

Reprinted from Proceedings, 27th

NASA/IEEE Software Engineering

Workshop, NASA Goddard Space Flight

Center, 4-6 December, 2002.

An Investigation of the

Applicability of Design of

Experiments to Software Testing

D. Richard Kuhn and Michael J. Reilly

National Institute of Standards and

Technology

Gaithersburg, MD 20899

kuhn@nist.gov

michael.reilly@nist.gov

Abstract
Approaches to software testing based on methods

from the field of design of experiments have been
advocated as a means of providing high coverage at
relatively low cost. Tools to generate all pairs, or
higher n-degree combinations, of input values have
been developed and demonstrated in a few
applications, but little empirical evidence is available
to aid developers in evaluating the effectiveness of
these tools for particular problems. In this paper we
investigate error reports from two large open-source
software projects, a browser and web server, to provide
preliminary answers to three questions: Is there a
point of diminishing returns at which generating all n-
degree combinations is nearly as effective as all n+1-
degree combinations? What is the appropriate value of
n for particular classes of software? Does this value
differ for different types of software, and by how much?
Our findings suggest that more than 95% of errors in
the software studied would be detected by test cases
that cover all 4-way combinations of values, and that
the browser and server software were similar in the
percentage of errors detectable by combinations of
degree 2 through 6.

1. Introduction

Methods from the field of design of experiments
(DOE) have been applied to quality control problems in
many engineering fields for several decades. DOE
seeks to maximize the amount of information gained in

an experiment by optimizing the combinations of
independent variables. Software testing using DOE
methods, often referred to as combinatorial testing
methods, has been advocated as an efficient means of
providing a high level of coverage of the input domain
with a small number of tests [1] [2] [3] [4] [5] [6]. For
example, consider a device that has 20 inputs, each with
10 settings (or 10 equivalence classes if the variables
are continuous), for a total of 10 20 combinations of
settings. The few hundred test cases that can be built
under many development budgets would cover less
than a fraction of a percent (< 10-15) of the possible
cases. But the number of pairs of settings is in fact
small by comparison, and since every test case must
have a value for each of the ten variables, many pairs
can be included in a single test case. Algorithms based
on orthogonal arrays are available that can generate test
data for all 2-way (or higher order n-way) combinations
at a reasonable cost. One such method makes it possible
to test all pairs of values for this example using only
180 cases [7]. This level of test effort would be practical
for many small software-controlled devices, or critical
components of larger systems. In general, for k
parameters with v values each, the number of t-way test
cases is proportional to 𝑣$log 𝑘.

Combinatorial testing methods have an industrial
appeal in their potential to reduce test costs, but there is
also a significant productivity advantage to applying
these methods in testing high integrity software. If we
were able to know with certainty that all faults in a
system can be triggered by a combination of n or fewer
parameters, then testing all n-way or fewer interactions
is effectively equivalent to exhaustive testing for
variables with a small set of discrete values (possibly
using equivalence classes for continuous value
variables). In reality, of course, we can never know in
advance what degree of interaction is required to trigger
all faults in a system. A practical alternative, however,
may be to collect empirical data on faults that occur in
real systems in various application domains. For
example, if long term failure data show that a particular
type of application has never required the interaction of
more than 5 parameters to reveal a failure, then an
appropriate testing goal for that class of applications is
to test all 5-way or fewer interactions.

Proponents of these methods have reported that
little empirical work exists to support their use [8].
Many applications of combinatorial testing methods
have focused on configuration testing [9]. For
example, a client-server information system may
include five types of client operating systems, three
browsing programs, and five types of server operating
systems. Rather than test all 75 configurations of the
variables - client operating system, browser, server

US Government work. Not subject to US copyright.

mailto:michael.reilly@nist.gov
mailto:kuhn@nist.gov

operating system - a smaller number of tests can be
used to consider all pairs of variables. A less common
application of combinatorial methods is in selection of
input data. The earliest such example is probably that
of Mandl [10], who used orthogonal arrays to select
data types in testing Ada compilers. Since then,
combinatorial methods have been used in a number of
other applications, and tools have been developed to
simplify their use in test data selection. Dalal et al. [11]
demonstrated the effectiveness of pair-wise testing in
four case studies, but did not investigate higher-degree
interactions. The Remote Agent Experiment (RAX)
software on NASA’s Deep Space 1 mission [12] is
another example of applied combinatorial methods.
The RAX is an expert system that generates plans to
carry out spacecraft operations without human
intervention. This work found that testing all 2-degree
pairs of input values and all individual values detected
88% of bugs classified as correctness and convergence
flaws (i.e. successfully finding a feasible path), but
detected only 50% of engine interface bugs. The
NASA study did not investigate higher-degree
interactions required to trigger a failure. Another study
[13] reviewed 15 years of medical device recall data
from the US Food and Drug Administration to
characterize the types of faults that occur in this
application domain. Only 109 of the 342 recalls of
software controlled devices contained enough
information to determine how many conditions were
required to replicate a failure. Of these 109 cases, 98%
of the reported flaws could be detected by testing all
pairs of parameter settings, and only three of the recalls
indicated that more than two conditions were required
to cause a failure. The most complex of these failures
required four conditions. A serious limitation of this
study was the limited data set.

It is noted in Smith, Feather, and Muscetolla [12]
that pairwise testing detected only 20% more errors
than all-values testing. Although they did not test
beyond pairwise combinations, the authors proposed
the reasonable hypothesis that a point of diminishing
returns is reached for some small value of n, so that an
effective test strategy is to test n-way combinations of
parameter values, with additional tests for selected
higher order combinations. Some important questions
in this regard are:

1.	 Is there in fact such a point of diminishing
returns?

2.	 What is the appropriate value of n for
particular classes of software?

3.	 Does this value differ for different types of
software, and by how much?

4.	 Does the value increase as software moves
from development to stable use?

5.	 Does it continue to increase with version
upgrades?

In this paper we report on work that begins to answer
the first three of these questions.

2.	 Procedures

We characterized faults in two large open source
software projects by the number of conditions required
to trigger the fault. That is, what percentages of known
faults were triggered by a single condition, an
interaction between two conditions, three conditions,
and so on? The Mozilla web browser and Apache web
server projects provide publicly accessible databases of
bugs for use by developers. Each bug is classified
according to characteristics such as severity, priority
for repair, and current state (e.g. fixed or pending). A
description of each bug is given with instructions on
how to replicate the bug when available. We reviewed
a total of 194 bug reports in the browser database
(http://bugzilla.mozilla.org) - all entries classified as
“Verified, Fixed, Critical.” Using the descriptions in
the database, bugs were categorized by the number of
conditions required to trigger the associated fault. For
example, bug 106763 has a description which states
“Subscribe window is blank until you enter a search
term,” has one condition: the subscribe window should
be opened. A corresponding procedure was used to
collect data on 171 bugs from the server bug database,
although the database used was “Old Apache Bug
Database,” which has a slightly different classification
scheme than Bugzilla. (The new version of the Apache
database is the same as that for the browser, but does
not contain a sufficient number of bug reports for
review.) The server bug database organizes bugs
according to the module in which they occur, e.g.,
access control, CGI processing, cookie handling.

3.	 Findings and Discussion

For the two software projects analyzed in this
paper, some conclusions can be suggested from the
results shown in Table 1, although more software
projects must be analyzed to provide a reasonable
level of confidence.

•	 For these projects, there was in fact a point of
diminishing returns reached at a small number
of conditions. Testing all 3-way or lower
degree combinations would detect
approximately 90% of the reported bugs, and
all 6-way and lower degree combinations
would detect all faults reported in the bug
databases.

http:http://bugzilla.mozilla.org

Conditions
(values of n)

Browser
(194 bugs)

Server Modules
(171 bugs)

% cumulative
%

% cumulative
%

1 28.6 28.6 41.7 41.7
2 47.5 76.1 28.6 70.3

3 18.9 95.0 19.0 89.3
4 2.2 97.2 7.1 96.4
5 2.2 99.4 0.0 96.4
6 0.6 100.0 3.6 100.0

Table 1. Number and Percent of Faults Triggered
by n-way Conditions

•	 The review conducted for this paper was not
sufficient to determine whether higher degree
combinations are required to detect faults as
the software was upgraded in later releases.

•	 Both databases contained bug data that were
unclassifiable in terms of ‘Number of
Conditions.’ Some bugs were either not
adequately described to give a determinate
number of conditions, while others were not
traditional bugs in the sense that they were
caused by incorrect use of the product by a
user (e.g. improper configuration).

Before returning to the questions posed in the
Introduction, there are a number of caveats
and sources of error to be considered before
conclusions are drawn.

•	 The bug reports indicate conditions required
to trigger faults, but do not describe the level
of testing conducted. It is possible that the
easier bugs – requiring fewer conditions to
detect – were being found.

•	 Conditions needed to replicate failures for the
server modules were frequently reported as a
list of configuration settings. It may be that
many of the settings were “don’t care”
conditions, and that only one or two of the
conditions were essential to triggering the
fault. In this case, the number of conditions
required to detect a fault would be artificially
increased.

•	 A third possible source of error is attributed to
the analysts who reported the bugs. The
methods for counting the number of
conditions required to trigger a bug in each
database are not necessarily the same. Since

the bug database for the web browser
describes specific lines of code and functions
that are invoked to trigger the bug, the number
of ways that these functions are activated is
not addressed. For example there could be
two separate ways of calling a specific
function that triggers a bug. Also, it is not
clear how many conditions are set or activated
by the code in question. If a function that
seems to trigger a bug, which would be
classified as one condition, is responsible for
setting a number of conditions that are, at a
finer level of scrutiny, ultimately the true
cause of the bug, the recorded number of
conditions for that bug would be less than the
actual number.

•	 Viewing the bugs in the server database, we
also find a number of bugs that are described
only in terms of a specific web page that, when
viewed, causes the fault. These page-specific
bugs cannot be classified with as much
certainty as bugs that are described directly in
terms of the conditions required to cause them,
because their descriptions do not allow insight
into what conditions are required on the
coding level to recreate the fault (e.g. how to
make a separate web page that would cause
the same fault to occur).

Returning to the questions from the Introduction,
some preliminary conclusions and implications for
testing can be suggested:

1.	 For the systems reviewed, there was in fact a
point of diminishing returns reached at a fairly
low level of n-way combinations. More than
70% of bugs were detected with two or fewer
conditions (75% for browser and 70% for
server) and approximately 90% of the bugs
reported were detected with three or fewer
conditions (95% for browser and 89% for
server). This result is consistent with the
hypothesis proposed in [12].

2.	 Depending on reliability requirements, cost
considerations, and other assurance methods
available, the appropriate value of n could be
n ≤ 3 to n ≤ 6. It is interesting that a small
number of conditions (n ≤ 6) are sufficient to
detect all reported errors for the browser and
server software. For the medical device
software reported in [13] this value is even
smaller: n ≤ 4. Testing all combinations up to
these small values of n would provide a form

of “pseudo-exhaustive” testing, although
clearly not truly exhaustive because of
uncertainty as to whether remaining errors
would be triggered by a higher-order
combination of n+1 or more conditions, and
the uncertainty introduced by using
equivalence classes rather than all values for
some variables.

3.	 There is some degree of variation among the
different types of software discussed in this
paper for the level of n required to detect a
high percentage of bugs. It is somewhat
surprising that a higher degree of
combinations was required to detect close to
100% of browser and server errors (n ≤ 4
conditions for 97% of errors) than was
required for the medical device software (n ≤
2 to detect 98% of errors) reviewed in [13].
The medical device bug reports were from
software installed in mature, fielded products,
while the browser and server bug reports came
from development efforts. However, the
sample size for the medical device software
was smaller and bug reports were much less
complete than those provided by the browser
and server developers, so the n ≤ 2 value may
not be truly representative of this software.
Another possibility is that the browser and
server software are simply larger and more
complex than the majority of the medical
device applications. The percentage of bugs
detected by 2-way combinations
(approximately 70%) for the browser and
server software falls in between the values
reported by [12] for the RAX planner (88%)
and engine-interface (50%) software, again
possibly as a result of differences in
complexity and application domain.

For combinatorial testing to be effective in providing a
high level of assurance, two conditions must hold:

•	 For all n-way combinations of values that
trigger faults, n must be relatively small, to
make test case development tractable.

•	 The number of values to be tested can be large,
but it must be possible to enumerate these
conditions from specifications, and to create

Certain products may be identified in this document, but
such identification does not imply recommendation by NIST
nor that the products identified are necessarily best for the
purpose.

test cases that cover these conditions up to the
required degree.

For both projects reviewed, the first condition
clearly holds. Three or fewer conditions triggered
about 90% of the browser and server bugs. For high
quality software, simply testing all 3-way conditions is
not sufficient, but other testing approaches might be as
good as or better than combinatorial testing from a
cost/benefit standpoint. Empirical studies comparing
the cost of detecting complex faults through
combinatorial testing versus other methods would be
helpful to test planners. The second condition is more
problematic. For the browser, almost all of the
conditions reported in bug reports were unique, while
for the server it was not unusual to see a particular
condition, say P, involved in more than one bug report.
For example, one server bug might be triggered by
P ∧ Q ∨ R , another by P ∧ S , and another by P ∧ T ,
but it was rare to see a particular condition P appear in
more than one browser bug report.

4. Conclusions

For the software investigated in this paper, a
web browser and server, a relatively low degree of n-
way combinations of values would detect nearly all
errors in the database. Appropriate levels of n could be
n ≤ 3 to n ≤ 6, according to dependability requirements,
suggesting that combinatorial testing would be
effective for this type of software. If experience shows
that all errors in a particular class of software are
triggered by combinations of n values or less, then
testing all combinations of n or fewer values would
provide a form of “pseudo-exhaustive” testing. Since
most variables are likely to have a very large range of
values, equivalence classes would need to be used in
practice. Because the effectiveness of combinatorial
testing depends on the fact that a single test case can
include a large number of pairs (or higher degree
combination) of values, this approach would not be
effective for most real-time or other software that
depends on testing event sequences, but it may be
applicable to subsystems within real-time software.
Empirical studies of other classes software would be
helpful in evaluating the applicability of combinatorial
testing.

References

[1] R. Brownlie, J. Prowse, and M.S. Phadke. Robust
Testing of AT&T PMX/StarMail using OATS. AT&T
Technical Journal, 71(3): 41-47 (May/June 1992).

[2] K. Burroughs, A. Jain, and R.L. Erickson. Improved
Quality of Protocol Testing Through Techniques of
Experimental Design. In Proceedings of Supercomm/ICC
’94, 1994, pp. 745-752 1994.

[3] D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton.
The Combinatorial Approach to Automatic Test Generation.
IEEE Software, 13(5): 83-88, (September 1996).

[4] I.S. Dunietz, W.K. Ehrlich, B.D. Szablak, C.L.
Mallows, A. Iannino. Applying Design of Experiments to
Software Testing. In Proceedings of ICSE ‘97, pages 205-
215, Boston MA USA, (1997).

[5]J.D.McGregor, D.A. Sykes, Practical Guide to Testing
Object-Oriented Software,Addison-Wesley, 2001.

[6] R.S. Pressman. Software Engineering: A Practitioner's
Approach 5th edition, McGraw Hill, 2001.

[7] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C.
Patton. The AETG System: An Approach to Testing Based

on Combinatorial Design. IEEE Transactions on Software
Engineering, 23(7): 437-444, (July 1997).

[8] J.M. Harrell, “Orthogonal Array Testing Strategy
Technique”,
http://www.cvc.uab.es/shared/teach/a21291/apunts/provaOO
/OATS.pdf

[9] W.B. Perkinson. A Methodology for Designing and
Executing ISDN Feature Tests Using Automated Test
Systems. In Proceedings of IEEE GLOBECOMM ’92, 1992.

[10] R. Mandl. Orthogonal Latin squares: An application of
experiment design to compiler testing. Communications of
the ACM, 28(10): 1054-1058 (October 1985).

[11] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M.
Lott, G.C. Patton, B.M. Horowitz, “Model-Based Testing in
Practice”, International Conference on Software
Engineering, 1999.

[12] B. Smith, M.S. Feather, N. Muscettola, “Challenges
and Methods in Testing the Remote Agent Planner”,
Proceedings of the Fifth International Conference on
Artificial Intelligence Planning Systems, Breckenridge, CO.

[13] D.R. Wallace, D.R. Kuhn, “Failure Modes in Medical
Device Software: an Analysis of 15 Years of Recall Data”,
International Journal of Reliability, Quality and Safety
Engineering, vol. 8, no. 4, 2001.

http://www.cvc.uab.es/shared/teach/a21291/apunts/provaOO

