

Supporting Relationships in Access Control

Using Role Based Access Control

John Barkley

National Institute of Standards and Technology

jbarkley@nist.gov

Konstantin Beznosov

Baptist Health Systems of South Florida

beznosov@baptisthealth.net

Jinny Uppal

Florida International University

juppal01@cs.fiu.edu

July 29, 1999

Abstract

The Role Based Access Control (RBAC) model and
mechanism have proven to be useful and effective. This is
clear from the many RBAC implementations in commercial
products. However, there are many common examples
where access decisions must include other factors, in
particular, relationships between entities, such as, the user,
the object to be accessed, and the subject of the information
contained within the object. Such relationships are often not
efficiently represented using traditional static security
attributes centrally administered. Furthermore, the
extension of RBAC models to include relationships
obscures the fundamental RBAC metaphor.

This paper furthers the concept of relationships for use in
access control, and it shows how relationships can be
supported in role based access decisions by using the
Object Management Group’s (OMG) Resource Access
Decision facility (RAD). This facility allows relationship
information, which can dynamically change as part of
normal application processing, to be used in access
decisions by applications. By using RAD, the access
decision logic is separate from application logic. In
addition, RAD allows access decision logic from different
models to be combined into a single access decision. Each
access control model is thus able to retain its metaphor.

1 Introduction

The Role Based Access Control model and mechanism
have proven to be useful and effective. This is clear from
the many RBAC implementations in commercial products,1

e.g., Oracle, Sybase, Lotus Notes, Microsoft Transaction
Server. However, there are many common examples where
access decisions must include other factors, e.g., user
attributes (other than security attributes), object attributes,
user relationships to other entities, time of day, location of
user, in addition to roles in order to obtain a result of an
authorization decision[1]. Consider access policies
associated with content rating systems in entertainment
media. A movie rated “PG13” may only be viewed by a
minor over the age of 13 unless accompanied by an
adult[2]. An access decision for this policy includes the
following factors:

•	 the age attribute of the user,
•	 the rating attribute of the object, i.e., the movie to

which access is sought,
•	 the relationship, i.e., simultaneous access, with another

user, and
•	 the age attribute of the other user.

As illustrated in this example, relationships between entities
associated with an access decision are often very important.

1 Because of the nature of this paper, it is necessary to
mention vendors and commercial products. The presence or
absence of a particular trade name product does not imply
criticism or endorsement by the National Institute of
Standards and Technology, nor does it imply that the
products identified are necessarily the best available.

mailto:juppal01@cs.fiu.edu
mailto:beznosov@baptisthealth.net
mailto:jbarkley@nist.gov

Such relationships, critical to an access decision, can
include relationships between a user and the “owner” of
information, a user and the “provider” of information,
and/or the user and the “subject” of information. In some
cases, roles can be used to represent relationships.
However, using roles to express relationships may be
inefficient and/or counter intuitive. When roles cannot be
used to represent relationships, it is common to program
access decision logic directly into an application. This
approach restricts the ability to change access policy in a
timely manner.

This paper further develops the concept of relationships for
use in access control. It shows how relationships can be
supported in access control decisions. We describe an
approach for supporting relationships which uses RBAC in
conjunction with the Object Management Group (OMG)
specification for the Resource Access Decision facility
(RAD)[3]. Using RAD to augment role based access
decisions with other information retains the fundamental
metaphor of the RBAC model. The RBAC model need not
be changed by adding additional elements which may be
part of other models. In addition, RAD enables the
inclusion of other access control models within an access
control decision. These other access control mechanisms
may be elements of legacy systems whose use is required
under certain circumstances.

This paper primarily uses examples from the healthcare
domain which result from requirements placed on access to
healthcare information by providers, as well as, local, state,
and Federal government. These requirements include
relationships. However, the approach described in this
paper can equally apply in any domain which requires
relationships in access decisions.

The paper is organized as follows: Section 1 is this
Introduction; Section 2 provides a brief overview of RBAC;
Section 3 introduces the relationship concept; Section 4
describes how relationships can be used in access control;
Section 5 describes the OMG’s RAD facility; Section 6
gives an example of using RAD to implement an access
policy in healthcare; Section 7 compares RAD to other
approaches to enabling RBAC to make use of relationship
information; Section 8 summarizes the results of the paper.

2 Overview of RBAC

Role based access control (RBAC) is an alternative to
traditional discretionary (DAC) and mandatory access
control (MAC). RBAC is capable of expressing policies
particularly suited for commercial applications. A principle
motivation behind RBAC is the ability to specify and
enforce enterprise-specific security policies in a way that
maps naturally to an organization's structure. Even a very
simple RBAC model affords an administrator the
opportunity to express an access control policy in terms of

the way that the organization is viewed, i.e., in terms of the
roles that individuals play in order to carry out the goals of
the organization. With RBAC, it is not necessary to
translate a natural organizational view into another view in
order to accommodate an access control mechanism. The
natural organizational view is the access control
mechanism. As such, RBAC can be described as a form of
non-discretionary access control in the sense that users are
unavoidably constrained by the organization's protection
policies.

In order to use RBAC, administrators use roles to describe
the functions of individuals within the organization. The
roles are treated as an attribute of an individual and
typically represented as a character string. Based on the
responsibilities required of individuals assigned these roles,
the access requirements of these roles are determined and
the appropriate permissions necessary for access are
associated with each role. This RBAC description of the
organization, i.e., in terms of roles and associated
privileges, remains relatively fixed as individuals join/leave
the organization, or change roles within the organization.
Using the RBAC description, administrators assign
individuals the permissions needed to do their jobs by
assigning to individuals the roles associated with their jobs.
The role assignment effectively enables the permissions by
means of the RBAC mechanism.

Within most organizations, the fact that user/role
associations change more frequently than role/permission
associations results in reduced administrative costs when
using RBAC as compared to associating users directly with
permissions. It can be shown that the cost of administering
RBAC is a factor of U+P while the cost of associating users
directly with permissions is a factor of U*P where U is the
number of individuals in a role and P is the number of
permissions required to perform that role[4].

Sandhu[5] provides a characterization of RBAC models as
follows:

1.	 RBAC0: the basic model with users associated with
roles and roles associated with permissions.

2.	 RBAC1: RBAC0 with role hierarchies.
3.	 RBAC2: RBAC1 with constraints on user/role,

role/role, and/or role/permission associations.

The use of hierarchies is common in models and
implementations, and the use of constraints is becoming
more common[6]. Other factors, such as, relationships,
time, and location may be a required part of an access
decision. When used as part of an access decision, these
factors may or may not be included within the RBAC
model. As a result of the natural organizational view
provided by the RBAC metaphor and RBAC’s lower
administrative costs, it is advantageous to use RBAC as the
focus of an access decision.

3 Overview of Relationships

A typical software system models real world entities.
Entities do not exist in isolation[7], and as such, a software
system must also capture the relationships between entities.

Following are some examples of real world entities and
their relationships:

•	 A person owns a house; a house is owned by one or
more persons.

•	 A person is employed by one or more organizations; an
organization employs one or more persons.

•	 A patient is attended by an attending physician (i.e.,
the attending physician is currently providing treatment
to the patient), an attending physician attends one or
many patients.

In many systems, relationships are modeled implicitly by
capturing information about the relationship in one or more
of the entities involved in the relationship. In fact, modeling
languages like UML[8] allow different types of
relationships to be captured implicitly (as an attribute in one
or more of the entities involved)2 .

However, in some application domains, there is a need to
define relationships between entities as explicitly as the
entity itself. This may happen if the relationship has
information that does not belong to either of the related
entities. Consider the relationship between a person having
an “employed by” relationship with an organization. This
relationship may have certain information, like start date
and employment policies, that cannot be stored by either the
person (who may be employed by many organizations or
who may be unemployed), or the organization (which may
have other information like organization demographics). In
such applications, there is a need to define an entity that
captures information that belongs to the relationship. For
such cases, defining the relationship as an entity can
accomplish this.

Another class of applications we consider are those where
relationships between entities are highly dynamic and
change frequently. For example, a secretary often works for
more than one person who permit their secretary to have
read access to their calendar. If another secretary substitutes
for the regular one, read access must be given to the
substitute, i.e., to the person who has the relationship
“employee’s secretary.”

Figure 1. Sample relationship hierarchy for a patient under care.

Consider the relationships that can occur during interactions
2 Relationships, in the context of this discussion, are also between a patient and a healthcare provider. Figure 1
referred as ‘associations’ in UML. illustrates the hierarchy of relationships that may be

referenced within an access policy for patient information.
Such a hierarchy can have the same semantics of a
hierarchy in RBAC, i.e., a parent node inherits all of the
permissions of the child node. Note that this hypothetical
hierarchy should be considered only in the context of
privileges required to access patient medical data. It is
shown as an example and it is not intended to be complete
or necessarily fully correct.

Over a period of time, a patient establishes relationships
with various other entities associated with the care provider.
A patient referred to a care provider has a referral and a
primary care physician. If admitted for care, the patient also
has an admitting physician. In healthcare, relationships with
physicians can be very important for enforcing access
control policies. When a healthcare provider (the “user”)
accesses patient information (the patient is the “subject” of
the information), the access policy may require information
about the relationship between the provider and the patient.
For example, section 3025, “Patient and Personnel Records;
Copies; Examination” of Florida Hospital Licensing and
Regulation[9] states that patient records must not be
disclosed without consent of the patient except some cases.
Included in the exceptional cases is the policy: “licensed
facility personnel and attending physicians for use in
connection with the treatment of the patient.”

4 Relationships in Access Control

Relationships associate two or more entities. Relationships
may be simple or complex. A simple relationship is
something like a UML association, that is, it is stored as a
pointer in either or all of the related objects. However,
relationships may be complex depending on the amount of
information that needs to be stored with them. For example,
an employment object (that may relate a company object
and a employee object) may store information like term of
employment, salary etc. Lupu[10] defines roles and
relationships as objects in accordance with an Object
Model. Lupu also defines relationships to store policies
regarding the related roles. For the purpose of this paper,
the structure of the relationship is unimportant. Access
decision policies may represent roles and relationships in
any form.

RBAC introduces the concept of roles. With RBAC, users
are assigned to roles, and permissions are also assigned to
roles. This model helps make authorization decisions in
systems where permissions are determined by the role of
the user. Significant work has been done on relationships
between roles by Lupu[10]. This paper discusses the use of
relationships in role based access decisions where the
relationships may exist between any two entities.

For example, in systems like healthcare, access decisions
may also require information about relationships. Consider
the relationship “attending-physician” between a physician

and a patient. Most healthcare systems identify individual
physician entities and maintain information about them,
e.g., name, address, specialty. A physician typically has
several attending-physician relationships with patients, just
as a patient may have several attending-physicians. This
relationship can be very dynamic in nature. An
authorization service may need to know if an attending-
physician relationship exists between patient Peter and the
user with ID smith.

In an RBAC system where a role is a data attribute of the
user, this could be modeled by creating an “attending­
physician-to-Peter” role. Such a “fine-grained” role could
be used to represent the relationship. However, this
approach, when used in large systems with thousands of
such relationships created and deleted dynamically, could
create an explosion of roles, making management of the
roles expensive and error-prone. In particular, this approach
can result in:

•	 the attending-physician relationship likely being
redundantly stored in two locations: the patient record
database and the role database;

•	 security administrators having to update the role
database whenever the attending-physician relationship
changes for a user, and;

•	 potentially very large active role sets when the user is a
doctor.

The alternative approach would be to include relationship
information in the access decision. Permissions for a user in
the physician role would be determined based on the
physician role, the individual patient, and the attending-
physician relationship between the user in the physician
role and the individual patient.

It should be noted that relationships, as opposed to
traditional security attributes such as roles, can have short
lifetimes. As such, they may not be maintained by a central
authority such as a security administrator. Instead the
relationships will likely be managed in other components of
the system, e.g., the attending-physician relationship in the
healthcare example may be managed by the registration
component of the healthcare information system.

Confronted with access policies which include
relationships, the RAD facility is one approach for
including relationship information in role based access
decisions. The next section introduces the RAD facility.

5 Resource Access Decision Facility

The Resource Access Decision facility (RAD)[3] is an
authorization framework and interface specification for
distributed processing environments. The RAD facility was
proposed in response to the Healthcare Resource Access

Control RFP issued by the OMG. RAD has the following The sequence of the interaction, illustrated by Figure 2, is
major features: as follows:

•	 It enables the separation of application logic from
authorization logic, hence providing a logically single
point of administrative reference monitoring disparate
application systems.

•	 It enables authorization decisions for resources of any
nature and granularity as long as those resources can be
named according to RAD’s resource naming scheme.

•	 It enables the use of more than one authorization
engine for decisions about the same request or different
requests. These engines can support different
authorization policies, can be integrated with legacy
systems, and/or can be independently managed by
independent authorities.

•	 It enables use of such request-specific or user-specific
factors in authorization decisions that:
� can change values during user session, i.e., the

most current values be obtained when an access
decision is required,

� may be part of the request context,
� can have values set as part of normal business

processes as opposed to being set by a security
administrator.

5.1 Interaction Between Application Service and
Authorization Service

The main objective of RAD is to separate authorization
logic from application logic. Authorization logic is
encapsulated into an authorization service external to the
application. A simplified schema of interactions among the

1.	 An application client invokes an operation on the
application service (application, for short).

2.	 While processing the invocation, the application
obtains an access decision from the RAD.

3.	 The RAD makes an authorization decision, which is
returned to the application.

4.	 The application, after receiving the access decision,
enforces it. If access was granted by the RAD, the
application returns expected results of the invocation.
Otherwise, it either returns partial results or denies
access.

An application obtains an access decision from only one
instance of RAD. It is the contract between the application
and its enterprise environment to request an authorization
decision and to enforce it. Before we proceed with greater
details on the design of an access decision service, we will
describe the syntax and semantics of an access decision
request.

From the perspective of RAD, any application requesting
an authorization decision is a RAD client. From now on, we
will use the term “RAD client'” to refer to any enterprise
entity of the system that requested an authorization decision
from a RAD.

A nominal amount of data is passed between the application
and the access service in order to make authorization
decisions. When making a request for an authorization
decision, a RAD client passes the following three
parameters:

1. Application request 2. Authorization request

Client Application

Service

Resource
Access

Decision

Service

4. Reply to application request	 3. Reply to authorization request

Figure 2. Interactions between client, application system, and access decision service.

application client, an application service, and an instance of
the RAD is depicted in Figure 2. To perform application-
level access control, an application obtains an access
decision from such a service and enforces that decision.
Simple interfaces between the application and the access
decision service are used. An application programmer need
only make a single invocation on the access decision
service in order to obtain a decision.

•	 a sequence of name-value pairs representing a name of
the resource to be accessed on behalf of the client,

•	 name of the access operation (e.g. “create”, “read”,
“write”, “use”, “delete”),

•	 the security attributes of the authenticated subject (i.e.,
the user) on behalf of which the client is requesting
access to the named resource.

In this case, security attributes are attributes of the current
user session. The interesting parameters passed by RAD
client are the first two: resource name and access operation.
They are described below.

The RAD facility introduces an abstraction called
“protected resource name” or just “resource name.” The
resource name is used to abstract the application-dependent
syntax and semantics of entities under application-level
access control. A resource name can be associated with any
valuable asset of an application owner, which is accessed
by a client on behalf of a subject using it, and access to
which is to be controlled according to the owner's interests.
For example, electronic patient medical and billing records
in a hospital are usually its valuable assets. The hospital
administration is interested in controlling access to the
records due to various legal, financial and other reasons.
Therefore, the hospital administration considers such
records as protected resources. Moreover, different
information in those records count as different resources.
Examples of different resources can be records from
different visits or episodes for one patient. At the same
time, a resource name can be associated with less tangible
assets, such as computer system resources, including CPU
time, file descriptors, sockets, etc. RAD does not interpret
the semantics of the resource name. RAD only uses the
resource name to obtain additional security attributes and to
identify a set of policies that govern access to the resource
associated by an application system with the resource name.

The access operation abstracts the access semantics of
resources associated with resource names. An application

Time

Locator
Evaluator
Policy Dynamic

Attrbute
Service

Get Dynamic Attributes

Combine Decisions

Evaluate Access

Decider
Access

Get Policy Evaluators

Evaluate Access

Evaluator A
Combinator

Decision
Authorization

Policy Policy
Evaluator B

Authorization

Before an application requests an instance of RAD for an
authorization decision, it is supposed to identify the
resource name and the access operation name associated
with servicing the client request. There is no particular
algorithm specified within RAD for performing such an
association. For every application, or at least for every
application domain, the way of associating protected
entities with abstract resource names may be different. This
provides the generality necessary for the RAD facility to be
applicable to most of application domains.

5.2 Resource Access Decision Facility Design

The RAD facility is composed of the following elements:

•	 An Access Decider (AD) which receives requests for
authorization decisions from RAD clients.

•	 Zero or more Policy Evaluators which provide
evaluation decisions for those policies that govern
access to the given resource. If a Policy Evaluator does
not have any policy associated with the given resource
name, the evaluator returns the result “don't know.”

•	 A Policy Evaluator Locator which provides references
to potentially more than one Policy Evaluator.

•	 A Dynamic Attribute Service which provides dynamic
attributes of the subject in the context of the intended
access operation on the given resource associated with
the specified resource name.

•	 A Decision Combinator which combines results of the
evaluations made by Policy Evaluators into a final
access decision by resolving evaluation conflicts and
applying combination policies.

Figure 3. Authorization Service: Element Interaction

may manipulate patient records on behalf of different care­
givers, or may provide different hierarchies of menus to
different technicians in the hospital. In either case, it is up
to the application system developers and the enterprise
security administrators to agree on semantics of the
operation names used for each access. RAD does not
interpret the semantics of access operations.

Figure 3 presents an interaction diagram of the RAD
facility. Once the access decision service receives a request
via the RAD interface, it makes an authorization decision
according to the Algorithm 1. As illustrated in the figure
and its description, the RAD interface performs the role of a
Facade[11] to the service, i.e., it hides the complexity of
RAD system from RAD client by presenting a higher-level
easy-to-use interface.

Algorithm 1

1.	 Obtain the references to those Policy Evaluators that
are associated with the resource name in question,

2.	 Obtain the dynamic attributes of the principal in the
context of the resource name and the intended access
operation on the resource,

3.	 Obtain the results from zero or more Policy Evaluators,
and

4.	 Combine these decision results from step 3 into a final
authorization decision.

such services directly. It delegates the generic dynamic
attribute service to collect all dynamic attributes from
specialized dynamic attribute services. The semantics of a
particular application domain (e.g., a patient/care-giver
relationship) can be expressed in the form of dynamic
attributes. This allows for the utilization of existing
authorization mechanisms such as the traditional access
matrix[12].

The objective of the dynamic attribute service (DAS) is to
proxy several specialized DASs. We apply Proxy and Chain
of Responsibility design patterns[11] for achieving this.
Even though most of the work is done by specialized DASs,

Specialized
DAS

A

Generic
DAS

get_dynamic_attributes()

get_
dynamic_

attr
ibutes

()

get_dynamic_attributes()

get_dynam
ic_attributes()

DAS

Specialized
DAS

B

C

Specialized

get_dynamic_attributes()

Administrative
Interface

Figure 4. DAS services

One of the significant points of the RAD facility is the
handling of factors specific to the application domain in the
manner neutral to their semantics. All such factors are
handled as dynamic3 attributes. They are obtained from the
enterprise environment via specialized dynamic attribute
services. An access decision service does not interact with

3 As opposed to the regular security attributes of the
subject, which are called “static attributes” in the RAD
specification.

DAS
D

Specialized

generic DAS represents them to the AD (Proxy pattern).
RAD allows more than one specialized DAS object to
resolve the dynamic attributes of the principal. This is
possible because generic DAS decouples the AD and the
specialized DASs. It provides the capability to issue a
request to obtain the dynamic attributes without specifying
the receiver of the request explicitly (i.e., the Chain of
Responsibility pattern). The set of specialized DAS objects
that can handle a request are specified dynamically via
registering them with the generic DAS using an
administrative interface.

Figure 4 illustrates the design of DAS services. Dynamic
attributes are those attributes that express properties of a
principal but are not administrated by security
administrators. Dynamic attributes are so called because
their values usually change more frequently than traditional
user privilege attributes. Traditional “static” security
attributes are used for describing relatively fixed properties
of users. The values of static attributes are typically set by
security administrators and are obtained by an application
in an environment specific manner, e.g., from a principal's
credentials in the case of an OMG Common Object Request
Broker Architecture (CORBA) environment. While the use
of a dynamic attribute in an access decision is determined
by a security administrator, the values of dynamic attributes
are usually set as part of normal business processes. In
other words, dynamic attribute values are usually part of
information content, not separately maintained security
metadata whose values are set by a security administrator.
Consequently, dynamic attribute values must be obtained at
the time an access decision is required. This is in contrast to
traditional “static” security attributes whose values are
usually obtained when a session is established. The values
of dynamic attributes may change during a session as a
result of normal business processing.

Consider the following example of a dynamic security
attribute. John Smith, a physician, attends patient Jane Doe.
The physician has an attribute specifying such a
relationship when a principal with access_id=johnsmith
(speaking for John Smith) is accessing resources associated
with medical records of patient Jane Doe. This relationship
attribute is an example of a dynamic attribute in our model.
It has the value “attending_physician” returned by a generic
DAS only when John Smith accesses Jane Doe's records.
The generic DAS obtains the value of this relationship
attribute by consulting a specialized DAS, which computes
the value of relationship attribute (probably by looking at
the corresponding fields of Jane Doe's patient record which
contains a list of Jane Doe's attending physicians). When
John Smith is accessing resources not associated with any
patient, this dynamic attribute of type relationship is not
returned by the corresponding specialized DAS and
consequently, it is not returned by generic DAS.

Another significant design element of the RAD facility is
the encapsulation of authorization policies and their
evaluators into separate entities. Such encapsulation is
accomplished by means of the Policy Evaluators. Policy
Evaluators can be considered either as distinct authorities,
each representing a different set of authorization policies, or
they can be considered as policy evaluation engines each
supporting a particular policy language. Such a design
insulates representation and interpretation of policies from
the access decision service. It also allows adding and
removing Policy Evaluators dynamically. By encapsulating
the evaluation of those policies in Policy Evaluators, the

design supports the implementation of arbitrary
authorization policies.

Separation of concerns among various stakeholders
involved in the authorization process (application
developers, enterprise security administrators, access
decision service developers) enables control of different
factors in the authorization process by the appropriate
parties:

•	 Application developers decide which functions of their
application map into what access operations.

•	 User administrators control which users are assigned
what static security attributes (e.g., roles).

•	 Implementers of the authorization services and other
third party vendors control quality, performance, and
other properties of the authorization service
implementation.

•	 Workflow processes indirectly control which dynamic
attributes are assigned to what users in the context of
which resources.

•	 Security administrators administrate which access
control policies govern what access to which named
resources.

The generality of the RAD facility allows use of the
authorization service in any application domain.

6 Example: Including Relationships within RBAC
Access Decisions

As described in section 4, using an RBAC model to express
relationships may be inefficient and non-intuitive. In
addition, relationship information may already be kept as
part of the information content associated with the business
processes. Repeating such information within the RBAC
mechanism would be redundant and error-prone. In this
section, the use of RAD in conjunction with an RBAC
Policy Evaluator and a Relationship Policy Evaluator is
illustrated.

Consider a healthcare application which implements patient
record access. There are two operations on patient records:
read and append. Associated with the patient record
repository is an access policy which includes the
requirements: attending physicians may read and append
information to the records of their patients; and hospital
physicians, i.e., employed by the hospital, may read the
records of hospital patients. Note that while these policy
elements are realistic for the purposes of this example, an
actual patient record access policy would be much more
detailed and complex, e.g., attending physicians may only
append to their sections of the patient record. Assume that
the healthcare application is implemented within an
information system environment where RBAC is the access
control mechanism and the hospital maintains a database of
patient records where the record for each patient lists those

physicians who are currently treating the patient, i.e., the
patient’s attending physicians.

Applications that access the patient record database use the
interfaces of the RAD facility to obtain an access decision
based on the hospital’s access policy. The RAD
implementation references two Policy Evaluators (i.e.,
get_policy_evaluators() returns references to two Policy
Evaluators: an RBAC Policy Evaluator that determines the
user’s roles, and a Relationship Policy Evaluator that
determines authorization decisions based on relationships
between the user and the individual patient who is the
subject of the record). See figure 3, section 5.2.

The RBAC evaluator makes use of the static attribute
“active_role_set.” The Relationship evaluator makes use of
the dynamic attribute “user/patient_relationships.” The
value of the static attribute active_role_set specifies the
basic roles of a user, such as, physician, nurse, and
registrar. In this example, the value of active_role_set is
obtained from the security metadata in the user’s
credentials. The value of the dynamic attribute
user/patient_relationships specifies the relationship between
the user accessing the patient record and the patient who is
the subject of the patient record being accessed,
e.g., “attending_nurse,” “attending_physician,”
“consulting_physician.” In this example, the value of the
user/patient_relationships dynamic attribute is obtained by
the Dynamic Attribute Service by accessing the content of
the patient record which contains a list of attending
physicians.

We now show the interaction between the application and
the RAD implementation, and the internal processing steps
of RAD for a specific invocation of the RAD interface.
Figures 3 and 4 illustrate the sequence of steps within the
RAD implementation. Assume that Doctor Smith is a staff
doctor at the hospital, a hospital assistant administrator, and
attending physician to Jane Doe. Doctor Smith has just
examined Jane Doe and needs to enter clinical information
into Jane Doe’s patient record. Doctor Smith uses a
browsing application to accomplish this.

The application program obtains from Doctor Smith the
name of the resource to be read. It then obtains the static
security attributes from Doctor Smith’s credentials which
includes the static attribute active_role_set whose value is
“{physician}”, i.e., “physician” is contained in Doctor
Smith’s active role set for this session. Doctor Smith’s
active role set does not contain the value
“assistant_administrator” because although Doctor Smith is
both a staff physician and an assistant administrator,
hospital policy imposes a separation of duties requirement
for that role pair. The roles “physician” and
“assistant_administrator” may not both be active
simultaneously in a session.

The application invokes access_allowed() (the principle
interface from an application to the RAD) with the
arguments patient_record_name, the operation “append,”
and the static attribute list. This procedure returns an
indication of whether the physician is able to append to the
requested patient record resource. If the physician has
append access to the resource, the application appends the
information and displays the updated resource for the
physician.

The RAD now invokes get_policy_decision_evaluators()
with the patient_record_name which returns:

•	 policy_evaluator_list that contains two items: the
RBAC evaluator and Relationship evaluator names and
references to their procedure calls.

•	 A decision_combinator.

The RAD then obtains dynamic attributes by invoking
get_dynamic_attributes() with the static attribute_list
provided by the application, patient_record_name, and the
operation “append.” This procedure returns a combined list
of static and dynamic attributes consisting of the static
attribute active_role_set whose value is “{physician},” and
the dynamic attribute user/patient_relationships whose
value is “{attending_physician}.” The RAD then invokes
combine_decisions() with patient_record_name, the
operation “append,” the combined list of static and dynamic
attributes, and the policy_evaluator_list containing the
RBAC evaluator and the Relationship evaluator.

Within combine_decisions():

1.	 The RBAC evaluator is invoked returning an access
allowed indication since Doctor Smith has the static
attribute active_role_set which includes the value
“physician.” To append to a patient record, a user must
have a role which is permitted that operation.

2.	 The Relationship evaluator is invoked returning an
access allowed indication since Doctor Smith has the
dynamic attribute user/patient_relationships which
contains the value “attending_physician.” An attending
physician can append information to a patient record.

Having invoked all evaluators in policy_evaluator_list,
combine_decisions() returns an access allowed indication to
the RAD since the rules for combining a decision from the
RBAC evaluator and the Relationship evaluator require that
both evaluators return an access allowed indication. In
order to append to a patient record, the user must be active
in the proper role and the user must have the proper
relationship to the subject of the patient record.

Finally, the RAD returns an access allowed indication to the
application. Since applications enforce the access decision
returned by the RAD implementation, Doctor Smith’s

application appends clinical information to Jane Doe’s
patient record.

Now, assume that Doctor Jones is a hospital staff physician
but is not an attending physician to Jane Doe. This being
the case, Doctor Jones would have the static attribute
active_role_set with a value of “{physician}” but the value
“attending_physician” would not be contained in the
dynamic attribute user/patient_relationships. As a result, if
Doctor Jones attempted to append information to Jane
Doe’s patient record, the same sequence of events as
described above would occur up to the point when the
Relationship evaluator returns. In this case, since Doctor
Jones does not have the value “attending_physician” in the
dynamic attribute user/patient_relationships, the
Relationship evaluator returns an access denied indication
for the append operation. Consequently,
combine_decisions() returns an access denied indication
which results in RAD returning an access denied indication
to Doctor Jones’ application. As a result, the application
refuses the request for the append operation from Doctor
Jones.

7 RAD vs. Other Approaches

There have been several suggestions for expanding the
RBAC model to include other factors beyond roles in a role
based access decision[10][13][14][15]. While these
approaches are effective, they can add elements to the basic
RBAC model which may not have any direct relationship to
the role metaphor. In general, what does a relationship
between entities, or an attribute of an individual, e.g., age,
or the time of day, or the location of the user requesting
access necessarily have to do with an individual’s role?
These other factors most often have an importance in their
own right.

User attributes and relationships are usually stored in an
information system as part of normal business processing,
not for the purpose of access control. Requiring such
information to also be stored as security metadata creates
redundant information managed by different administrators
with different perspectives as to its use. In general, it is
counter intuitive, both metaphorically and from a design
perspective, to subsume such information within a role
model. In many cases, the rationale for including other
factors within a role model equally applies to their inclusion
within other access control models. By using RAD to
include other factors in a role based access decision, the
role model retains its essential metaphor.

Another approach which is commonly used to include
relationships and other factors in role based access
decisions is to locate such access decision logic within
application code. From a policy management point of view,
this is very undesirable. Any time a policy changes,
application code must be changed.

RAD enables RBAC to be the focus of access decisions
when confronted with real world application
implementation considerations. Implementing enterprise-
wide applications usually requires implementing new
applications within the context of several existing
information systems. Each of these systems may have its
own access control mechanisms administered by different
parts of the enterprise. Because the role metaphor is the
way in which enterprises are usually viewed by
administrators, RBAC is the natural focal point for
integrating access control among different access control
mechanisms. RAD enables such integration while providing
the capability for including information in the access
decision which may not be a security attribute of any of the
existing access control mechanisms. New evaluators and
dynamic attributes can be added which allow any
information, in particular relationship information, to be
included in an access decision made at the enterprise level.

However, RAD may not be useful in all situations. The are
many situations where there is no need for dynamic
attributes, i.e., all factors used in an access decision are
security metadata, and combining access decisions from
different parts of an organization. The enterprise access
policy may be straightforward and centralized.
Furthermore, the ability to integrate access decisions made
in different parts of an enterprise and the capability of
including factors in access decision where the values of
those factors are naturally very dynamic can result in
unacceptable performance. The solution to the performance
problem may not only require greater engineering effort
applied to the enterprise system, but may also necessitate
the development of less complex access control policies
where possible.

8 Summary

The RBAC model and mechanism have proven to be useful
and effective. Nevertheless, there are many common
examples where access decisions must include other
factors, in particular, relationships between entities, such as,
the user, the object, the subject of the information contained
within the object. This paper described the concept of
relationships for use in access control, and showed how
relationships can be supported using role based access
control in conjunction with the OMG’s RAD facility.

RAD allows dynamically changing relationships to be
included in role based access decisions by providing the
capability for:

•	 The separation of access control logic from application
logic.

•	 The representation of relationship information as
dynamic attributes whose values are set as a result of
normal processing by applications.

•	 The combination of access decisions derived from a
relationship access control model separate from the
RBAC model.

This separation of access control models allows each model
to retain its essential metaphor. Moreover, this separation
often reflects real world organizations where an access
policy is determined by the combination of policies
administered by different divisions within an organization.
Each division may have policies based on different
metaphors.

References

[1]	 K. Beznosov, Requirements for Access Control: US
Healthcare Domain. In Third ACM Workshop on
Role-Based Access Control, October 1998.

[2]	 N.Adam, V.Atluri, E.Bertino and E.Ferrari, A
Content-based Authorization Model for
Digital Libraries, TR 98-104, CIMIC and MSIS
Department, Rutgers University, 1998.

[3]	 Resource Access Decision (RAD), Object
Management Group Healthcare Domain Task Force,
Revised Submission, OMG TC Document
corbamed/99-04-04, April 26, 1999.

[4]	 D. Ferraiolo, J. Barkley, and R. Kuhn. A Role Based
Access Control Model and Reference Implementation
within a Corporate Intranet. ACM Transactions on
Information Systems Security, Volume 1, Number 2,
February 1999.

[5]	 R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E.
Youman. Role Based Access Control Models. IEEE
Computer, 29(2), February 1996.

[6]	 K. North. Web Databases: Fun with Guests or Risky
Business? Web Techniques, March 1999.

[7]	 R. A. Elmasri, S. B. Navathe, Fundamentals of
Database Systems, Benjamin-Cummings Publishing
Company, 1993.

[8]	 Eriksson, A., Penker M., UML Toolkit. John Wiley &
Sons. 1998

[9]	 State of Florida Statutes. Hospital Licensing and
Regulation, Chapter 395. 1998

[10] E.C. Lupu, M.S. Sloman, A Policy Based Role Object
Model, First International Enterprise Distributed
Object Computing Workshop, EDOC’97, Queensland,
Australia, October 1997.

[11] E. Gamma, R.	 Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[12] Butler	 Lampson. Protection. In 5th Princeton
Symposium on Information Science and Systems,
pages 437-443, 1971.

[13] F.	 Chen, R. Sandhu, Constraints for Role-Based
Access Control, First ACM Workshop on Role-Based
Access Control, Gaithersburg MD, November 1995.

[14] L. Giuri, P. Iglio, Role Templates for Content-Based
Access Control, Second ACM Workshop on Role-
Based Access Control, Fairfax Virginia, November
1997.

[15] J. Barkley, Implementing Role-Based Access Control
Using Object Technology, First ACM Workshop on
Role-Based Access Control, Gaithersburg MD,
November 1995.

