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Abstract 
 
 We examine the performance of multimodal biometric 
authentication systems using state-of-the-art Commercial 
Off-the-Shelf (COTS) fingerprint and face biometrics on a 
population approaching 1000 individuals.  Prior studies 
of multimodal biometrics have been limited to relatively 
low accuracy non-COTS systems and populations 
approximately 10% of this size.  Our work is the first to 
demonstrate that multimodal fingerprint and face 
biometric systems can achieve significant accuracy gains 
over either biometric alone, even when using already 
highly accurate COTS systems on a relatively large-scale 
population.  In addition to examining well-known 
multimodal methods, we introduce novel methods of 
fusion and normalization that improve accuracy still 
further through population analysis. 
 
 
1. Introduction 
 

It has recently been reported [1] to the U.S. Congress 
that approximately two percent of the population does not 
have a legible fingerprint and therefore cannot be enrolled 
into a fingerprint biometrics system.  The report 
recommends a system employing dual biometrics in a 
layered approach.  Use of multiple biometric indicators 
for identifying individuals, so-called multimodal 
biometrics, has been shown to increase accuracy [2, 3, 4], 
and would decrease vulnerability to spoofing while 
increasing population coverage. 

The key to multimodal biometrics is the fusion (i.e., 
combination) of the various biometric mode data at the 
feature extraction, match score, or decision level [4].  
Feature level fusion combines feature vectors at the 
representation level to provide higher dimensional data 
points when producing the match score.  Match score 
level fusion combines the individual scores from multiple 
matchers.  Decision level fusion combines accept or reject 
decisions of individual systems.  

 Our methodology for testing multimodal biometric 
systems focuses on the match score level [2].  This 

approach has the advantage of utilizing as much 
information as possible from each single-mode biometric, 
while at the same time enabling the integration of 
proprietary COTS systems. 

Published studies examining fusion techniques have 
been limited to small populations (~100 individuals), 
while employing low performance non-commercial 
biometric systems. In this paper we investigate the 
performance gains achievable by COTS-based 
multimodal biometric systems using a relatively large 
(~1000 individuals) population.  Section two and three 
describe the traditional and novel normalization and 
fusion methods that we employed for match score 
combination.  New methods for adaptive normalization 
and fusion using user-level weighting based on the wolf-
lamb [5] concept are introduced and compared.  In section 
four we provide a performance analysis of these 
multimodal methods and investigate performance 
variability attributable to population differences. 
 
2. Normalization 
 

A normalization step is generally necessary before the 
raw scores originating from different matchers can be 
combined in the fusion stage. For example, if one matcher 
yields scores in the range [100, 1000] and another 
matcher in the range [0, 1], fusing the scores without any 
normalization effectively eliminates the contribution of 
the second matcher.  We present three well-known 
normalization methods, and a 4th novel method, which we 
call adaptive normalization that uses the genuine and 
impostor distributions. 

We denote a raw matcher score as s  from the set of 
all scores for that matcher, and the corresponding 
normalized score as .  Different sets are used for 
different matchers.  The abbreviations (such as MM) next 
to the normalization method names are used throughout 
the remainder of this paper. 

S

n

 
Min-Max (MM).  This method maps the raw scores to 
the [0, 1] range.  max(S) and min(S) specify the end 
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points of the score range (vendors generally provide these 
values): 
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Z-score (ZS).  This method transforms the scores to a 
distribution with mean of 0 and standard deviation of 1. 

 and  denote the mean and standard 
deviation operators: 
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Tanh (TH).  This method is among the so-called robust 
statistical techniques [6].  It maps the scores to the (0, 1) 
range:   
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Adaptive (AD). The errors of individual biometric 
matchers stem from the overlap of the genuine and 
impostor distributions as shown in Fig. 1.  This region is 
characterized with its center  and its width .  To 
decrease the effect of this overlap on the fusion algorithm, 
we propose to use an adaptive normalization procedure 
that aims to increase the separation of the genuine and 
impostor distributions, as indicated by the block arrows in 
Fig. 1., while still mapping scores to [0,1].  

c w

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Overlap of genuine and impostor 
distributions. 
 

This adaptive normalization is formulated as  
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where denotes the mapping function which is used 
on the MM normalized scores. We have considered the 

following three functions for . These functions use 
two parameters of the overlapped region, c  and w , 
which can be provided by the vendors or estimated by the 
integrator from data sets appropriate for the specific 
application.  In this work, we act as the integrator.  
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Two-Quadrics (QQ).  This function is composed of 2 
quadratic segments that change concavity at  (Fig. 2).  c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Mapping function for QQ. 
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For comparison, note that the identity function, 

MMAD nn = , is shown by the dashed line. 
 
Logistic (LG).  Here,  takes the form of a logistic 
function. The general shape of the curve is similar to that 
shown for function QQ in Fig. 2. It is formulated as  
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where the constants A  and are calculated as B
 

                          11
−

∆
=A   and  

c
Aln                

                          
Here,  is equal to the constant )0(f ∆ , which is 

selected to be a small value (0.01 in this study). Note the 
inflection point of the logistic function occurs at , the 
center of the overlapped region.  
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Quadric-Line-Quadric (QLQ).  The overlapped zone, 
, is left unchanged while the other regions are mapped 

with two quadratic function segments (Fig. 3): 
w

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Mapping function for QLQ. 
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3. Fusion 
 

We experimented with the five different fusion 
methods summarized below. The first three are well-
known fusion methods; the last two are novel and they 
utilize the performance of individual matchers in 
weighting their contributions. As we progress from the 
first three methods to the fifth, the amount of data 
necessary to apply the fusion method increases.  

Our notation is as follows:  represents the 
normalized score for the matcher  ( m , 
where 

m
in

m M ..., ,2 ,1=
M  is the number of different matchers) and for the 

user  ( i , where i I ..., ,2 ,1= I  is the number of 
individuals in the database). The fused score is denoted as 

.  if
 
Simple Sum (SS).  Scores for an individual are summed: 
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Min Score (MIS). Choose the minimum of an 
individual’s scores: 

                                          innnminf M
iiii ∀=  ,) ..., , ,( 21

 
Max Score (MAS). Choose the maximum of an 
individual’s scores: 

MMn

ADn
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Matcher Weighting (MW).  Matcher weighting-based 
fusion makes use of the Equal Error Rate (EER).  Denote 
the EER of matcher m as ,  and the 
weight  associated with a matcher m is calculated as  

me Mm  ..., ,2 ,1=
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Note that 0 ,  and the weights 

are inversely proportional to the corresponding errors; the 
weights for more accurate matchers are higher than those 
of less accurate matchers (Although the EER value alone 
may not be a good estimator for the accuracy of a 
matcher, we chose to use it for spanning the amount of 
data  available to the integrator mentioned above).  The 
MW fused score is calculated as  
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User Weighting (UW).  The User Weighting fusion 
method applies weights to individual matchers differently 
for every user (individual). Previously, Ross and Jain [7] 
proposed a similar scheme, but they exhaustively search a 
coarse sampling of the weight space, where weights are 
multiples of 0.1. Their method can be prohibitively 
expensive if the number of fused matchers, M , is high, 
since the weight space is ; further, coarse sampling 
may hinder the calculation of an optimal weight set.  In 
our method, the UW fused score is calculated as  

Mℜ
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where  represents the weight of matcher  for user 
.  

m
iw m

i
The calculation of these user-dependent weights make 

use of the wolf-lamb concept introduced by Doddington, 
et al. [5] for unimodal speech biometrics. They label the 
users who can be imitated easily as lambs; wolves on the 
other hand are those who can successfully imitate some 
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others. Lambs and wolves decrease the performance of 
biometric systems since they lead to false accepts.  

We extend these notions to multimodal biometrics by 
developing a metric of lambness for every user and 
matcher, (i,m), pair. This lambness metric is then used to 
calculate weights for fusion. Thus, if user i  is a lamb 
(can be imitated easily by some wolves) in the space of 
matcher , the weight associated with this matcher is 
decreased. The main aim is to decrease the lambness of 
user  in the space of combined matchers.  

m

i
We assume that for every ( , m ) pair, the mean and 

standard deviation of the associated genuine and impostor 
distributions are known (or can be calculated, as is done 
in this study). Denote the means of these distributions as 

and , respectively, and denote the standard 

deviations as  and , respectively. 

i

m
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genσ m m
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We use the d-prime metric [8] as a measure of the 
separation of these two distributions in formulating the 
lambness metric as: 
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If  is small, user i  is a lamb for some wolves; if 

 is large,  is not a lamb. We structure the user 
weights to be proportional to this lambness metric as 
follows 
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Fig. 4 shows the location of potential wolves for a 

specific (i,m) pair with a block arrow, along with the 
associated genuine and impostor distributions. This user 
dependent weighting scheme addresses the issue of 
matcher-user relationship: namely, a user can be lamb for 
a specific matcher, but also can be a wolf for some other 
matcher. We find the user weights by measuring the 
respective threat of wolves living in different matcher 
spaces for every user.   

 
4. Experimental Results 
 
4.1. Databases 
 

Our experiments were conducted on a population of 
consistently paired fingerprint and facial images from two 
groups of 972 individuals, using our previously 
developed test methodology and framework [2].  Since 

the paired fingerprint and facial images come from 
different individuals, we are assuming that they are 
statistically independent – a widely accepted practice.  
The images were taken from two separate groups of 972 
individuals, with the first group contributing a pair of 
facial images and the second a pair of fingerprint images.  
This creates a database of 972 virtual individuals.  Each 
pair consists of a primary and a secondary image, with all 
primary images assigned to the target set, and all 
secondary images assigned to the query set. 

  Match scores were generated from four COTS 
biometric systems – three fingerprint and one face.  For 
each biometric system, all query set images were matched 
against all target set images, yielding 972 genuine scores 
(correct matches) and 943,812 imposter scores.   

 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4. Distributions for a (user, matcher) pair: 
the arrow indicates location of wolves for lamb  i
 
4.2. Approach 

 
Among the three adaptive normalization methods (QQ, 

QLQ and LG), the QLQ method gave the best results in 
our experiments, so it is selected as the representative 
method.   

We carried out all possible permutations of 
(normalization, fusion) techniques on our database of 972 
users. Table 1 shows the EER values for these 
permutations. Note that EER values for the 3 individual 
fingerprint matchers and the face matcher are found to be 
3.96%, 3.72%, 2.16% and 3.76%, respectively. The best 
EER values in individual columns are indicated with bold 
typeface; the best EER values in individual rows are 
indicated with a star (*) symbol.  

 
Table 1. EER values for permutations (%). 

Fusion Technique Normalization 
Technique SS MIS MAS MW UW 

MM 0.99 5.43 0.86 1.16 *0.63
ZS *1.71 5.28 1.79 1.72 1.86 
TH 1.73 4.65 1.82 *1.50 1.62 

QLQ 0.94 5.43 *0.63 1.16 *0.63
4.3. Normalization  

m
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Figures 5-9 show the effect of each normalization 

method on system performance for different (but fixed) 
fusion methods. The ROCs (Receiver Operating 
Characteristics) for the individual fingerprint matchers 
and the face matcher are also shown for better 
comparison.  

For UW fusion (Fig. 9), the scatter plot of user weights 
(Fig. 10) form a distinctive band-like behavior for each 
fingerprint matcher V1, V2, V3, and the face matcher.  
The mean user weights for the individual biometric 
matchers, calculated from (2), are 0.14, 0.64, 0.17 and 
0.05, respectively, which implies that on average, 
fingerprint matcher V2 is the safest for the lambs; 
whereas the space of the face matcher is filled with 
wolves (i.e., those waiting to be falsely accepted as one of 
the lambs). Note that individual matcher performance, 
shown in the previous ROC curves, is not reflected 
directly in the set of user weights and their means. 
Namely, V2 has a higher mean user weight than V3, 
despite V3’s generally better ROC). 

 

 
Fig. 5. ROC curves for SS, normalization varied. 
 
 

 
Fig. 6. ROC curves for MIS, normalization varied. 
 

For MW fusion (Fig. 8), the matcher weights, 
calculated according to (1), are: 0.2, 0.22, 0.37 and 0.21, 
for the fingerprint matchers and the face matcher, 
respectively.  From Figures 5-9 and Table 1, we see that 
QLQ and MM normalization methods lead to best 
performance, except for MIS fusion. Between these two 
normalization methods, QLQ is better than MM for fusion 
methods MAS and UW; and about the same as MM for 
the others.   
 

 
Fig. 7. ROC curves for MAS, normalization 
varied. 

 
Fig. 8. ROC curves for MW, normalization varied. 
 

 
Fig. 9. ROC curves for UW, normalization varied. 
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Fig. 10. Pictorial representation of user weights, 
for QLQ normalization. 
 

       
Fig. 11. ROC curves for MM, fusion varied. 
 
4.4. Fusion 
 

Figures 11-14 show the effect of each fusion method 
on system performance for different (but fixed) 
normalization methods. The ROCs for the individual 
fingerprint matchers and the face matcher are also shown 
for better comparison.  

From Figures 11-14 and Table 1, we see that fusion 
methods SS, MAS and MW generally perform better than 
the other two (MIS and UW). But for the FAR range of 
[0.01%, 10%], UW fusion is better than the others. One 
reason that below 0.01% FAR the performance of UW 
fusion drops may be the estimation errors become 
dominant, since we have only one sample available for 
replacing the individual genuine distributions. 

Note that parameter update (for normalization and/or 
fusion methods) can be employed for addressing the time 
varying characteristics of the target population. For 
example, the matcher weights can be updated every time a 
new set of EER figures are estimated; the user weights 
can be updated if the fusion system detects changes in the 
vulnerability of specific users, due to fluctuations in their 
lambness, etc. 

 
Fig. 12. ROC curves for ZS, fusion varied. 

 

 
Fig. 13. ROC curves for TH, fusion varied. 
 

 
Fig. 14. ROC curves for QLQ, fusion varied. 
 
4.5. Fusing Subsets of Matchers 
 

ROC curves were generated for fusing subsets of the 
total matcher set.  Here, we fixed the normalization 
method to QLQ and the fusion method to SS.  

In Fig. 15 we see that fusing just the three fingerprint 
matchers (V1V2V3, with EER of 1.94%) is not as good 
as fusing all the available four matchers (V1, V2, V3 and 
Face) using QLQ/SS (see Figs. 5 and 14).  This implies 
that even though the face matcher is not as good as any of 
the individual fingerprint matchers, it still provides 
complementary information for fusion. 
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Fusing individual fingerprint matchers separately with 
the face matcher (V1-Face, V2-Face, V3-Face; with EERs 
of 1.68%, 1.46% and 2.02%, respectively) we see that 
V2-Face performs better than V3-Face fusion. Since V3 
is the better fingerprint matcher for our dataset, this result 
may seem counterintuitive. In fact this shows that the face 
matcher is best complemented with the V2 matcher, i.e., 
they make independent mistakes; whereas face matcher 
and V3 matcher make relatively more correlated mistakes. 

    

 
Fig. 15. Fusing subsets of matcher set. 
 
4.6. Peformance Variability 
 

We are interested in determining how the performance 
of the fused system changes when using (i) an 
increasingly larger database,  (ii) different equal-size 
databases, and (iii) many randomly assigned virtual 
subject databases. 
 
Scalability.  We created five new user databases from 
subsets of our original 972 user database: (i) the first 20% 
of all the users (194 users), (ii) the first 40% of all the 
users (389 users), (iii) the first 60% of all the users (583 
users), (iv) the first 80% of all the users (778 users) and 
(v) 100% of all the users (972 users).  Fig. 16 shows the 
associated ROC curves for an MM/SS based multimodal 
system using these datasets.  The EERs corresponding to 
these five sets are 0.42%, 0.75%, 0.67%, 0.8%, and 
0.99%, respectively.  

  We observe that the performance initially drops, but 
then quickly converges.  For this relatively large, but 
limited, dataset we are unable to draw any general 
conclusions.  It is widely believed that performance 
decreases as the database size increases. A possible 
explanation for this belief is that as the state space 
becomes more populated, differentiation within it, or 
some clustered areas, becomes more difficult. Another 
viewpoint is that performance trends cannot be 
extrapolated to larger populations. Thus a representative 

database of the intended size may be necessary to predict 
performance.  

 
Fig. 16. Scalability: ROC curves for overlapping 
portions of the whole database. 
 
Generalizability.  We created two new user databases 
of 486 users each from disjoint subsets of the original 
database of 972 users.  Fig. 17 shows the associated ROC 
curves for an MM/SS based multimodal system using 
these disjoint datasets. The EERs corresponding to these 
datasets are 0.68% and 1.45%, respectively.  We see that 
the portion of the ROC curves above 0.4% FAR, show a 
considerable performance difference. Although we can 
draw no general trends, this implies that its necessary to 
use a representative database when determining expected 
performance, but there are presently no clear 
measurements/methods to determine if a database is 
representative. Similar results have been reported for 
performance variation of unimodal systems in [9].  

 
Virtual Subjects. As explained previously, it is 
common practice to create virtual subjects in multimodal 
experiments.  In our previous experiments, we 
consistently assigned a “physical finger” to a “physical 
face” to create a virtual subject. In this section, we 
randomly created 1000 virtual user sets (i.e., we randomly 
assigned the 972 face samples to the 972 fingerprint 
samples, 1000 times).  In Fig. 18, we plot the ROC’s for 
all of these 1000 cases, with the one used previously in 
this paper highlighted in red.     

The minimum, mean, maximum and standard 
deviation of the EER set (with 1000 members) is found to 
be 0.82%, 1.1%, 1.5% and 0.11, respectively. The EER 
for the one case used previously in this paper is 0.99%. 
The close clustering of these curves, and the low standard 
deviation, supports the independence assumption between 
face and fingerprint biometrics and would seem to 
validate the use of virtual subjects. Furthermore the 
“thickness” of this cluster of curves supports other 
observations that performance estimates vary by +/- 1%. 
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Fig. 17. Generalizability: ROC curves for disjoint 
portions of the whole database. 
 

 
Fig. 18. Effects of virtual subject creation. 

 
 

5. Conclusions 
 
We examined the performance of multimodal 

biometric authentication systems using state-of-the-art 
Commercial Off-the-Shelf (COTS) fingerprint and face 
biometrics on a population approaching 1000 individuals, 
10 times larger than previous studies. We introduced 
novel normalization and fusion methods along with well-
known methods to accomplish match score level 
multimodal biometrics. Our work shows that COTS-based 
multimodal fingerprint and face biometric systems can 
achieve better performance than unimodal COTS systems.  
However, the performance gains are smaller than those 
reported by prior studies of non-COTS based multimodal 
systems (a ~2.3% gain here as compared to a ~12.9% gain 
reported in [2], at 0.1% FAR).  This was expected, given 
that higher-accuracy COTS systems leave less room for 
improvement.  Our analysis of fusion and normalization 
methods suggests that for authentication applications, 
which normally deal with  open populations (e.g., 
airports) whose specific information is not known in 

advance, Min-Max normalization and Simple-Sum fusion 
generally out perform unimodal biometrics. For 
applications which deal with closed populations (e.g., a 
laboratory), where repeated samples and their statistics 
can be accumulated, our novel QLQ adaptive 
normalization and UW fusion methods tend to out 
perform Min-Max normalization and Simple-Sum fusion. 

Our analysis of multimodal face-fingerprint pair 
systems shows that better performance is obtained by 
combining complementary systems rather than the best 
individual systems.  And our investigations of 
performance variability across different datasets have 
provided evidence that the use of virtual subjects is valid, 
and offer initial estimates of variability for COTS-based 
multimodal systems .  
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