
 April 8, 1998

Abstract
Several digital signature algorithms are coming
into general use. A certificate containing a key
for one algorithm can be signed with a different
algorithm. This paper discusses the interopera-
bility issues where different digital signature
algorithms are used in one Public Key Infra-
structure. The key to interoperability is client
software that can validate signatures for all the
algorithms used. Some rules that will simplify
certification path processing are proposed.

Introduction
NIST has recently proposed [FR 97] to increase
the scope of the Digital Signature Standard
[FIPS 186] to allow US Federal Government use
of the present Federal standard Digital Signature
Algorithm (DSA) [FIPS 186], the Rivest-
Shamir-Adelman (RSA) algorithm [X9.31], or
the Elliptic Curve Digital Signature Algorithm
(ECDSA) [X9.62] for digital signatures. How-
ever, the question then arises, can Federal users
of different digital signature algorithms interop-
erate with each other, or will a kind of Tower of
Babel situation result, where users of different
algorithms are unable to validate each other’s
signatures? Can the emerging Federal Public
Key Infrastructure (PKI) be leveraged to pro-
mote interoperability for users of different digital
signature algorithms? This paper examines sev-
eral possible multi-algorithm interoperability
solutions and proposes a specific approach for
the Federal PKI.

The three algorithms proposed for Federal use
are all used in commercial products. It is likely
that there will be several digital signature algo-
rithms in common use. If public key certificates
are used mainly by closed communities (as is
largely the case now), then the use of different
algorithms by different communities hardly mat-
ters. But that implies that individual users may
have several, perhaps dozens, of certificates and
public key pairs to keep and manage, hardly a
desirable state of affairs, since it limits the use-
fulness of digital signatures. If there is to be a
broad national and international PKI that citizens
and businesses can use to establish their identi-

ties, sign binding documents, and conduct busi-
ness with parties they have no previous relation-
ships with, then there should also be a systematic
PKI organization to accommodate several algo-
rithms. We believe the solutions proposed for the
Federal PKI could reasonably be applied in an
international PKI for citizens and businesses.

A Federal PKI with Multiple Digital Signature Algorithms

W. E. Burr, NIST
W. Timothy Polk, NIST

Definitions
In this paper we use the following terms:

• certificate: A digitally signed document that
binds two or more attributes together. In
this paper we are only concerned with digi-
tal signature certificates that bind a subject’s
digital signature public key (as opposed to
his key management or encryption key) to
his name.

• Certificate Revocation List (CRL): A signed
list of certificates that have been revoked;

• Certification Authority (CA): A trusted en-
tity that issues (i.e., signs and publishes) cer-
tificates and/or CRLs;

• certification path: a sequence of certificates
beginning with a self-signed signature cer-
tificate issued by a CA trusted by a relying
party and ending with an end-entity’s signa-
ture certificate, where the issuer of any cer-
tificate in the sequence is the subject of the
preceding certificate;

• consistent certificate: a certificate is consid-
ered to be consistent when the same algo-
rithm is used for the public key certified in
the certificate and to sign the certificate;

• end-entity: a certificate holder that is not
acting as a CA. In most cases an end user
with a certificate.

• inconsistent certificate: A certificate where
the subject’s algorithm for the certified key
is different than the algorithm used by the
issuing CA to sign the certificate.

• relying party: An entity that validates a digi-
tal signature;

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the
United States.

 April 8, 1997

• self-signed certificate: A
certificate signed with the
key it certifies. It is used by
a CA to state (but not au-
thenticate) its public key;

Assumptions
We assume that several digital
signature algorithms will be used
in the government and elsewhere
and expect that different commu-
nities will standardize on differ-
ent algorithms. We believe that
it is relatively simple to imple-
ment signature validation for
several algorithms, but more bur-
densome to sign with different algorithms, since
this implies more keys and certificates for users
to manage. Moreover, the secrecy of private
keys must be strictly maintained. Most end-
entities will prefer to use as few signature keys
as possible and to sign with a single algorithm.
Two end-entities with consistent certificates that
use the same algorithm, should not ordinarily
have to use any other algorithm to validate each
other’s certificates.

Figure 1 - Certificate and signed document

Finally, while we accept that the Federal PKI
must support several digital signature algo-
rithms, we do not believe that the same principle
necessarily applies to hashing algorithms. The
only standardized hashing algorithm that is now
generally accepted as secure is the SHA-1 algo-
rithm [FIPS 180]. Therefore there is no need for
Federal users to use clients that support other
algorithms or for the Federal PKI to issue certifi-
cates signed using other hashing algorithms.

Background
The generally accepted standard for public key
certificates is the X.509 standard [X.509 97],
which seems to have been embraced by most
vendors of commercial products that use certifi-
cates. The most current version of the standard,
which specifies the version 3 certificate and ver-
sion 2 certificate revocation list (CRL) format, is
apparently being widely implemented. Each cer-
tificate includes a subject public key and is
signed with the Certification Authority’s private
key. Figure 1 illustrates how the certificate is
used to obtain the subject’s public key to vali-
date his signature.

A key concept of a PKI is a certification path, a
chain of certificates, starting from one that is
trusted by the relying party, leading to the cer-
tificate of the signer. This is illustrated in Figure
2. Starting with the certificate issued by CA1,
which she trusts, Alice, the relying party, can
successively validate a chain of certificates lead-
ing to Bob’s certificate, and then use Bob’s cer-
tificate to validate his signature.

Both the subject public key field and the signa-
ture field of the certificate contain an algorithm
identifier that identifies the algorithm for the
subject’s public key and the algorithm used to
sign the certificate, respectively. The two algo-
rithms need not be the same. Therefore a valid
certification path can include “inconsistent” cer-
tificates signed using different algorithms, or
certifying keys for different algorithms.

The validity of a certification path may also re-
flect certificate status information. A CA may
choose to revoke a certificate. This information
may be provided to the relying party through an
on-line status check or a CRL.

A CRL is normally signed by the CA that issued
the revoked certificates. The CA can sign the
CRL with a different key or algorithm than used
to sign the certificates. So, determining the valid-
ity of a particular certificate could require use of
multiple algorithms.

Some algorithms (DSA and ECDSA) require
that parameters be specified. Parameters can be

Figure 2 - Certification Path

 -2-

 April 8, 1997

Figure 3 - Parameter Inheritance in Certification Path

common to all the certificates issued by a CA, to
a group of certificates, or to the entire PKI. The
algorithm identifier field can (optionally) state
the parameters used. Parameters are often large
numbers. In the case of the DSA, two of the
parameters, p and g, are the same size as the
public key, between 512 and 1024 bits. If a set
of parameters is shared by a community of users,
it is desirable to omit parameters to reduce the
size of the certificates. Therefore, the US Federal
PKI Technical Working Group (TWG) has pro-
posed a set of “parameter inheritance” rules that
allows parameters to be inherited from preceding
certificates in a certification path. Those rules
have been incorporated in some draft standards
[ISO], and are summarized as follows:

• parameters should be obtained from the
same authenticated source as the public key,
the subject public key field of the signer’s
certificate;

• if the parameters in the subject key field of
the signer’s certificate are null (for those al-
gorithms requiring parameters), then the pa-
rameters are “inherited” from the preceding
certificate in the certification path;

• parameter inheritance does not apply to in-
consistent certificates, that is an inconsistent
certificate must contain the parameters in
the subject public key field, if parameters
are used for the subject algorithm.

Parameter inheritance is illustrated in Figure 3.
In this case CA2 inherits its parameters from the
certificate of CA1, but Bob has different parame-
ters which must be stated explicitly in his certifi-
cate.

Parallel PKI versus End-Entity Solu-
tions
The most basic interoperability decision is, do
we use inconsistent certificates at all? If not,
then the only interoperability approach is paral-
lel, independent PKIs, one for each algorithm.
In this case an end-entity would need either one
client that could both sign and validate every
algorithm, or a separate client for each algo-
rithm. Then the end-entity selects the appropri-
ate algorithm, certificate, and client needed for
interoperability in each case.

In this approach one party assumes the entire
burden for interoperability and can sign with or
validate any algorithm required. That party can,
in principle, interoperate with any other party
who can sign and validate signatures using any
one of the algorithms for which he has a certifi-
cate.

But then which algorithm would a user use to
sign any document not intended for a single spe-
cific user, whose preferred algorithm is known?
Would the signer sign every document with
every algorithm? Users would have multiple
private keys to manage and protect. And paral-
lel, duplicative, certification paths would be re-
quired in the PKI itself. There may be special
cases where this approach is warranted, but this
solution is surely not the best general approach.
It may minimize the expense for someone who
never needs to interoperate with users of another
algorithm, but it otherwise maximizes costs and
aggravation for both the PKI and end-entity,
wherever interoperation is necessary. For this
reason we reject this approach.

 -3-

 April 8, 1997

End-Entity Solution Scenarios
For the reasons stated above, rather than a paral-
lel-PKI approach, we recommend an “end-
entity” solution where a burden is placed on all
end-entities: for interoperability we must use
certification path processing software that is
capable of validating all the algorithms we need
to use. However, there are simplifications for
end-entities as well, because end-entities nor-
mally need use only one signing algorithm, and
manage fewer private keys. Moreover, it allows
considerable simplification of the PKI. At a
minimum, users who wish to be broadly interop-
erable should use clients that can validate both
RSA and DSS, and, before long, ECDSA.

Given that we adopt an end-entity solution, and
will therefore have inconsistent certifications,
there still remains the question of where it is best
to put the inconsistent certificates needed for
interoperation. There are several plausible
multi-algorithm interoperability scenarios.

1. A CA signs with one algorithm, but issues
end-entity certificates with subject keys for
other algorithms. In our terminology, the
CA issues inconsistent end-entity certifi-
cates. There might possibly be performance
arguments for such a solution if we envision
a CA signing algorithm that is costly to sign
but inexpensive to validate, and an end-
entity algorithm that is inexpensive to sign,
but more expensive to validate. Since cer-
tificates are signed once, but validated many
times, the cost of signing them hardly mat-
ters, but the cost of validating them may
matter much more. In certain applications,
end-entity signing capability may rest in de-
vices with little computational power, so it
may be important to also minimize end-
entity signing computational costs. But that
sort of asymmetry is hardly typical of a gen-
eral purpose PKI where most end-entities
have reasonably powerful PCs, worksta-
tions, and servers.

It is, however, clear that, in a world where
several signature algorithms are used, incon-
sistent end-entity certificates are undesirable
from an interoperability point of view.
Every validation of a signature signed under
that inconsistent end-entity certificate will
require that the relying party be able to vali-
date signatures created using both algo-
rithms. And the certification path created by
the inconsistent end-entity is no more secure

than a consistent end-entity certificate that
uses the weaker of the two algorithms. Any
relying party who would validate and accept
the inconsistent end-entity certificate should
also be able to validate and accept a consis-
tent certificate with either of the two algo-
rithms.

Moreover, even a relying party who uses the
same signature algorithm must be able to
validate two algorithms. Something clearly
is wrong when two users with certificates is-
sued by the same CA, who use the same sig-
nature algorithm, must also validate signa-
tures created using another algorithm to
validate each other’s signatures. Finally, if
the end-entity algorithm uses parameters,
then the parameters must be stated in the
end-entity certificates, possibly making
them much larger. Therefore we conclude
that issuing inconsistent end-entity certifi-
cates is usually a bad idea for interoperabil-
ity reasons, although there may be certain
specialized applications where it is war-
ranted for performance reasons.

2. A single CA issues consistent end-entity
certificates for several algorithms, that is
signs certificates with different algorithms
as required to generate consistent end-entity
certificates. Thus, needlessly inconsistent
certification paths are avoided. The CA cer-
tifies each of its keys, with each of its other
keys, with inconsistent certificates, so that
certification paths exist between end- enti-
ties holding certificates with different algo-
rithms. End-entities are typically issued a
single consistent certificate and encouraged
to be able to validate all the algorithms sup-
ported by the CA. This avoids inconsistent
end-entity certificates, but introduces com-
plications of its own. The principle objec-
tion has to do with CRLs. With what algo-
rithm does the CA sign its CRLs? Presuma-
bly it must issue separate versions of the
same CRLs, signed with each of the algo-
rithms it supports, or some relying parties
may not be able to validate the signature on
a CRL.

3. A single CA always signs with the same
algorithm, and issues consistent end-entity
certificates. The CA may, however issue
inconsistent CA certificates when it certifies
or cross-certifies other CAs, as needed for
interoperability. If there is a need to issue

 -4-

 April 8, 1997

end-entity certificates with different algo-
rithms, separate CA’s are created. In this
case, a separate CA simply implies a differ-
ent name for the CA for each algorithm, not
necessarily a separate CA workstation. The
consequence of this is that there is a separate
CRL for each algorithm.

Proposed solution
Inconsistent end-entity certificates are generally
a bad idea. Therefore we seek a solution that
does not use inconsistent end-entity certificates.
Parallel, entirely consistent PKI’s are too expen-
sive, and require too many end-entity certifi-
cates, leaving users with the problem of deciding
which key to use to sign which documents. Solu-
tions where a single CA signs certificates with
different algorithms leads to complications with
CRLs.

For the proposed solution we introduce the con-
cept of a “logical CA.” A logical CA is distinct
from the hardware that implements it and the
management entity that operates it. A single
hardware platform could support several logical
CAs, that is the platform would issue certificates
with different algorithms under distinct issuer
names. And a single management entity could
operate any number of logical CAs.

We propose the following rules:

• End-entity certificates will be consistent;

• A logical CA will sign certificates with only
one algorithm;

• Where an organization needs to issue cer-
tificates with different algorithms to its cer-
tificate holders, it will use different logical
CAs to issue those certificates. This will al-
low CRL to be confined to certificates with
a single algorithm;

• Where one management entity operates
more than one logical CA for different algo-
rithms, it will cross-certify those CAs with
inconsistent certificates;

• Independent CAs will attempt to certify
each other consistently, but may issue in-
consistent certificates to each other as re-
quired to support the needs of their certifi-
cate holders.

• All self-signed certificates for algorithms
that use parameters will include the parame-
ters in the subject public key field;

• Other certificates will include parameters
only if:

◊ the certificate is an inconsistent certifi-
cate, or;

◊ the parameters are different from the
parameters of the issuing CA.

• Federal users will be encouraged to use cli-
ent systems that can validate all Federally
approved digital signature algorithms.

A Federal PKI that follows these rules will have
certain desirable properties. Two end-entities
certified by the same CA who use the same sig-
nature algorithm will not need to use additional
algorithms to validate certification paths. In
most cases, two end entities certified by different
CAs who use the same signature algorithm will
not need to use other algorithms to validate certi-
fication paths.1 Each certificate will be consis-
tent with its CRL. Finally, the number of incon-
sistent certificates, which may require that pa-
rameters be included in the certificates, will be
minimized.

Conclusion
The use of several different digital signature
algorithms appears to be a fact of life for the
Federal PKI. The key to interoperability is cli-
ents that support signature validation for all the
Federally approved digital signature algorithms.
Assuming that clients can validate all Federally
approved algorithms, this paper proposes rela-
tively simple rules for inconsistent cross-
certificates between Federal CAs that will allow
users who sign with one algorithm to validate
signatures with other algorithms.

This paper has discussed only signature certifi-
cates. Note that other classes of end-entity cer-
tificates (e.g., key management certificates) may
be inconsistent certificates. The ability to process
certification paths with multiple algorithms may
still be required, but other conclusions regarding

1 There is a special case where certification paths
involving CA1 and CA3 “go through” CA2, and
CA2 does not support the algorithm used by
CA1 and CA3. In this case, validation of the
certification path will require use of two algo-
rithms.

 -5-

 April 8, 1997

 -6-

the end-entity’s signature certificates cannot be
applied to other types of certificates.

References
[FIPS180] FIPS PUB 180-1, Secure Hash

Standard, NIST, April 1995.

[FIPS186] FIPS PUB 186, Digital Signature
Standard, NIST, May 1994.

[FR 97] NIST, “Announcing Plans to Revise
Federal Information Processing
Standard 186, Digital Signature
Standard,” Federal Register, May
13, 1997 pp. 26293-26294.

 [X.509 97] ITU-T Recommendation X.509, The
Directory: Authentication Frame-
work, June 1997.

[X9.31] Working Draft American National
Standard X9.31-199x, Public Key
Cryptography for the Financial Ser-
vices Industry: The Reversible Digi-
tal Signature Algorithm,

[X9.62] Working Draft American National
Standard X9.62-199x, Public Key
Cryptography for the Financial Ser-
vices Industry: The Elliptic Curve
Digital Signature Algorithm, June
21, 1996

	Abstract
	Introduction
	Definitions
	Assumptions
	Background
	Parallel PKI versus End-Entity Solutions
	End-Entity Solution Scenarios
	Proposed solution
	Conclusion
	References

