

Business Process Driven Framework for defining an Access Control

Service based on Roles and Rules

Ramaswamy Chandramouli
Computer Security Division, ITL
NIST, Gaithersburg, MD 20899

(chandramouli@nist.gov)

Abstract

Defining an Access Control Service for an enterprise application requires the choice
of an access control model and a process for formulation of access decision rules to be
used by the access enforcement mechanism. In this paper, we describe a business process
driven framework (called the BPD-ACS) for developing both the model and formulating
the access decision rules. The model used is the Role Based Access Control (RBAC)
model and the access decision rules are based on temporal business associations. The
enterprise setting is a multi- facilit y hospital and the particular application for which the
access control service was defined is the Hospital-based Laboratory Information System.
(HLIS).The lesson learnt from this exercise is that a much more sophisticated rule
processing capability is required for these types of applications than is currently available
in both commercial and research-prototype authorization servers.

1. Introduction

Defining an Access Control Service for an enterprise application is rarely followed
as a formal process. Very o ften the access control mechanism is chosen first (because of
platform constraints) and the existing access control requirements for the application are
often adjusted to fit into the limitations of the mechanism at hand. In situations where the
organization’s existing IT infrastructure does not pose the implementation constraints for
access control, we can define the requirements for an Access Control Service through a
relatively more formal process just like the determination of functional requirements for a
a new software product.

In this paper, we propose a framework which we call the Business Process Driven
Access Control Service (BPD-ACS) where each service component is defined based on a
top-down analysis of the business processes that a given application is intended to
support.

To define an access control service for any application requires an analysis of
application- level operations, and the mapping of enterprise access control policies to
those operations to derive a set of operational constraints governing those operations.
Next a profile of the user base has to be determined and based upon the operational
constraints, a modeling scheme for capturing user-operation interactions must be
determined. These modeling schemes are what are commonly called the Access Control
Models in the security literature.

mailto:chandramouli@nist.gov

The choice of an Access Control Model is dictated by factors like administrative
convenience, policy support capabilities and in some instances the access control
mechanisms available in the enterprise platforms. In our access control service
framework, we have chosen the Role Based Access Control (RBAC) model [FCK95].
RBAC was chosen because of the administrative convenience it provides through the
concept of roles which can be used for encapsulating all the application- level operations
associated with a specific business process. Also, the support for RBAC is available on a
wide variety of platforms like DBMSs and Operating Systems. Further, RBAC provides a
taxonomy of models [SCFY96] of increasing complexity (and hence functionality) and
any one of these models can be chosen depending upon the complexity of user-operation
interactions.

However, many Access Control Models (including RBAC) have limitations with
respect to fully representing all the facets of user-operation interactions. The two main
facets are:

(a) A set of application- level operations (e.g., Creating a Purchase Request) a
designated user is entitled to perform by virtue of his/her job function or
organizational role. These are commonly called Privileges.

(b) Restrictions on exercising those privileges because of environmental variables
like time of access or the application state. The information governing such
restrictions are called contextual information and the restrictions themselves are
called Access Decision Rules.

Most Access Control Models provide constructs for managing user-privilege
association (by providing the ability to express privileges at different levels of
granularity) but not necessarily in representing and processing Access Decision Rules.
Hence there may be situations, in defining an overall Access Control Service, a separate
service definition may be needed for representation and processing of Access Decision
Rules.

Based on the above discussion, the salient feat ures of the Business Process Driven
Access Control Service (BPD-ACS) can now be outlined as follows:

(a) Definition of application- level operations based on Business Process Analysis
(b) Protection Requirements for those operations based on enterprise security

policies
(c) Developing the RBAC model for the application
(d) Formulating, Representing and Processing Access Decision Rules.

The organization of this paper is as follows. In Section 2, we compare our work with
related work in the area of RBAC modeling and Rule processing. In Section 3 we state
the sequence of steps needed to define an access control service under the BPD-ACS
framework. Sections 4 through 8 describe the operation of these steps to fully define an
Access Control Service for a Hospital-based Laboratory Information System (HLIS). The

concluding section (Section 9) presents other potential application domains where the
framework could be applied and the scope for future work.

2. Comparison with Related Work

The main emphasis in the BPD-ACS framework is to chose an access control
model that is relatively simple to administer, but at the same time address the business
process requirements and policy restrictions through a flexible rule formulation and
processing approach. Hence we have chosen the RBAC2 model (roles with hierarchies)
from the taxonomy presented in [SCFY96].

As regards rule processing capability, many ideas have been proposed to
incorporate access decision rules within the framework of an RBAC model itself.
Didriksen [D97] has used the co ncept of fragments to define predicates restricting the
user access to a subset of rows and columns within relational database tables. These
predicates (which can provide a more finer level of granularity than traditional database
views) are then compiled into database triggers which will then enforce access
restrictions at run-time. But the limitation of this approach is that it can only be used for
enforcing access control rules for data stored in relational database tables and not for any
general type o f target objects. Giuri and Iglio [GI97] have proposed the concept of role
templates which will encapsulate what they call parameterized privileges. These
parameterized privileges are triples consisting of: (1) the access mode, (2) the target
object and (3) a logical expression that will be evaluated for access on any element of the
target object. But the biggest limitation in their approach is that the parameters in a role
template are the same as those in each of the privileges they contain. This approach to
role definition creates a tight coupling between the types of privileges a role can hold and
may not be realistic in many application environments where each individual privilege in
a role may have several different parameters.

A much more flexible approach for associating access decision rules with roles
has been adopted in the HP Praesidium Authorization Server* [HPAS-WP] and in the
Open Group’s Research prototype Adage [AD-SO, BY] for distributed access control
service (which is also based on the HP approach). In the HP model, rules are first defined
independently of the roles (profiles) since they carry the same semantics as a privilege.
The rule definitions contain boolean expressions comparing two sets of attributes –
transaction attributes and pr ivilege attributes. One or more of these rules are then
referenced within a role (profile) definition and the authorized values for the privilege
attributes are also specified there. Whenever a user performs a transaction using a set of
values for transact ion attributes which are used in a rule, the rule expression is
instantiated (and hence evaluated) by obtaining the values for the privilege attributes
specified in the user’s role. The user is allowed to execute the transaction if the rule
expression evaluates to true.

* Certain commercial products are mentioned in this paper. This does not imply recommendation or
endorsement by the National Institute of Standards and Technology nor does it imply that the products
mentioned are necessarily the best available for the purpose.

The Access Decision Rule processing approach outlined in this paper builds on
the HP model and adds enhanced functionality. In the HP approach, the privilege
attribute values are determined based on business rules which will change only when the
rules are changed. On the other hand, in healthcare environments like hospitals where the
association between entities specified in a transaction is very much short- lived (a patient
in a ward and the attending physician for that ward), checking the validity of transaction
attribute values (a Physician ID and Patient ID) cannot be performed using static
privilege attribute values (Dr. John is authorized to order a test for Mr. David – the
patient) specified in a role. In our approach the values needed for instantiating
(evaluation) a rule are obtained dynamically at access decision time from a database
which contains these types of temporal business associations.

3. Processing Steps in BPD-ACS Framework

The Business Process Driven Access Control Service framework consist of the
following sequence of steps:

(STEP 1) For a given application system identify the business processes that it is intended
to support. Also identify the information objects and methods to support the business
processes. The output of this step will be the application- level operations.

(STEP 2) Determine access control requirements for each of the application- level
operations. This step will be driven by the requirements in the enterprise access control
policies. The output of this step will result in a set of application- level privileges and a set
of constraints that govern the exercise of those privileges.

(STEP 3) Map the categories of users who are going to interact with the application and
the corresponding methods in the application they need privileges based on their
authorized business processes. This user-privilege association (based on the data obtained
from STEP 2) will be modeled using the Role Based Access Control model.

(STEP 4) Again using the constraints (ob tained from STEP 2), formulate a set of Access
Decision Rules. Based on the data that is used in the rule’s predicates, define the
supporting data for instantiating (evaluating) the access decision rules. This data will be
housed in a database called the Temporal Business Association Database.

(STEP 5) Define the Access Enforcement Mechanism based on the access service
components defined in STEP 3 and STEP 4.

A realization scenario for the above steps for a Hospital-based Laboratory Information
System (HLIS) is described in the following sections.

4. Business Processes & Supporting Methods in HLIS (STEP 1)

The overall function of a Laboratory Information Systems (LIS) in healthcare settings
is the storage and dissemination of information pertaining to va rious clinical tests
performed on patients for the purpose of diagnosis and treatments. This application
system may be deployed at various types of settings like a multi- facility hospital or in
independent clinical service laboratories which provide clinical test services to various
hospitals and physician groups. Though the major functionality may be common between
LISs deployed at different settings, there may be differences in terms of interface and
security requirements. For the purpose of guiding our discussion in this paper, we have
chosen a Hospital-based Laboratory Information System (HLIS).

From an analysis of baseline functionality found in commercial offerings of HLIS,
we found that it supports the following business processes.

(a) Lab Order Entry (Test Request)
(b) Lab Test Scheduling
(c) Capture and Recording of Test Results
(d) Quality Control checks on Test Results
(e) Generation of Summary Reports (if needed)
(f) Retrieve/Access Test Results

After the determination of the business processes to be supported by the application
system, it is necessary to identify the broad information categories (or information
domains) and the specific information objects within these information domains that are
required to support a given business process. This requires an und erstanding of the
overall functions involved in a business process. For example, the Lab Order Entry
process involves a physician (or any authorized person) retrieving a patient basic
demographic and insurance information and submitting a list of tests to be performed
(from a set of valid tests that the lab is equipped to perform) on the patient. In terms of
broad information domains, this process may require the following:

(a) Patient Information Domain
(b) Order Information Domain
(c) Procedure Codes Domain

An information domain consists of a broad class of related objects and every object
in the domain may not be used in a particular business process. For example, the patient
information domain may consist of objects that stand for patient insurance information,
patient demographic information, patient encounter information, patient treatment
regimens, patient allergies etc. The information objects from the patient information
domain that may be needed for submitting a lab test request may just consist of those
dealing with insurance and demographic information and the patient’s current location.
By using a similar analysis, information objects from other domains may be determined
and the overall set of information objects needed for supporting the Lab Order Entr y
business process is derived as follows:

(a) Patient Demographic Information Object
(b) Patient Location Information Object
(c) Patient Insurance Information Object
(d) Order Header Information Object
(e) Order Work-List Object
(f) Lab Test Codes Object

Any business process analysis requires a determination of both data and functional
requirements. We have now completed the the data requirement component for the Lab
Order Entry business process. The functional requirements for this process are defined in
terms of the following abstract method definitions. These form the HLIS application-
level operations for the Lab Order Entry business process.

(M1) Get_Demo_Info(PatientId, AccessorId)

(M2) Get_Location_Info(PatientId,AccessorId)

(M3) Get_Insurance_Info(PatientId, AccessorId)

(M4) Set_Test_Request (PatientId,PhysicianId,AccessorId)

(M5) Set_Work_List(OrderId,AccessorId)

(M6) Get_Lab_Codes (AccessorId)

 A brief explanation regarding the intended functionality of the above defined
methods is as follows:

(M1)Get_Demographic_info () - gets demographic information regarding a patient like
the Patient Name, Age/Sex/Race/DOB etc. Physically this information may be residing
on an another system and the right to invoke this function is determined based parameter
values like PatientId and AccessorId. This right is determined based on the fact whether a
“need-to-know” situation exists for the AccessorId to retrieve the demographic
information of the patient represented by PatientId.

(M2) Get_Location_Info() – gets information abo ut the location in the hospital where the
patient is undergoing treatement. This may consists of Type_of_Ward, Ward Number,
Room Number, etc.

(M3) Get_Insurance_Info() - retrieves information like the Insurance Company Name &
Address, the Policy/Group No, the name of the Primary Insured, etc. for the patient for
whom the tests are requested.

(M4) Set_Test_Request() – Provides all the necessary information about the patient (like
the basic demographic information, current location and insurance informatio n) and the
overall type of test requested, test request date/time, test priority, etc.

(M5) Set_Work_List() - may set information regarding the line items in a test request
representing each type of test. The right to order a particular kind of tests depe nds upon

the physician making the requests. For example certain tests could only be ordered by a
Specialist rather than by a General Physician.

(M6)Get_Lab_Codes() - displays the list of tests that the lab is equipped to perform and
the standard codes associated with each of them.

A schematic diagram depicting the derivation of application- level operations for a given
business process is shown in Fig 4.1.

Fig 4.1 Deriving Application-Level Operations from a Business Process

Lab Order Entry

Procedure Codes
Domain

Patient Information
Domain

Order Information
Domain

 Patient Demographic
Information

Object

Patient Insurance
Information

Object

Patient Location
Information

Object

Order Header
Information

Object

Order Work-List
Object

Lab Test Codes
Object

 Get_Demo_
Info()

Get_Insurance_
Info()

Get_Location_
Info()

Set_Test_
Request()

Set_Work_
List()

Business Process

Information Domains

Domain Objects

Get_Lab_

Codes()

Application-Level

Operations (Methods)

5. Mapping Enterprise Security Policies to HLIS Operations (STEP 2)

The next step after determination of application- level operations is to look at the
provisions in the enterprise security policy (specifically enterprise access control policy)
that will have an impact on those operations. In general, an enterprise access control
policy may be a synthesis of the following information categories:

(a) Enterprise best practices (which has evolved over a period of time)
(b) Threat model driven requirements
(c) Government Regulations (Federal, State, etc.)

Because of the diverse sources based upon which security policies are composed,
these may sometimes be stated at different levels of granularity. For example, the
requirements in Government regulations (like HIPAA) may state access control
requirements in terms of the information domains affected by application- level
operations. Internally developed operational manuals may state access control restrictions
in terms of the healthcare worker categories within the hospital. Hence, mapping
enterprise access control policy requirements to application- level operations may
sometimes turn out to be a non-trivial task.

Let us now examine our HLIS application operation M4 [(Set_Test_Request ()]. As
could be seen from Fig 4.1 this operation uses informa tion from Patient Demographic
Information Object, Patient Location Object (which contains information about the ward
in which the patient is staying, admittance date, etc.) Patient Insurance Information
Object and Order Header Information object. The comb ination of the information
contained in these objects may come under the category of Health Information as per the
definition in the Security and Electronic Signature Standards; Proposed Rule issued by
Health and Human Service (HHS) [SESS98]. As per the proposed regulation, the “health
information means any information …… that relates to past, present, or future physical or
mental health or condition of an individual…”. With respect to our method M4, the
patient location information and the kind of tests ordered can reveal the condition of the
patient and hence this is a restricted class of information that can only be created by
authorized individuals. Based upon this federal regulation, the hospital access control
policy can stipulate that creation of laboratory test request information can only be
created by the patient’s attending physician or a Registered Nurse authorized by the
attending physician. Hence the HLIS access control requirement for Set_Test_Request()
can be stated as follows:

(M4-ACR1) O nly the following categories of healthcare workers are authorized to
order laboratory tests – Physicians and Authorized Registered Nurses

(M4- ACR2) The Physician ordering the laboratory test must be the current attending
physician of the patient.

(M4 – ACR3) The Registered Nurse ordering the laboratory test must be one of those
authorized for ordering tests either by the attending physician or by the hospital
administration based on a trust policy.

A schematic diagram for mapping organizational enterprise access control policy
requirements to access control requirements for HLIS application- level operation
Set_Test_Request (PatientId, PhysicianId, AccessorId) is depicted in Fig 5.1.

Fig 5.1 	Privileged Users and Privilege Restrictions for a
 HLIS application-level operation Set_Test_Request ()

Enterprise
Enterprise

Best
Practices

GovernmentThreat
RegulationsModel

Access Control
Policy

Set_Test_Request ()

Privileged User Categories
(1) Physicians

 (2) Registered Nurses
(M4-ACR1)

Application-Level

Operation

Physician Access
Restrictions
(M4-ACR2)

Registered Nurse Access
Restrictions
(M4-ACR3)

Privileges Privilege Constraints

6. Defining the Access Control Model for the Application (STEP 3)

 Since we had chosen RBAC as the modeling foundation for our application, we
have to determine the members of the three broad entities that RBAC model uses. These
entities are Users, Roles and Privileges.

Let us now focus our attention on the Privileges first. Recall that in the last section,
our analysis of a business process (Lab Order Entry) supported by the application
resulted in a set of methods (M1 through M6). If we had made an architectural decision
that all the user interactions with information objects used in an application are going to
be through a set of methods, and not through any other lower level access on the object
contents, then the methods themselves can form the correct level of granularity for
defining the privileges.

 The next design aspect for building the RBAC model for the HLIS application is the
definition of roles. In RBAC literature, roles are generally defined to group together all

the privileges associated with a job function or a business process. Since we have viewed
our HLIS as one supporting a fixed set of business processes, and a meaningful
interaction of any user with the application can only take place if the user can perform at
least one business process, it makes sense to group all the privileges together based on a
business process. Based on this logic, we can group together the methods M1 through M6
that were found required for supporting the Lab Order Entry business process and assign
to a role which we shall call the “Test_Requester” role.

 The last task remaining is to identify the members of the User entity. An hospital
environment just like any other enterprise consists of groups of people performing the
same business tasks and being subjected to a common policy governing access privileges
from a user to a process. Some of these groups are Physicians, Nurses, Lab Technicians,
Pharmacy staff, Ho spital Administrators, etc. The common business processes that a
particular group (say Physicians) perform are (a) examining patients (b) prescribing
medications or treatment programs and (c) ordering clinical tests and analyzing the
results. Various names like Group, Team, and Trusted Access Domain are given in the
access control literature for the collection of users. In our BPD-ACS framework we will
use the term Trusted Access Domain (TAD). Thus we will have Physician TAD, Nurse
TAD, Administrator TAD, etc.

 Since the semantics behind the grouping of users is the similarity of business
processes they perform and since the roles have been defined as a grouping construct for
all the privileges associated with a business process, it becomes natural to associate roles
with the TADs. The mapping of these Trusted Access Domains in the Hospital
environment to the HLIS application roles are given in Table 5.1 below. A portion of the
schematic diagram of the RBAC model for HLIS application is shown in Fig 5.2.

Table 5.1 - Map of Trusted Access Domain to HLIS Application Roles

Hospital Trusted Access Domains HLIS Application Roles
General Physician Test_Requester, Report_Viewer

Speciality Physician Test_Requester, Report_Viewer
Lab Supervisor Test_Scheduler,Results_QC
Lab Technician Test_Results_Generator

Registered Nurse Test_Requester, Report_Viewer

7. Definition of Access Decision Rules (STEP 4)

Access Decision Rules constrain the exercise of privileges. They are meant to bring
in contextual information to decide whether a given privilege can be exercised in a
particular access request. Depending upon the type of contextual information they use,
they can made up of different types of constraints:

(a) Time/Day of Access Request (Time Constraints)
(b) Histor y of Previous accesses (Conflict of Interest Constraints)

(c) History of Previous accesses together current state of the target object
(Separation of Duty Constraints)

(d) Trust Level of the User (Trust Constraints)
(e) Parameter values used in the access request (Temporal Business Association

 Constraints)

Fig 5.2 – A partial schema of the RBAC Model for HLIS Application

UsersDr. John

Physician

Test_Requester

Dr. MayDr. Susan

Report_Viewer

Trusted Access
Domains

Roles

Methods

Each of these types of access decision rules are meant to implement different kinds of
policies. In Healthcare enterprises like Hospitals, the predominant factors constraining
the exercise of privileges are the associations or relationships between the providers of
service (like physicians, nurses, etc.) and the recipients of service (in-patients, out ­
patients, etc.). Because these associations are relatively short- lived, the most significant
constraints are the Temporal Business Association Constraints. Hence access decision
rules involving only this type of constraints are discussed in this paper though our BPD­
ACS framework itself is meant to support any type of rule.

Access Decision Rules involving temporal business association constraints compare
the parameter values in a given access request (based on an assigned privilege) to the data

values that will validate the current business association. These validating data values are
present in what we call as the Temporal Business Association Database. Hence the rule
predicate expressions consists of relations which link the access request parameter names
to column names found in the Temporal Business Association database through
appropriate relational operators like ==, <=, >=, etc. Hence the truth values of these
predicate expressions can only be obtained by instantiating these access decision rules by
retrieving values from the Temporal Business Association database.

The definition of an Access Control Rule based on the syntax used in [ASG99] that
will constrain the access to method Set_Test_Request (PatientId, PhysicianId,
AccessorId) by a Physician or Authorized Nurse for the purpose of creating a Laboratory
Test Request is shown below:

Listing 7.1 - Definition of the Allow_Set_Test_Request rule for constraining the
 Privilege Set_Test_Request (PatientId, PhysicianId, AccessorId)

Rule Name
 Allow_Set_Test_Request

Access Request Attributes
 PatientId: string

 PhysicianId: string
 Accessor Id: string

Environmental Attributes
 Accessor_Domain: string

Temporal Business Association Database Attributes
 Table_Name: ATTENDING_CLINICIAN
 Field_Names:

Patient_Identifier: string;
 Physician_Identifier: string;

 Auth_Nurse_Identifier: string;

Rule Predicate
PatientId == :Patient_Identifier &

 ((Accessor_Domain = “Physician” & PhysicianId == :Physician_Identifier) |
 (Accessor_Domain = “Nurse” & AccessorId == :Auth_Nurse_Identifier))

(NOTE: the : in front of the field names (e.g., :Patient_Identifier denotes that it represents
the actual value from the database and not the name of the column or attribute from the
ATTENDING_CLINICIAN table).

After defining the rule Allow_Set_Test_Request, it must be associated with the
corresponding privilege (or method) Set_Test_Request() wherever the invocation of this

method is to be restricted. This method may be directly assigned to a user as a privilege
or ind irectly to a role. In every one of these assignments, the association of this rule to the
method must be represented. But in situations where some user or role is to be granted
unrestricted privilege for this method, this rule association need not be shown. The
association of this rule Allow_Set_Test_Request to the method Set_Test_Request() when
it is assigned as one of the privileges in the role Test_Requester is shown below (in bold
letters) in Listing 7.2:

Listing 7.2 – Role Definition showing the meth ods and associated rules

Role Name = “Test_Requester”

Role Memberships = <none> /* Here memberships means other roles –

 not users */
Privileges:

Privilege Name = Get_Demo_Info(PatientId,AccessorId)
Pri vilege Rules:

 Rule Name: Allow_Get_Demo_info

Privilege Name = Get_Location_Info(PatientId,AccessorId)
Privilege Rules:

 Rule Name: Allow_Get_Location_info

Privilege Name = Get_Insurance_Info(PatientId,AccessorId)
Privilege Rules:
 Rule Name: Allow_Get_Demo_info

Privilege Name = Set_Test_Request (PatientId,PhysicianId,AccessorId)
Privilege Rules:

 Rule Name: Allow_Set_Test_Request

Privilege Name = Set_Work_List (OrderId,AccessorId)
Privilege Rules:
 Rule Name: Allow_Set_ Work_List

Privilege Name = Get_Lab_Codes (AccessorId)
Privilege Rules:

 Rule Name: Allow_Get_Lab_Codes

From the above definition of the role Test_Requester, we see that all the methods that we
had earlier mentioned as comprising this role are assigned as privileges with associated
rules for restricting the exercise of each of these privileges. The above syntax will also
permit definition of multiple rules for the same method as well.

 Having shown the association of an access decision rule to a method (or privilege),
we will now illustrate with an example the conditions under which a given access request

will be granted. Supposing that the user request to the method Set_Test_Requester()
consists of one of the following attribute values.

Set_Test_Request(“P102068”,”MD23456”,”MD23456”) or
Set_Test_Request((“P102068”,”MD23456”,”RN8967”)

(The first request example may be from the physician in which case the
Accessor_Domain == “Physician” and the second request may be from a Registered
Nurse in which case the Accessor_Domain = “Nurse”).

Then the rule expression in Listing 7.1 will only evaluate to true if the following entry
(Listing 7.3) is found in the ATTENDING_CLINICIAN table in the Temporal Business
Association Database.

Listing 7.3 – A Ta ble in the Temporal Business Association Database

Table Name : ATTENDING_CLINICIAN

Patient_Identifier Physician_Identifier Auth_Nurse_Identifier
P102068 MD23456 RN8967

8. Defining the Access Enforcement Mechanism (Step 5)

The process of defining the acc ess enforcement mechanism consists of providing the
logical sequence of steps involved in arriving at an access decision for a given access
request. We will illustrate this process for the case where a user called Dr. John makes a
request for ordering laboratory tests for a patient by name David through the HLIS
application [(Invoke the method Set_Test_Request() with actual parameters (DavidId,
JohnId, JohnId)].The Access Request Processing (ARP) steps based on the access service
components defined in BPD-ACS follows:

(ARP-1) After the user (Dr. John) is authenticated, his trusted access domain was
determined to be the General Physician. This information is obtained by consulting the
database Trusted Access Domain (TAD) – DB.

(ARP-2) The HLIS application roles that are assigned to this domain are the
Test_Requester and Report_Viewer (Table 5.1). These role assignments are obtained by
consulting the TAD-Role Assignments DB.

(ARP-3) The privilege domain for Dr. John consists of the combination of all the
methods in these two roles . Since Set_Test_Request() is one of these methods the
system continues to process Dr. John’s access request (this information is obtained from
the Role Privileges DB). The system also obtains the rule (Allow_Set_Test_Request) to
which needs to be evaluated to determine whether John can submit a lab test request for
David.

(ARP-4) The rule Allow_Set_Test_Request is evaluated by obtaining the rule definition
from Rule Definition DB and the validating values from Temporal Business Association
DB. If John is the attending physician for David then John’s access request
Set_Test_Request(DavidId, JohnId, JohnId) will be allowed.

The schematic diagram of the above described sequence of steps is shown in Fig 8.1.

Fig 8.1 – Access Decision Logic in the BPD -ACS framework

John Logs in
with the request

Set_Test_Req
(DavidId ,
JohnId , JohnId)

Dr. John’s TAD
determined

Dr. John’s Role
Memberships

Dr. John right to
invoke

Set_Test_Request()

Trusted Access

Domain (TAD) - DB

TAD- Role
Assignments -DB

Role Privileges - DB
(also references the rules

to be evaluated)

verified

Rule
Allow_Set_Test_Request

evaluated
Temporal Business
Association -DB

Rule Definitions - DB

Allow Access = YES

9. Conclusions

The Formulation of Access Decision Rules based on temporal business
association constraints, which was illustrated in the context of an healthcare enterprise
application, could also be potentially be used in other application domains. One
promising area is in extranet applications where the business relationships between

enterprises are of a short duration. These types of rules could also be used in web-based
bidding and auction applications where the r ights of the interacting parties are determined
based on occurrence of certain events and current state of relationships among the
interacting parties.

Further, the underlying access control model itself may contain various
constraints that need to be pro cedurally supported. For example, the RBAC model used
in our framework could contain constraints associated with user-role assignments, user-
role activations and privilege -role assignments. The BPD-ACS framework could be
enhanced to include these constraints through various Model Based Rules in addition to
Access Decision Rules.

Thus we see that the BPD-ACS framework could be scaled up to include more
access control service components depending upon the application domain needs. But the
underlying theme is that each of these service component definitions should be based on
a sound analysis of the business processes that the application is intended to support.

10. References

[AD_SO] “Adage System Overview”, http://www/.memesoft.com/
adage/docs/SystemSpec.ps

[ASG99] HP Authorization Server Guide, October 99, Hewlett-Packard Company, Palo
Alto, CA.

[BY] W.R. Bevier and W.D.Young. “A Constraint Language for Adage”
http://www.memesoft.com/adage/al.ps

[D97] Tor Didriksen “Role Based Database Access Control – A Practical Approach”,
Proceedings of the 2nd ACM workshop on Role Based Access Control, November 1997,
p 143-151

[GI97] Luigi Giuri and Petro Iglio “Role Templates for Content-Based Access Control”,
Proceedings of the 2nd ACM workshop on Role Based Access Control, November 1997,
p 153-159

[FCK95] D.Ferraiolo, J.Cugini, and D.R.Kuhn. “Role Based Access Control (RBAC):
Features and Motivations” Proc. 1995 Computer Security Applications Conference,
Decembe r 1995, p241-248.

[HPAS_WP] HP Praesidium / Authorization Server White Paper.
http://www/hp.com/security/products/authorization_server/papers/whitepaper/.

[SCFY96] R.S. Sandhu, E.J.Coyne, H.L.Feinstein and C.E.Youman. “Role Based Access
Control Models” IEEE Computer, vol 29, Num 2, February 1996, p38-47.

http://www/hp.com/security/products/authorization_server/papers/whitepaper
http://www.memesoft.com/adage/al.ps
http:adage/docs/SystemSpec.ps
http:http://www/.memesoft.com

[SESS98] Security and Electronic Signature Standards; Proposed Rule. Federal Register,
Vol 63, No. 155, August 12, 1998.

