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ABSTRACT

For the past several years, research has

been carried out in the Electricity Division at
the National Institute of Standards and
Technology (NIST) to reduce the testing
requirements for analog and mixed-signal
devices. The most significant testing technique
to result has been a model-based approach to
the testing and calibration of such devices. The
model is developed from empirical data,
physical information, a priori information, or a
combination of the three. Algebraic operations
are performed on these data to create a model.
The model approximately spans the vector
space within which the device behavior can be
described. With this model, the device can be
characterized using significantly fewer
measurements than is possible with traditional
methods. A brief description of the techniques
will be presented along with a summary of the
results achieved in testing analog and mixed-
signal devices.

INTRODUCTION

The research at NIST on the testing of
complex electronic systems grew out of the
desire to understand analog testing better and
to reduce its cost during manufacture or
calibration. Initially, test techniques were
predominantly applied to data converters.
However, it was realized that linear models
could be used effectively to model the behavior
of other devices (Stenbakken 1985).

The information comprising the model
can be any combination of empirical data,
physical information, and a priori information.
Once gathered in vector form, the information
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is placed in a matrix model.

Empirical data, obtained from
exhaustive testing of representative devices
coming off the production line, are very robust
sources of information for device modeling. The
usefulness of empirical modeling is based on the
assumption that a selected lot of devices will
manifest all the variability of the
manufacturing process (Souders 1990).

If detailed design information for a
device is available, then physical information
such as circuit component sensitivity matrices
can be included in the model. When underlying
device architecture results in well-defined error
behavior, then a priori vectors may be used.
An example of such a case is the predominance
of individual bit errors in many types of data
converters. An accurate model for this binary
behavior can be constructed from Rademacher
functions, which are a subset of the Walsh
functions (Souders 1985).

Note that each column of the matrix
model represents a piece of information that.
contributes to the description of the device.
Therefore, the desired number of columns in
the final reduced model should equal the
number of underlying parameters governing the
device behavior. Additionally, the individual
rows represent specific test points at which
measurements should be taken. These testing
strategies have achieved the development of a
model requiring only a limited number of test
points. This reduction represents a significant
decrease in test time and cost over exhaustive
testing.

MODELING TECHNIQUES

A number of data sets (representing
exhaustive device testing) and physical and a
priori vectors must be obtained in linear matrix
form, Y. Y is referred to as the modeling set.
Next, the question arises as to what procedures
to perform in order to derive a model and use
this model to reduce testing requirements.

Linear system theory is a mature
science offering a large variety of methods to
solve systems of equations. A set of vectors is a
basis for a vector space if, and only if, every
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vector in the vector space is a linear
combination of the vectors in the basis
(Schilling 1988). It is desirable that the model
be an exact basis for the vector space in which
the device operates. Every possible device
output would then be exactly describable by the
model.

The QR factorization or decomposition
(QRD) and the singular value decomposition
(SVD) are two methods suitable for efficiently
finding a set of linearly independent vectors (an
approximate basis set for a vector space) from a
system of vectors (Stenbakken 1993). The basis
so determined will be approximate because of
noise in the measurement data.

The Mathematics

The modeling of a device is
characterized by the linear constant-coefficient
matrix equation

y . Ax, (1)

where y represents a vector of measurements
taken on the device to be tested, A is the model
derived from Y, and :r is the device parameter
vector. Generally, the modeling set, Y, is
initially created with the number of rows (test
points) corresponding to exhaustive testing and
the number of columns several times larger
than the expected number of underlying
parameters. The number of rows must be
greater than the number of columns in order
for an accurate estimate of the solution to be
obtained. A linear system with more rows than
columns is called overdetermined and may be
solved using least-squares methods.

The first step in arriving at a model is
to determine the number of columns in the
model by performing an SVD on the columns of
Y. This is a matrix factorization yielding

y . USV T, (2)

where U and V are orthogonal matrices and S
is a diagonal matrix whose elements are the
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singular values associated with the Y matrix
(Leon 1980). The vectors in U are called the
left singular vectors. Each singular value along
the diagonal of S corresponds to a left singular
vector. The T refers to the transposed matrix.

The U matrix is created by
orthogonalizing linear combinations of the
vectors in ¥. Therefore, U has the property
that it spans the same vector space as Y. Both
singular values and singular vectors are
arranged in descending order of importance in
describing the information in Y. As the
singular values approach zero, the
corresponding vectors in U contribute less new
information. Although the singular values will
never reach zero for a system containing
measurement noise, relatively few of the
vectors in U are usually needed to explain the
strocture of any measurement vector
(Stenbakken 1993). Once U is obtained, it is
used to estimate A as the model in the
reduction process. The number of columns of U
that are maintained in the model is established
using the following bound:

II

LS:
Lj.l (3)

~ t1 , t ~ CJ...'
mn

where s~ is the ith singular value, n is the
original column dimension and m is the row
dimension of ¥, and (Jmis the standard
deviation of the measurement noise. The bound
t is determined based on specific accuracy
needs. The standard deviation of the
measurement noise can be estimated by
computing the standard deviation of repeated
measurement sets on a single device. Use of
this bound inequality can sometimes be avoided
by looking at a plot of the singular values and
visually determining the desired number of
vectors from the plot. Computational efficiency
is traded for model accuracy as more vectors
are added to the model. However, it is possible
to optimize the selection of columns for the
model. The optimum model size gives the
minimum root-me an-squared (rms) difference
between the predicted values and the true
values, rather than the measured values
(Stenbakken 1993). A specific number of

columns,j, is selected and a column-reduced
version of U is established. The system
equation becomes

y . Uc' (4)

where the subscript refers to the fact that the
model is not the complete U, but only the first j
columns. Note that the individual columns of Y
are lost in the transformation to U. However,
row information remains intact.

Reducing the number of rows is
desirable to obtain a minimum set of test
points. The minimi7.ation cannot be performed
using SVD because individual row (test point)
identities would be lost. Therefore, the QR
decomposition (QRD) is used to select only
linearly independent rows of Uc for inclusion in
the model. To use the QRD for test point
selection, the matrix Uc must first be
transposed, since QRD is a column operation.
The QRD maintains the identity of the columns
on which it operates. The QRD of the rows of
Uc is

T
PUc . QR, (5)

where P is a permutation matrix that reorders
the columns of UI (the rows of Uc) such that
the diagonal of R is monotonically decreasing,
the Q matrix is a square matrix with
orthogonal columns, and the R matrix is an
upper triangular invertible matrix the same
size as Uc (Leon 1980). The main diagonal of R
contains values showing linear independence of
one column relative to the previous columns of
U'{ To select test points, the columns of cfl
corresponding to the j largest values on the
diagonal of R are selected. This is equivalent
to selecting the j most linearly independent
rows of Uc. Now the reduced model is ajxj
square matrix. These j test points are the
minimum required to solve the system of
equations.

It is advisable to use more than the
minimum number of test points in order to
reduce the effects of measurement noise (lower
prediction variance) and to provide redundancy
to allow the detection of model errors. One



technique to select more test points is an
algorithm that uses the maximum pointwise
prediction variance to sequentially choose test
points. The prediction variance vector, 0;, is
calculated using the equation

2 -T- T 1
(

(J r " diag(UC(UC UC)"IUC). (] IN' 6)

where Uc is already defined as the full-row
length column-reduced model, U is the row-
reduced and column-reduced m~el, u~ is the
measurement variance (constant scalar for all
points), and diag refers to taking the diagonal
of the bracketed matrix. The diagonal
expression is calculated using Uc with size j,
and the row with the largest value is selected
as a test point~ The model cic now has size
j+l, and the steps are repeated until the
desired model size is achieved. Adding rows to
the model reduces the prediction variance at
the expense of greater test time. A factor of 2
to 4 times the number of columns has been
found to be a reasonable trade-off for the
number of rows.

The system of equations corresponding
to the reduced'model is given as

y" (j~, (7)

where the reduced set of measurement data is
denoted y. Once the reduced model is obtained
and the reduced set of measurements is taken,
the device parameter vector can be estimated
using the least-squares solution

-T- I-T
:£ " (Uc Ucr Ucy.

(8)

At this point, the full-length
measurement vector can be estimated using the
full-length model and the estimate of the device
parameter vector as

j" Ue£. (9)

The goal of estimating device behaVior at all

270

test points from measurements taken at only a
limited set of test points has been achieved.

Validating the Model

To validate the model, it is desirable to
have a set of complete measurement vectors
that have not been used in the model building.
The residual errors at the complete set of
measurement points for this validation set can
be calculated using the equation

£", . Y

Y

j

Ut!.
(10)

If the residual errors appear to be random and
have standard deviation approximately equal to
0,. the model is considered valid. If the
residual errors exhibit systematic structure or
have a large standard deviation, then the model
development will need to be repeated with a
larger and presumably richer modeling set, Y.

Testing Devices

After validation, the model can be used
to test devices coming off the production line, in
a calibration lab, etc. Recall that more than
the minimum number of test points are
measured so that the residual error at these
test points can be calculated using the equation

£p " Y - Ut!. (11)

The residual error can be checked periodically
to monitor model accuracy. If the rIDSvalue is
significantly larger than the known measure-
ment error, or if particular test points
consistently and systematically differ from zero,
the model may need to be uPdated.

APPLICATION EXAMPLES

One automatic test equipment
manufacturer currently offers an application
software package to implement this modeling
approach, and several integrated circuit (IC)
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manufacturers are using or evaluating the
method on production lines.

In early verification tests at NIST,
positive results were achieved modeling a
commercial 12-bit digital-to-analog converter
(DAC) using a model made up of eleven
Rademacher functions and two vectors of
superposition errors calculated from empirical
data from two devices. The model
characterized the ten most significant bits out
of the twelve bits. Thirteen measurements
were used out of a possible 1024. With use of
only the minimum necessary measurements,
errors were predicted with maximum
uncertainty no greater than 2.5 percent of the
peak error (Souders 1985).

The method was also applied
successfully to a commercial 13-bit analog-to-
digital converter (ADC). A model was
developed using a combination of physical and
empirical data. The empirical portion of the
model was developed from exhaustive data
(8192 test points) taken on 50 devices. The
decomposition and test point selection methods
produced a model with 18 parameters. Sixty-
four test points were selected for the reduced
model. Predictions using the model were
compared with exhaustive testing of 77 devices
and the rms value of the differences was 0.024
least-significant bit (LSB) (0.0003 percent of
full-scale where one LSB is 2.13 or 0.012
percent of full-scale) (Souders 1991). Results
are shown in Figures 1 and 2.
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Figure 1 Test results on a 13-bit ADC
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Figure 2 Test result summary for 77 devices

In addition to the mixed-signal Ie
applications, the NIST strategies have been
applied to a multirange thermal voltage
converter analog instrument. The
manufacturer had specified 255 test points as
required for exhaustive testing. This
instrument was modeled using the full test
data from 100 production units. The
decomposition techniques provided 20
parameter coefficients and 50 test points. This
50x20 reduced model produced an rms residual
error of 0.036 (or 3.6 percent) of the
manufacturer's tolerance specification when
tested on 39 additional units. Figure 3 shows a
typical measurement vector with its residual
error after prediction, offset from zero for
clarity. Figure 4 shows the prediction error of
the 39 validation vectors. The data have been
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Figure 3 Typical response (top) and residual
error using 50 test points
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Figure 4 Residual error of the validation set

normalized to the manufacturer's tolerance
specification so that any measurement error

within 100 percent of the tolerance specification
meets the manufacturer's requirements
(Koffman 1993).

QUALITY ASSURANCE

An individual confidence interval for the
true response at any test point can be
determined. An interval about the predicted
value f that contains the true value in 1-a
percent of infinitely repeated trials is calculated
using

1 -T - I T 1/1
LYlnIe -it ~ diag[ CJWI Uc(U c Ucr Uc ] It..I1'

(12)

where t I-tr/% is a value from a Student's t
distribution with (n-j)(m-j) degrees of freedom
based on the determination of Olft(Hwang 1994). .

A simultaneous confidence interval
cont~;n;n~ all m true values in 1-a percent of
infinitely repeated trials is determined using

1 . _ 1 -T - .1 T
LYo-.,e-it~ dlagUCJ".Uc(Uc Uc) Uc]FI..'

(13)

where m is the number of test points, j is the

- --- - - -
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number of parame~rcoefficients, and FI_fCis a
value from an F distribution using j degrees of
freedom for the numerator and (n-j)(m-j)
degrees of freedom for the denominator, based
on the determination of o~ (Hwang 1994).

CONCLUSIONS

The NIST strategies for reducing
testing requirements have been effectively
applied to analog and mixed-signal devices.
The methods are currently being used by
several private companies with implementation
under way at several other organizations. A
software package is presently being developed
at NIST to expedite the use of these techniques.
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