTRATION 
 

In order to estimate uncertainties of the pose of the I-
beams, a transformation between the axis system of a 
site measurement system (SMS) and the LADAR 
coordinate frame had to be determined.  This was 
done by assuming that points in both axes systems 
fell into a global axis system and a rigid body 
transformation was developed using an iterative 
algorithm that determined the transformations that 
linked the SMS and LADAR coordinates. A full 
discussion of the details of this algorithm is beyond 
the scope of this proceedings article and will be 
published elsewhere. 
 

 
10. PRELIMINARY RESULTS 

 
At the time of the publication of this paper, only one 
data set was examined.  When all the data have been 
examined, a discussion of the uncertainties of pose 
determination will be published. 
 
Figure 3 shows a stacked contour plot of the objects 
identified in a scan.  In the first stage of the 
segmentation algorithm applied to this data set, 14 
objects were identified, using a voxel size of dx = 
0.123 m, dy = 0.107 m, and dz = 0.027 m.  In the 
second stage of the segmentation algorithm, all 
objects that did not have 3 principal axes were 
eliminated and the remaining object was the I-beam.  
Figure 4 shows the point cloud and the bounding 
boxes around the ideal I-beam (green box) and 
around the LADAR measured data as represented by 
the centers of the voxels comprising the measured I-
beam (blue box).  The measured box is slightly wider 
and shorter than the ideal box.  This could be a result 
of the selected voxel size and will be investigated 
further. 

b.  I-Beam at 0°.  Spheres used for registration.

c.  Point cloud of scan. 

Fig. 2.  Experimental set-up. 
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To estimate errors and uncertainties of these 
bounding boxes, measurements of the four corners of 
the I-beam, as it rested on the floor as shown in Fig. 
2b, were compared with those obtained analytically.  
The four points selected are the corners of the top 
flange that correspond to points 8, 7, 19, and 20 in 
Fig. 1.  Table 1 gives the measurement results of 
these points in the SMS coordinate system. 
 

 
Table 1 

Top Flange Points in SMS Coordinates (m) 
Point x y z 

8 8.5644 -3.7518 -1.3459 
7 8.3901 -3.7738 -1.3492 

19 8.2310 -0.7201 -1.3569 
20 8.0545 -0.7403 -1.3581 

 
The points in Table 1 were used as the “truth” or 
reference measurements because the maximum 
standard deviation of all the measurements was 3 x 
10-4 m.  Table 2 gives the same points as computed 
from the bounding box for the scanned I-beam. 
 

Table 2 
Top Bounding Box Points in Scanner Frame (m) 

Point x y z 
8 -4.7790 4.9337 -1.1618 
7 -4.8648 5.0691 -1.1628 

19 -2.2990 6.5057 -1.1654 
20 -2.3849 6.6411 -1.1665 

 

In order to determine the transformation the SMS 
coordinates to the scanner reference frame, the points 
on the three spheres shown in Figs. 2b and 2c were 
measured using the SMS system and the LADAR.  
Best fit sphere models were then fitted to the 
measured data and the estimates of the centers in the 
SMS frame and the scanner frame were made.  
 
An additional point that was used to determine the 
transformation matrix was the center of the scanner.  
The center of the scanner cannot be physically 
measured.  Therefore, several points on the scanner 
were measured with the SMS system and the scanner 
center, in the SMS coordinate frame, was derived 
based on these measurements.  The coordinates of 
the scanner center in the scanner frame is (0, 0, 0) by 
definition. 
 
These four points represent the four points common 
in the two coordinate frames. Using the approach 
described in Section 9 to transform the coordinates in 
the SMS to the scanner frame, a rotation matrix is 
determined.  This rotation matrix indicates that the 
main rotation is about the Z-axis with rotations about 
the X- and Y-axes approximately equal to 0. 
  
Transforming the four points in Table 1 we obtain: 
 

Table 3 
Top Flange Points in SMS Frame Transformed to 

Scanner Frame (m) 
Point x y z 

8 -4.8635 4.9218 -1.1966 
7 -4.9594 5.0691 -1.1995 
19 -2.2815 6.5452 -1.2165 
20 -2.3767 6.6952 -1.2173 

 
The deviations between the coordinates in Table 3 
and those in Table 2 are given in Table 4. 
 

Table 4 
Deviations = [Table 3 – Table 2] (m) 

 X Error Y Error Z Error 
8 -0.0845 -0.0119 -0.0348 
7 -0.0946 0.0000 -0.0367 

19 0.0175 0.0395 -0.0511 
20 0.0082 0.0541 -0.0508 

Mean -0.03835 0.02043 -0.04335 
Std. Dev. 0.05938 0.03141 0.00881 

 
The location of the I-beam in the scanner frame can 
be found from Table 2.  The center point of the top of 
the bounding box is computed from the four corner 
points as (-3.5820, 5.7874, -1.1641) m. A similar 
calculation from the transformed SMS points in 
Table 3 shows the center point to be (-3.6203, 
5.8078, -1.2075) m.  The difference between the 
transformed coordinates and the scanner coordinates 
is (-0.0383, 0.0204, -0.0434) m.  These deviations 
and those in Table 4 are within the accuracy of the 
LADAR used.  It should also be noted that the center 
point in the scanner frame has an expected offset 

Fig. 4.  Bounding boxes.  The narrower, taller 
(green) box  shows ideal I-beam.  The wider, 

shorter (blue) box encloses the segmented I-beam.

Fig. 3.  Segmented Objects. 
Angle = 0°, medium point density.



from “true” center.  This offset is due to the fact that 
there are many more measurements of the I-beam on 
the side of the I-beam that is closer to the scanner; 
thereby biasing the center towards this side (Fig. 5). 
 

 
As mentioned earlier, the rotation matrix (SMS to 
LADAR frame) shows that the main rotation is about 
the Z-axis.  Therefore, only the Z-rotation will be 
discussed in the following paragraphs. 
 
One of the experimental parameters was the angle of 
the I-beam relative to the scan direction (see Section 
8 and Fig. 2a).  For the data set that was examined, 
this angle was 0° (Fig. 6) in the I-beam frame.   From 
Table 2, it can be shown that the longitudinal vector 
of the I-beam forms an angle 32.2° counterclockwise 
from the -X axis of the scanner frame.   
 

 
The rotation about the Z-axis of the I-beam as 
determined using the algorithm is 32.2° in the 
scanner coordinate frame.  This compares exactly 
with the measured pose of 32.2°. 
 

11. SUMMARY AND OBSERVATIONS 
 

Preliminary findings of an experiment to determine 
an object’s pose are presented.  The algorithms to 

segment an object and to analytically determine the 
object’s pose are described.   
 
Although the LADAR scan of the I-beam and its 
surroundings from one perspective generated noisy 
data, the techniques of vertical voxel string 
identification, object segmentation, bounding box 
construction, and rigid body rotations seem to be a 
set of viable tools for identifying objects, as long as 
there is prior knowledge of what the likely object 
candidate is.  Identification of objects in this context 
means obtaining sufficient information about the 
object and its pose to enable differentiating it from 
other objects and aligning an automated crane to pick 
up the object.   
 
Based on the measurements from one experiment, 
the algorithm was able to determine the position of 
the I-beam to within the accuracy of the LADAR, 
i.e., the uncertainty of the position was within the 
uncertainty of the LADAR.  The algorithm was also 
able to correctly determine the orientation of the I-
beam. 
 
As mentioned earlier, at the time of publication of 
this paper, only one of the 90 data sets was 
examined.  Uncertainties of the pose determination, 
and effects of point density, angle of the object 
relative to the scan direction, and voxel size on the 
pose determination will be reported in a future 
publication when all the data have been analyzed. 
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Fig. 6.  Point cloud of I-beam viewed along the 
longitudinal axis of I-beam.  Note the phantom 
points at both edges of  the top flange.   
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Fig. 6.  Rotation of I-beam relative to the 
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