
A Framework for Measuring the Vulnerability of Hosts1

1 Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

Karen Scarfone
National Institute of Standards and

Technology (NIST)
karen.scarfone@nist.gov

Tim Grance
National Institute of Standards and

Technology (NIST)
grance@nist.gov

Abstract

This paper proposes a framework for measuring the

vulnerability of individual hosts based on current and
historical operational data for vulnerabilities and
attacks. Previous approaches have not been scalable
because they relied on complex manually constructed
models, and most approaches have examined software
flaws only, not other vulnerabilities such as software
misconfiguration and software feature misuse. The
framework uses a highly automatable metrics-based
approach, producing rapid and consistent
measurements for quantitative risk assessment and for
attack and vulnerability modeling. In this paper, we
propose the framework and its components and
describe the work needed to implement them.

1. Introduction

Vulnerabilities are often assumed to be software
flaws, but also include software misconfigurations and
software feature misuse. Vulnerabilities can be
mitigated through many means, but not all
vulnerabilities can be completely offset. For example,
no patch might be available, or reconfiguration might
disable needed functionality. Attacks can also be
mitigated in many ways, such as using firewalls or
antivirus software. However, attack mitigation cannot
be fully effective, so some attacks will still succeed.

Decisions involving security policy and host
security configuration are usually based on
conventional wisdom for best practices, not
quantitative assessments of host security. Best
practices are often dated and do not take into account
current threats. Without quantitative security measures,
an organization cannot easily determine a host’s
security posture. Hosts could be better secured if
quantitative measures were used to answer security

questions. For example, which types of attacks are
most likely to seriously impact a host? Which types of
vulnerabilities on a host are most likely to be
exploited? How can a host be better secured to reduce
the impact of attacks?

This paper proposes a metrics-based framework for
quantifying host security that analyzes the
characteristics of vulnerabilities in the context of
observed attacks and security controls to generate host
security metrics. Framework data would be collected
and analyzed primarily through automated means,
providing a flexible, scalable method for measuring
technical host security.

The framework can be used for many purposes. A
host’s technical security posture can be compared to a
baseline, such as the organization’s security policy or a
vendor-recommended configuration, and the postures
of hosts that use the same baseline can be compared.
Another use for the framework is planning security
policies and controls, such as quantifying the strength
of a policy, determining the effect of a policy change,
comparing security configurations, and providing data
for attack models. The framework can also be used for
risk assessment, such as determining how much risk
remains from unmitigated vulnerabilities, identifying
weaknesses in security controls, selecting security
controls within resource limitations, and estimating the
mean time to exploitation for a host.

The rest of this paper explains the framework.
Section 2 discusses related work and explains the need
for the framework. Section 3 provides an overview of
the framework, and Section 4 discusses the framework
components. Section 5 presents conclusions.

2. Related work

Most previous work has emphasized attack
modeling; attack graphs and trees, which show how an
attacker could achieve certain goals, have been studied

extensively [5]. The approach in [4] involves
determining the effort different types of attackers
would expend to compromise a system. Some work
has also been done on vulnerability modeling; for
example, [1] proposed a method for measuring a
system’s vulnerabilities based on the vulnerabilities of
its network services. Another approach [2] is an
automated risk analysis method based on analyzing
vulnerabilities and information on the system’s
components, policies, configuration, and service
interactions and dependencies. Unfortunately, these
approaches are not well-suited to our goals.
Approaches that rely on complex threat models are
generally not scalable [5] and are not particularly
helpful in determining what specific actions should be
taken to improve security [3, 4]. Also, most approaches
do not address a wide range of vulnerabilities [1, 2].

Another approach to host security measurement is
to apply dependability modeling principles. For
example, [9] proposes monitoring host-related activity
such as possible signs of attacks and compromises,
analyzing those actions, and applying the results to
stochastic models to estimate the current security state
of the system and the likelihood that it will be
compromised within a certain period. This approach
does not analyze vulnerabilities and attacks—it
associates observed events with likely security states.
Although our framework’s goals differ from those of
[9], both frameworks analyze operational attack data to
make determinations about host security.

3. Framework overview

The security controls for a host and its environment
are intended to mitigate attacks and vulnerabilities.
Examples of attack mitigation are antimalware utilities
and firewalls; examples of vulnerability mitigation are
patching and host hardening. If these mitigations are
not sufficient for an attack, it will succeed. For this
framework, we consider only technical vulnerabilities,
which we define as software flaws, misconfigurations,
and feature misuse.

We propose that quantitative measures of technical
vulnerabilities, attacks, and security controls be
collected and analyzed together. The effectiveness of
attack mitigation can be determined by analyzing
successful and failed attacks, and for vulnerability
mitigation by analyzing the unmitigated vulnerabilities
and how successful compromises used them. Most
measures can be collected through automated means,
allowing metrics to be regenerated to reflect the current
security posture.

Our framework asserts that vulnerabilities should be
weighted according to several characteristics. For

example, the level of access gained varies based on the
nature of the vulnerability and the environment in
which the vulnerable component (e.g., service,
application) runs, such as user-level or administrator-
level rights. For some hosts, certain impact types are
more important—confidentiality might be valued over
availability for a host storing personal information.
Also, some vulnerabilities are easier to exploit than
others (e.g., require less skill, are accessible remotely).
The ease of exploitation and potential impact of
exploitation are two major factors in determining how
likely it is that a vulnerability will be exploited; other
relevant factors include the popularity of the vulnerable
component and the perceived value of the host.

The framework takes into account how often
different host components and vulnerabilities are
exploited. Quantitative data on detected attacks against
an organization’s hosts and the vulnerabilities the
attacks targeted is available from security controls,
such as antivirus software and intrusion detection
systems, as well as from incident reports. This data can
be used to determine which host components and types
of vulnerabilities are at greatest risk and which attack
vectors are most likely to be used. Such analysis allows
organizations to assess the relative strength of host
security controls so that they can prioritize resources
accordingly for improving security. There are also
interdependencies involving vulnerabilities and other
host characteristics that the framework will take into
account. For example, if a service is disabled, then
vulnerabilities in that service are not exploitable.

The intent of the framework is to analyze a host’s
technical security in just enough detail to identify
important weaknesses. Vulnerability and attack
measurement is not exact because of the ever-changing
nature of vulnerabilities and attacks. We strive to
define metrics that can be gathered quickly and
consistently and that are reasonably accurate. The
framework avoids the level of detail of existing
vulnerability and attack modeling paradigms, such as
identifying all possible attack paths for a network.

Figure 1 shows major elements of the framework as
could be used for comparing a host’s current security
state to a security baseline. First, a host profile is
created by documenting the host’s security baseline,
component definitions, and interdependencies. Next,
data is collected to determine weightings, which are
applied to the host profile, along with data for the
host’s current security state. This generates host
security measures that indicate the host’s security
posture relative to the baseline.

Figure 1. Framework used for baseline comparison

4. Framework elements

Before the proposed framework can be
implemented and tested, all the framework’s elements
must be established. Below we describe each element,
its current state, and the work needed to complete it.
The standards referenced are from the Security Content
Automation Protocol (SCAP) [8], a suite of open
standards for expressing host security information.

4.1. Vulnerability characterization

We propose using the Common Vulnerability
Scoring System (CVSS) for documenting vulnerability
characteristics. CVSS includes several measures of the
difficulty and potential impact of exploitation.
Additional research will determine which of these
measures are needed for the framework and which
other measures not in CVSS may also be needed, such
as the number of days since a vulnerability was
announced or a patch or exploit code was publicly
available. CVSS was originally defined for use with
software flaws only [7], but we are currently finalizing
a definition for misconfigurations and will also
propose definitions for other types of vulnerabilities.

The framework will need sources of the three types
of CVSS data: static (also known as base), temporal,
and environmental. CVSS data for static vulnerability

characteristics is already available for flaws identified
in the Common Vulnerabilities and Exposures (CVE)
dictionary. CVSS data for static characteristics would
need to be generated for the other types of
vulnerabilities, and this data could be shared with all
organizations. Other CVSS data is called temporal
because it changes over time, such as the availability of
exploit code for a vulnerability, so an up-to-date source
of temporal data would be needed. (Some security
vendors are currently maintaining temporal data for
some software flaws.) Other CVSS data is called
environmental because it is organization-specific, so an
organization would have to calculate it periodically.

The framework also needs documentation of the
security settings for each piece of software of interest
and the settings’ interdependencies. For most
software, such information is not currently available in
a standard format, so this would need to be done.

4.2. Attack characterization

Ideally, an organization could identify all attacks
and determine the vulnerabilities each attack targeted
and the success or failure of each attack. However, this
is not feasible because of the inaccuracy inherent in
attack detection. False negatives in attack mitigation
controls are unavoidable if the false positive rate is to
be manageable. The sheer number of attempted attacks
makes verification and analysis of each infeasible.
Also, some types of threats, such as insiders
inappropriately releasing data, may be hard to identify.
However, as long as attack identification and
characterization is done consistently, the results should
be sufficiently accurate for the framework.

Research will be needed to determine which attack
characteristics should be included. Likely sources of
data are actual vulnerability, attack, and incident data,
as well as data from honeypots, penetration testing, and
other forms of security testing and experimentation.
For example, network activity could be duplicated onto
a test network and then evaluated using a variety of
security controls to quantify the effectiveness of each
control. Testing would also be helpful for determining
how long it takes attackers to exploit certain types or
combinations of vulnerabilities.

4.3. Scoring

Much research needs to be done on how scores
should be calculated. CVSS can be used to calculate
scores for individual vulnerabilities, but these scores
do not take into account the relative likelihood of
vulnerability exploitation or the interdependencies
between vulnerabilities. Research into scoring must

explore how vulnerabilities should be grouped (such as
by host component [6]), what scoring scales should be
used, and how vulnerabilities should be weighted.
Research may show that vulnerability scores provided
by CVSS are not as important for the framework as
knowing the major characteristics of each
vulnerability.

4.4. Automation mechanisms

The framework needs a mechanism for
automatically collecting host configuration and
security data, as well as performing scoring. We
propose using the Extensible Configuration Checklist
Description Format (XCCDF) for this. XCCDF can
define the security baseline to be measured against and
the relationships between vulnerabilities, as well as
calculating various scores for a host. For the
framework, an XCCDF document will be needed for
each OS and application. In terms of content
development, there are a few publicly available
XCCDF documents for widely used operating systems
and more XCCDF documents are in development.

We also propose using the Open Vulnerability and
Assessment Language (OVAL). OVAL provides an
automated way to gather information on host
configurations, such as applications installed and
services running, and to check hosts for software flaws
and misconfigurations. An XCCDF document can call
OVAL definitions as needed and use the returned data
in its analysis and reporting. At this time, OVAL
definitions are available for several widely used
operating systems, and additional OVAL definition
development is ongoing.

Automation mechanisms would also be helpful in
extracting vulnerability and attack mitigation
information from security controls such as antivirus
software, vulnerability management utilities, and
firewalls. Much of this information can be extracted
from product management consoles and host logs, but
efficiency and consistency would be improved if open
formats such as XCCDF and OVAL were used.

5. Conclusions

The proposed framework will provide consistent,
largely automated measures of host security that are
based on operational and experimental host security
data. The framework can be used for quantitative risk
assessment, attack and vulnerability modeling, and
other purposes. Much work remains to be done on
completing the framework components and then
testing the entire framework.

6. References

[1] M. Abedin, S. Nessa, E. Al-Shaer, and L. Khan,
“Vulnerability Analysis for Evaluating Quality of Protection
of Security Policies”, Proceedings of the 2006 ACM
Workshop on Quality of Protection, ACM, Alexandria,
Virginia, October 2006, pp. 49-51.

[2] M. D. Aime, A. Atzeni, and P. C. Pomi, “AMBRA –
Automated Model-Based Risk Analysis”, Proceedings of the
2007 ACM Workshop on Quality of Protection, ACM,
Alexandria, Virginia, October 2007, pp. 43-48.

[3] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley,
“Optimal Security Hardening Using Multi-Objective
Optimization on Attack Tree Models of Networks”,
Proceedings of the 14th ACM Conference on Computer and
Communications Security, ACM, Alexandria, Virginia,
October 2007, pp. 204-213.

[4] D. J. Leversage and E. J. Byres, “Estimating a System’s
Mean Time-to-Compromise”, IEEE Security & Privacy,
IEEE Computer Society, January/February 2008, pp. 52-60.

[5] R. P. Lippmann and K. W. Ingols, “An Annotated
Review of Past Papers on Attack Graphs”, Lincoln
Laboratory, Massachusetts Institute of Technology,
Lexington, Massachusetts, March 2005,
http://www.ll.mit.edu/IST/pubs/0502_Lippmann.pdf (current
03/2008).

[6] A. Mayer, “Operational Security Risk Metrics:
Definitions, Calculations, Visualizations”, Second Workshop
on Security Metrics, Boston, Massachusetts, August 2007,
https://securitymetrics.org/content/attach/Metricon2.0/Mayer
_Metricon-Final.ppt (current 03/2008).

[7] P. Mell, K. Scarfone, and S. Romanosky, “A Complete
Guide to the Common Vulnerability Scoring System Version
2.0”, Forum of Incident Response and Security Teams, June
2007, http://www.first.org/cvss/cvss-guide.html (current
03/2008).

[8] National Institute of Standards and Technology, “The
Information Security Automation Program and The Security
Content Automation Protocol”, http://nvd.nist.gov/scap.cfm
(current 03/2008).

[9] K. Sallhammar, B. E. Helvik, and S. J. Knapskog, “A
Framework for Predicting Security and Dependability
Measures in Real-Time”, International Journal of Computer
Science and Network Security, Seoul, Korea, March 2007,
pp. 169-183.

