
Vulnerability Scoring for Security Configuration Settings
Karen Scarfone

National Institute of Standards and Technology
100 Bureau Drive

Gaithersburg, MD 20899-8930
+1-301-975-8136

karen.scarfone@nist.gov

Peter Mell
National Institute of Standards and Technology

100 Bureau Drive
Gaithersburg, MD 20899-8930

+1-301-975-5572

mell@nist.gov

ABSTRACT
The best-known vulnerability scoring standard, the Common
Vulnerability Scoring System (CVSS), is designed to quantify the
severity of security-related software flaw vulnerabilities. This
paper describes our efforts to determine if CVSS could be adapted
for use with a different type of vulnerability: security
configuration settings. We have identified significant differences
in scoring configuration settings and software flaws and have
proposed methods for accommodating those differences. We also
generated scores for 187 configuration settings to evaluate the
new specification.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – product metrics.

General Terms
Experimentation, Management, Measurement, Security.

Keywords
Common Configuration Scoring System (CCSS), Common
Vulnerability Scoring System (CVSS), risk assessment, security
configuration, vulnerability, vulnerability scoring.

1. INTRODUCTION
The Common Vulnerability Scoring System (CVSS) is an open
specification for measuring the major characteristics of security-
related software flaws and scoring the potential impact of
exploiting software flaws and the relative difficulty of
exploitation [2]. CVSS is maintained by the CVSS Special
Interest Group (CVSS-SIG) within the Forum for Incident
Response and Security Teams (FIRST). CVSS has been widely
adopted by the information technology (IT) community [1].

The original motivation for developing CVSS was to provide a
consistent way of expressing vulnerability-related information
that organizations could use to prioritize their mitigation
responses to new software flaws. (Although the CVSS

specification does not explicitly state that it only applies to
software flaw vulnerabilities, every example in the specification
involves a software flaw, and there are many other statements that
strongly imply that its scope is limited to software flaws.) Since
CVSS’s initial development, we (and others) have wondered if
CVSS could be extended for other purposes. For example, could it
be applied to other types of vulnerabilities, such as security
configuration settings? CVSS measures and scores for
configuration settings would not be useful for mitigation
prioritization, but could be quite valuable as inputs to quantitative
risk assessment frameworks, threat models, and attack graphs and
trees [6].

This paper describes our efforts to determine if CVSS version 2
(v2) can be adapted for measuring and scoring security
configuration settings. We developed a modified version of the
CVSS v2 specification and tested it on 187 entries from version
4.0 of the Common Configuration Enumeration (CCE) dictionary.
We made additional changes to the specification based on the
testing and feedback solicited from the CVSS-SIG and others.
The updated specification has undergone review by the CVSS-
SIG and was released for public review and comment in May
2008 [7].

Section 2 provides background on CVSS. Section 3 describes our
identification of differences in scoring software flaws and security
configuration settings, including our testing of the draft
specification. Section 4 explains additional changes we made to
the specification as a result of reviewer feedback. Section 5
presents several examples of scoring using the specification.
Section 6 provides conclusions for the paper and proposes future
work.

2. BACKGROUND
2.1 CVSS
CVSS base metrics are vulnerability attributes that are constant
over time and across all implementations and environments. A
formula is applied to the base metrics’ values for a vulnerability
to calculate its base score. Other CVSS metrics represent
vulnerability attributes that change over time (temporal) and that
are organization and implementation-specific (environmental).

The focus of our research is the base metrics. CVSS v2 has six
base metrics, three of which relate to exploitability. AccessVector
measures the exploitation range (e.g., local, over a network).
Authentication measures whether an attacker must authenticate to
a target before exploiting a vulnerability. AccessComplexity
measures how hard it is to exploit a vulnerability after the target is

This paper is authored by an employee(s) of the United States Government
and is in the public domain.
QoP’08, October 27, 2008, Alexandria, Virginia, USA.
ACM 978-1-60558-321-1/08/10.

3

accessed and any necessary authentication has been performed.
Together, the exploitability metrics measure how readily an
attacker can attempt to exploit a vulnerability. CVSS v2 also has
three metrics related to impact. ConfImpact measures the
potential degree of impact to a target’s confidentiality, and
IntegImpact and AvailImpact perform similar measurements for
integrity and availability. The impact metrics measure the impact
that an attacker can cause to a target by exploiting a vulnerability.

2.2 Vulnerability Dictionaries
The MITRE Corporation maintains dictionaries for publicly
announced vulnerabilities in operating systems and applications.
One of these dictionaries, Common Vulnerabilities and Exposures
(CVE) [4], covers software flaws, and another dictionary,
Common Configuration Enumeration (CCE) [3], addresses
security configuration issues. When our work on adapting CVSS
for security configuration issues began in July 2007, the current
version of CCE was 4.0, and it comprised a single list of 910
configuration entries for several versions of Microsoft Windows,
Microsoft Internet Explorer 7, and Microsoft Office 2007.
Examples of CCE version 4.0 entries are:

� CCE-25: The required auditing for %SystemDrive%
directory should be enabled

� CCE-100: The “minimum password length” policy should
meet minimum requirements

� CCE-931: The “back up files and directories” user right
should be assigned to the correct accounts

Note that CCE entries do not specify how each configuration
should be set, only that each should be set properly. The
implication is that users of CCE entries are responsible for
determining what the proper settings should be for their
environment.

3. DEVELOPING THE SPECIFICATION
When creating our new specification, we wanted to change as
little of the CVSS v2 specification [2] as possible. This meant
keeping the CVSS v2 metrics, score values, and formulas, and
rewording only the portions of the specification that required it.
We also chose to focus on configuration issues as listed in the
CCE version 4.0 dictionary. Although Windows was the only
software in that dictionary, we were mindful of configuration
settings in other operating systems as we developed the
specification.

To start our work, we reviewed the CVSS v2 specification and
extracted the parts needed for our specification: the base metric
definitions and the scoring guidelines. We modified these parts to
change their context from software flaws to configuration
settings. We also documented several scoring examples. We then
gave the text to CVSS analysts from the National Vulnerability
Database (NVD) [5] for review. After answering their questions
and making a few changes to the text, we asked the analysts to
use it to score a variety of CCE entries for Windows. We largely
allowed the analysts to choose entries to score but encouraged
them to choose a representative sample, which they did. Types of
settings scored included audit settings, file permissions, user
privileges, account lockout policies, web browser usage data
settings, session timeout policies, service enabling/disabling, and
administrator privilege escalation. After an analyst had scored a

CCE entry, we independently scored the same entry and
compared the results. A discrepancy indicated either human error
or a problem with the specification. Each discrepancy was
discussed in detail and resolved. Ultimately, 187 of the 910 CCE
version 4.0 entries were scored. We also reviewed the score
assigned to each entry to ensure that it seemed reasonable when
compared to the severity of software flaws receiving similar
scores. The rest of this section describes the changes to the
specification that were identified during the scoring testing.

3.1 Base Metric Definitions
We looked for changes that might be needed in the base metric
definitions. We found that some of the CCE entries were not
clearly covered by the metric definitions; unlike software flaws,
which permit attackers to take unauthorized actions against a host,
these configuration settings prevented authorized actions. For
example, if a user lacks the privileges needed to perform an
action, then the host’s availability for that user is negatively
impacted.

To address such cases, we added a second class of configuration
settings to the specification. The original class was for exploitable
settings, such as excess privileges, unnecessary services running,
and weak password policies. The new class was for settings that
prevented authorized actions: insufficient privileges, unable to run
needed services, lack of auditing, etc. We updated the
AccessVector definition to include both classes of settings for all
its possible values. We also updated the AccessComplexity
definition so that all settings that prevent authorized actions are
set to Low because they automatically affect the host—for
example, auditing being disabled affects the host at all times and
does not require attacker action. We determined that the
Authentication metric needed no changes because it already
covered both classes of settings.

We also expanded the impact metric definitions. For ConfImpact,
we added “unauthorized access to the system” to the existing
“information disclosure” definitions to make it clear that it should
include unauthorized resource use. For IntegImpact, we added
alterations to the system’s configuration, such as installing
unauthorized programs. We did not change the AvailImpact
definitions because they already applied to both classes of
settings.

3.2 Scoring Guidelines
We determined that a major change was needed to the scoring
guidelines. This change involved addressing a key difference
between software flaws and configuration settings: universality. A
software flaw is an absolute: any organization would consider it
undesirable. On the other hand, many security configuration
settings are environment-specific, such as the number of minutes
to wait before disconnecting an idle session, and do not
necessarily have a “correct” value. In this example, decreasing the
setting would make it less likely that an attacker could access and
use an idle session, but the decrease would also reduce the
availability of the session to the user. At its extreme, such as
setting the idle time to one minute, the service might be highly
unavailable to both users and attackers. At the other extreme, such
as setting the idle time to one day, the service might be highly
available to both users and attackers.

4

Because many settings do not have a “correct” value, scoring a
setting often involves considering multiple possibilities. This is
easy for settings with two possibilities (such as “enabled” and
“disabled”), manageable for settings with three to five
sequentially ordered possibilities (i.e., a clear progression from
least secure to most secure), and far more complex for settings
with more possibilities, such as an access control list (ACL) for a
directory, which may have millions of possibilities. For example,
CCE-411 is “The required permissions for the directory
%SystemDrive% should be assigned”. An ACL for this directory
could provide too many privileges to some users, too few
privileges to others, and the appropriate privileges to yet other
users, and the extent of the incorrect privileges could differ
among the user accounts.

Because we wanted to try having a single score for each CCE (to
be consistent with having a single score for each CVE), we
initially devised a scheme for choosing which possible settings
should be used to generate each score. If a configuration setting
had two possible values with security implications, then both
possibilities should be calculated (set to A but should be set to B;
set to B but should be set to A) and the higher score chosen. If a
configuration setting had three sequentially ordered values, then
the low to high and high to low possibilities should be scored (set
to 1 but should be set to 3; set to 3 but should be set to 1) and the
higher score chosen. If a configuration setting had more complex
possibilities, then the analyst should identify the broad cases that
are most likely to occur and have security implications, score
those, and choose the highest score. We also added an explanation
that scores would “be generally representative of the relative
importance of the configuration setting” and not what “would be
assigned to configuration settings for a particular organization”,
further explaining that organizations would need to generate their
own scores based on their specific requirements.

4. REVISING THE SPECIFICATION
After the scoring test and the specification updates were
completed, we sent the specification to the CVSS-SIG for review
and received feedback from several members. The most common
feedback was that having a single score for each CCE entry
instead of multiple scores was of little value, and that having each
organization generate its own custom scores would be inefficient
and inconsistent. In response, we modified the specification so
that there could be multiple scores for a single entry. When a
configuration setting has a few possible values, analysts should
consider the security implications of each combination of desired
and actual settings and create a score for each combination.
Sections 5.1 and 5.2 present examples of scoring settings with two
possible values.

When a configuration setting has a larger number of possible
values, analysts should generate a score for each common case.
For example, if a timeout can be set to any number of seconds,
then the analyst would consider the cases where the timeout is set
too high and set too low. If setting the timeout to 0 disables it,
then the analyst would also consider the case when the setting is
disabled but should be enabled. An example of this is described in
Section 5.3.

If a configuration setting can have multiple values
simultaneously—such as an access control list that sets individual
privileges for many users—then the analyst would consider the

common cases and generate a separate score for each. A person
assessing such a configuration setting would determine which
cases applied to that setting, examine their base metrics’ values,
choose the highest values from those metrics, and calculate a new
score that encompasses all the applicable cases. Section 5.4
provides an example to illustrate this.

The next step in revising the specification was to redo its
examples to have multiple scores where appropriate. We
discovered that generating multiple scores for a configuration did
not take significantly more time than generating a single score. To
arrive at a single score, analysts often had to generate several
scores and then choose the highest among them. When two or
more cases had the same high score, analysts had to evaluate
additional characteristics of the settings to determine which case
should be selected. With the new procedure, the analyst no longer
has to compare scores or do other evaluations to choose a single
score. On the other hand, analysts may have to evaluate a few
more cases than they otherwise would have. However, the
analysts reported—and we observed during our own scoring—
that the research conducted before scoring an entry generally
takes considerably longer than generating all the scores. So
having analysts generate multiple scores might not take
substantially more time than generating single scores.

We also revised the specification to incorporate several examples
of configuration settings from platforms other than Windows XP.
In March 2008, CCE version 5.0 was released. Its entries are very
similar to version 4.0 entries, with the main difference being that
version 5.0 has a separate list of entries for each version of
Windows (CCE version 4.0 had a single list for all versions of
Windows), as well as lists for Internet Explorer 7, Office 2007,
Red Hat Enterprise Linux 5, and Sun Solaris 10. We tested the
specification on representative entries from these operating
systems and applications to ensure that the specification was
sufficiently flexible to accommodate them all, and that the
specification produced scores that were reasonable
approximations of the relative severity of each security
configuration setting.

To clearly distinguish the new security configuration scoring
specification from the CVSS v2 specification, we named the new
specification the Common Configuration Scoring System (CCSS).
The draft CCSS specification [7], which permits multiple scores
for each configuration setting and includes examples for several
platforms, has undergone review by the CVSS-SIG and others in
the security community, and feedback on the specification has
been positive.

5. SCORING EXAMPLES
Several examples of scoring using the draft CCSS specification
are presented below. The security configuration settings in these
examples have been selected to illustrate the range of complexity
in settings, as well as a variety of platforms, and how the CCSS
specification is flexible enough to accommodate these
differences. The examples have been adapted from the draft
CCSS specification [7] and from the CCE version 5.0 lists [3].

5.1 Example 1: One Option
CCE-4675-5 is a Sun Solaris 10 entry. Its CCE definition is
“Kernel level auditing should be enabled or disabled as
appropriate.” The definition indicates that there are two options

5

for the setting. From a security standpoint, we are concerned
about auditing being disabled when it should be enabled.
(Arguably, in some cases there could be a performance impact if
auditing is enabled when it should be disabled, but we consider
this an operational issue and not a security issue.) If kernel level
auditing is disabled, various security events will not be logged.

For the exploitation measures, the AccessVector is set to
“Network” because security events to be logged could be
generated from remote locations. The Authentication metric is set
to “None” because no authentication is needed to generate
security events. The AccessComplexity metric is set to “Low”
because events fail to be logged by default, without any specific
attacker action needed. For the impact measures, IntegImpact is
set to “Partial” because the integrity of the host’s security posture
is somewhat degraded by the lack of auditing. ConfImpact and
AvailImpact are set to “None”.

These measures produce a base score of 5.0. This is comparable
to the software flaw CVE-2004-1358, which is defined as “The
patches (1) 114332-08 and (2) 114929-06 for Sun Solaris 9
disable the auditing functionality of the Basic Security Module
(BSM), which allows attackers to avoid having their activity
logged.” The National Vulnerability Database assigned the same
CVSS measures and score to CVE-2004-1358 [5] as the CCSS
measures and score we assigned to CCE-4675-5.

5.2 Example 2: Two Options
CCE-3047-8 is a Windows XP entry, defined as “Application
Management”. It has two options: “enabled” and “disabled”. If it
is disabled, users cannot install applications; if it is enabled, users
can install and uninstall applications. Both of these have
potentially negative security implications.

For the exploitation measures, the setting only affects local users,
so the AccessVector is set to “Local”. No additional
authentication is needed, so Authentication is “None”. The
AccessComplexity metric is “Low” because the setting is applied
automatically, without any user action needed. For the impact
measures, the impact might vary by case. In the first case (the
service should be disabled but is not), users are unable to use the
host to install new applications, thus impacting host availability
(ConfImpact “None”, IntegImpact “None”, AvailImpact
“Partial”). In the second case (the service should be enabled but is
not), users can install and uninstall applications, which could
affect the host’s integrity and availability (ConfImpact “None”,
IntegImpact “Partial”, AvailImpact “Partial”).

The base score for the first case is 2.1, and the base score for the
second case is 3.6. These scores are low on the base score scale,
indicating that their severity is relatively minor. Users can only
install and uninstall applications using their own privileges, so the
assumption is that they have limited, user-level privileges and
cannot install or remove system-level applications, which would
merit a higher score. Also, the only people who can take
advantage of the setting are local users who have already
authenticated to Windows XP, thus limiting the opportunities for
exploitation.

5.3 Example 3: Range of Options
CCE-2363-0 is a Windows Vista entry, with the definition “The
‘account lockout duration’ policy should meet minimum

requirements”. An account lockout occurs when too many
consecutive failed authentication attempts happen. The lockout
duration setting specifies how long (in minutes) the host should
wait before accepting additional authentication attempts for the
locked-out account. So for CCSS scoring purposes, we think of
the possible improper settings as being too high or too low than a
desirable value, such as that specified in an organization’s policy
or a vendor’s security recommendations. If the setting’s value is
too high as compared to the desirable value, legitimate users will
be unable to log onto the host for an extended period of time
(partial impact to availability). The same is true if the value is set
to 0, which keeps the account locked out until an administrator
manually unlocks it. If the setting’s value is too low, attackers
will have more opportunities to guess the password (partial
impact to confidentiality).

For cases where the lockout is too long (value is too high or set to
0), the AccessVector is set to “Local” because this involves local
authentication. Authentication is “None” because no
authentication is needed (for that matter, it is inherent in this
scenario that authentication has been unsuccessful).
AccessComplexity is “Low” because the lockout occurs
automatically and it is easy for lockouts to occur during normal
host use. The impact metrics are ConfImpact “None”, IntegImpact
“None”, and AvailImpact “Partial”. The base score for the too-
long cases is 2.1.

For cases where the lockout is too short (value is too low), the
AccessVector is set to “Local” because this involves local
authentication. Authentication is “None” because no
authentication is needed. AccessComplexity is “High” because
the setting simply makes it slightly more likely that an attacker
will guess a password. The impact would be to the confidentiality
of passwords, so the impact metrics are ConfImpact “Partial”,
IntegImpact “None”, and AvailImpact “None”. The base score for
the too-short cases is 1.2.

The scores for both types of cases are relatively low when
compared to other settings. This is appropriate because an overly
long lockout is primarily an inconvenience to users and has no
permanent effect on the host, and a short lockout is unlikely on
most hosts to lead to a password being guessed.

5.4 Example 4: Combination of Options
CCE-4693-8 is a Sun Solaris entry, defined as “File permissions
for the /etc/cron.d/cron.allow file should be configured correctly”.
Users that are authorized to use cron are listed in this file. There
are an essentially unlimited number of ways in which this CCE
can be set incorrectly—in a worst-case situation, each user would
have some privileges that they should not have and would be
missing other privileges that they need. However, the main
security issues with privileges can be summarized in four
categories: 1) unauthorized users can modify the file (including
deleting its contents), 2) unauthorized users can read the file, 3)
authorized users cannot modify the file, and 4) authorized users
cannot read the file.

For all four cases, the AccessVector is set to “Local” because a
local user account is required. Authentication is “None” because
no authentication is needed in addition to local OS authentication.
AccessComplexity is “Low” because the user just needs to try to
access the file.

6

The impact metrics vary among the cases. It is important to note
that the metrics measure direct impact (to the file) and not indirect
file (how changes made to the file could be used subsequently,
such as authorized users that have been removed from the file
listing no longer being able to use cron). For case 1, they are
ConfImpact “None”, IntegImpact “Partial”, and AvailImpact
“None”; the integrity of the file may be affected. For case 2, they
are ConfImpact “Partial”, IntegImpact “None”, and AvailImpact
“None”, because the list of cron users is exposed. For cases 3 and
4, they are ConfImpact “None”, IntegImpact “None”, and
AvailImpact “Partial” because users are unable to perform
functions for which they are authorized.

The base score for each case is 2.1. However, multiple cases
could apply simultaneously to a single host, and even to a single
user. For example, if a user who should have no access to the file
has both read and modify rights, then both cases 1 and 2 would
apply. That can be thought of as a single vulnerability, and the
scores for the two cases would be combined by selecting the
higher value from each of the metrics for the two cases and
calculating a score from those values, in this case 3.6. Adding
case 3 or 4 to cases 1 and 2, then selecting the highest values from
each of the metrics for the cases generates a score of 4.6.

6. CONCLUSIONS AND FUTURE WORK
We have shown that it is feasible to adapt CVSS v2 for use with
scoring security configuration settings while minimizing
deviations from the CVSS specification. The major changes that
we made were to expand the metric definitions to include settings
that prevented authorized actions, and to permit multiple scores
per configuration issue to reflect the possible combinations of
desired and actual settings. The CVSS metric values and formulas
were unchanged. Although our focus was on CVSS and CCEs, the
differences that we have identified in scoring software flaws and
configuration settings would be applicable to any method for
performing quantitative assessments of host security, including
threat models and attack graphs and trees.

We are currently finalizing the CCSS specification and are also
beginning work on developing a similar specification for another
class of vulnerabilities, software feature misuse. Software feature
misuse is when an attacker takes advantage of the intended
inherent functionality of software, not involving any software
flaws or security configuration settings. Examples of this class of
vulnerability include an attacker using social engineering to trick

a user into opening a malicious email attachment or clicking on a
malicious uniform resource locator (URL) in an email, and a
malicious insider using secure shell (SSH) to transfer sensitive
data files to an external system for fraudulent purposes. We intend
for all of our vulnerability scoring specifications to be
interoperable so that vulnerabilities can be measured and scored
consistently regardless of vulnerability type.

7. ACKNOWLEDGMENTS
The authors gratefully acknowledge the assistance provided by
the reviewers of the new specification, including Kurt Dillard,
Robert Fritz, Tim Grance, Ron Gula, Dave Mann, Doug Noakes,
Jim Ronayne, Murugiah Souppaya, Kim Watson, and the
members of the CVSS-SIG. We are also particularly thankful for
the contributions of Chuck Wergin and Dan Walsh, the NVD
analysts who scored the CCE entries during testing and reviewed
several specification drafts.

8. REFERENCES
[1] Forum of Incident Response and Security Teams. CVSS

Adopters. http://www.first.org/cvss/eadopters.html
[2] Mell, P., Scarfone, K., and Romanosky, S. A Complete

Guide to the Common Vulnerability Scoring System Version
2.0. Forum of Incident Response and Security Teams, June
2007. http://www.first.org/cvss/cvss-guide.html

[3] MITRE Corporation. Common Configuration Enumeration
(CCE). http://cce.mitre.org/

[4] MITRE Corporation. Common Vulnerabilities and
Exposures (CVE). http://cve.mitre.org/

[5] National Institute of Standards and Technology. National
Vulnerability Database. http://nvd.nist.gov/

[6] Scarfone, K. and Grance, T. A Framework for Measuring the
Vulnerability of Hosts. In Proceedings of the 2008 1st
International Conference on Information Technology
(Gdansk, Poland, May 19 - 21, 2008). IT 2008. Gdansk
University of Technology, Gdansk, Poland, 145-148.

[7] Scarfone, K. and Mell, P. Draft NIST Interagency Report
7502: The Common Configuration Scoring System (CCSS).
NIST, May 2008.
http://csrc.nist.gov/publications/PubsNISTIRs.html

7

