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Effects of Nonmodel Errors on Model-Based Testing
Gerard N. Stenbakken, Member, IEEE

Abstract-In previous work, model-based methods have been
developed for efficient testing of components and instruments
that allow for their full behavior to be predicted from a small
set of test measurements. While such methods can significantly
reduce the testing cost of such units, these methods are valid
only if the model accurately represents the behavior of the units.
Previous papers on this subject described many methods for.
developing accurate models and using them to develop efficient
test methods. However, they gave little consideration to the
problem of testing units which change their behavior after the
model has been developed, for example, as a result of changes in
the manufacturing process. Such changed behavior is referred to
as nonmodel behavior or nonmodel error. When units with this
new behavior are tested with these more efficient methods, their
predicted behavior can show significant deviations from their true
behavior. This paper describes how to analyze the data taken at
the reduced set of measurements to estimate the uncertainty in the
model predictions, even when the device has significant nonmodel
error. Results of simulation are used to verify the accuracy of the
estimates and to show the expected variation in the results for
many modeling variables.

I. INTRODUCTION

TESTING of analog and mixed-signal devices affects
both the cost and quality of the devices. Engineers

must understand both the advantages and pitfalls involved in
any proposed techniques to improve the testing process. A
comprehensive approach has been developed at the National
Institute of Standards and Technology to optimize the tradeoffs
in developing an efficient test method for analog and mixed-
signal devices [1]-[4]. These methods are applicable to devices
ranging in complexity from aid or d/a converters to complete
multirange instruments [5]. The approach is based on the
development of a model that allows the prediction of a large
number of test results from a much smaller number of tests.
This model must include all the significant parameters in the
process that can affect the measurement results. The model is
validated by comparing the full set of results that it predicts
against a full set of actual measurements. This validation
process is performed on a number of production devices. A
model validated in this manner is adequate so long as the
set of validation devices represents a wide range of process
parameters and is thus typical of the other devices produced
on the same production line.

This test approach also includes an online method, i.e.,
one that can be used during production testing, to assess the
adequacy of the model. This method involves examination
of the differences between the reduced set of measurements
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made and the predicted values for these measurements. These
differences or residuals will increase if the production line
changes so as to cause changes in the measurements that
are not included in the model. Prediction intervals (defined
in Section III) for the full set of predicted values can be
constructed based on these residuals.

The purpose of this paper is to examine the reliability
of this on-line test so as to assess the accuracy of the
predictions made by the model. A simulation program is
used to generate and analyze data typical of a well-controlled
production line and then to show the effects of changes in the
underlying model. The results show that prediction intervals
based on the residuals from the validation process are valid
only if the underlying model does not change; however,
prediction intervals that are based on the online test residuals
are valid even if the underlying model changes. The on-line
test residuals must be used with care, because they can have
significant variation if based on a small number of tests.

II. SIMULATION PROGRAM

The simulation program generates data sets that are equiva-
lent to measurementstaken on devices or instruments produced
by a well-controlled production line. The data simulates a
behavior that has been observed for many such devices [1],
[3], namely, that the measurements taken on each device
are controlled by a relatively small number of underlying
parameters. These parameters may in turn be controlled by
process parameters of the production line or by variation
in the component values of the device. If the number of
significant parameters is small compared with the number of
measurements taken, then model-based testing can reduce the
number of tests that need to be performed without significantly
reducing the accuracy of the results. The relation between
the measurements and the parameters that control them is
generally linepr.so long as the parameter changes are relatively
small. --

Consider that the number of performance measurements
made on the device is m. Combine the deviations of the m
measurements from the ideal values into an m x 1 vector y.
Let the number of parameters that control the measurements be
given by p and the set of values for these parameters for device
i be expressed as the p x 1 vector Xi. The relation between
each of these parameters and the measurement deviation at
each test can be expressed as an m x p matrix A. The relation
between the parameters controlling the measurements and the
measurement deviations can then be written as

yi = Axi + €i (1)
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w~ere {i is an m x 1 vector that gives the random errors
that occurred while measuring device i. In this paper all y
vectors will refer to deviations between a measurement and
an ideal value. However, the vector will be referred to as a
measurement. If all m measurementsare similar, then € is often
an independent and identically distributed random vector with
zero mean and standard deviation of a.

Often the matrix A is unknown. Parts of it can be derived
from circuit models of the device or from physical models
of the production process. These. parts can be supplemented
or the entire model can be developed by empirical methods
from full sets of measurements made on a large number of
devices. The simulation program used to generate the data for
this paper is the same as the one described in [6], with the
addition of a nonmodel error capability. The model used for
the simulated device has ten parameters, p, and uses random
model vectors with amplitudes in arbitrary units that vary
from 0.03 to 0.3. The number of measurements, m, is 256;
and the average amplitude of the simulated deviation vector,
y, is 0.6 in the arbitrary units. The standard deviation a of
the measurement noise vector, €, is 0.1. The derivation of
the estimate E of the true model A is described in [6]. That
method uses the singular value decomposition (SVD) on a
number, ne, of simulated random device measurement vectors,
yi, and then determines the optimum number of model vectors,
k. The reduced set of measurements is derived from E [3].
For the simulation examples considered here, ne was set to
130, and k was evaluated to be 10. There is not a one-to-
one correspondence between the columns of A and E, nor
between x and the parameters.,.,used with the estimated model
E. Rather, the columns of E span approximately the same
space as the columns of A, and the values of .,.,estimate a
corresponding linear combination of the parameters x.

III. RANDOM MEASUREMENT ERROR

When the only errors present in the modeling process are
the errors due to approximating the true model A with the
estimate E and the measurement error €, then an estimate of
the accuracy of the predictions can be derived [7], [8]. These
estimates are based on the full m x k model estimate, E, and
the reduced t x k model estimate, E, which is the rows of E

at the t reduced measurements. The prediction variance, P, of
the measurement predictions, due to the measurement noise €,
which has a standard deviation of a, is given by the diagoual
of a matrix as

P = Pca-2= diag{E(E'E)-1E'}a-2 (2)

where Pc is the m x 1 prediction variance coefficients, and
El is the transpose of E. The noise estimate a- is obtained by
applying the model to a set of n validation devices as

~2= 1 ~~(y;_y;)2
a --~~ 1 p.. 1 . 1 + CJ~= J=

where j refers to the jth measurement, and yi is the m x 1
vectorof predicted measurements for device i given by

yi = E.,.,i = E(E' E)-1 E'y~. (4)
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Here .,.,iis the estimate of the parameters for device i and y~
is the vector of t reduced measurements for device i. Define
the matrix

Z(E) =1+ E(E'E)-1 E'. (5)

Using this matrix, prediction intervals can be constructed for
each predicted measurement y, which have a 1- 0: probability

of containing the measured value. The prediction interval for
the jth measurement is [7], [8]

I ~ I< ~ 1/2 tYj - Yj _ aWjj 1-0/2 (6)

where Wjj is the jth diagonal element of Z(E), and t1-0/2 is
the 1- 0:/2 quantile of the t distribution with n( m - k) degrees
of freedom. Note that Wjj is just one plus the prediction
variance coefficient for measurement j, 1 + Pcj.

Similar to prediction intervals which define an interval about
the predicted value that contains the measured value with some
probability, confidence intervals define an interval about the
predicted value that contains the true (Le., expected) value
with some probability. For devices that follow (I), the true
measurements y are

y = Ax. (7)

For simulated devices this true value is known, but for
real devices it must be estimated by taking many repeated
measurements on a device and averaging the measurements
to reduce the random errors. The confidence interval for
measurement j,

IYj - yjl ~ (Pcj)1/2a-t1_0/2 (8)

has a probability of 1 - 0: of containing Yj.
Simulations were run on 32 different models A. For each

model, A, an empirical model, E, was developed using 130
simulated devices based on A (130 different random parameter
vectors, x, were used) and a measurement error a of 0.1.
Then 32 additional devices generated in the same way, were
analyzed as the validation set. Thus, validation data was
obtained on 32 times 32 or 1024 total devices, n. For
each model the number of reduced measurements, t, was

varied from 11 to J~fi The average prediction variance Pc
for all m measurements was calculated for each number of
reduced measurements using the m prediction variances from
(2). Equation (6) shows that Pm, the standard deviation of
the difference between the measurements and the predicted
measurements, is approximately

Pm= (9)
~n I i Y~i

1 2 ~
Lii-1 Y - ~ a-y1+ Pc

n(m - k)

(3) where I . 12 is the sum of squares of the vector elements.
Fig. 1 shows Pm and this estimate for Pm plotted as a function
of t. The approximation is close. Equation (8) shows that
Pt, the standard deviation of the difference between the true
value of the measurement and the predicted measurement,
is approximately equal to the square root of the average
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Fig. 1. Standard deviation of difference between the measurements and
predicted measurements Pm and the estimate for Pm with no nonmodel error.

0.15

"0
~
a.
t 0.10 -

CD

S
'0
> :
CD
~ 0.05 T'
"0
U5

0.00

10

.....
Estimated p_t
-..
Simulated

I

..1

I

--I

I

to

100 1000
Number of reduced measurements, t

Fig. 2. Standard deviation of difference between the expected value of the
measurements and the predicted measurements Pt and the estimate for Pt
with no nonmodel error.

prediction variance, as

Pt =
~n I-i YAil2 ~
L.Ji-l Y - ::::::: fly Pc'

n(t - k)

Fig. 2 shows that Pt closely follows this estimate for Pt as
a function of t. Thus, when there is no nonmodel error the
estimate for u obtained from the validation.process, 0-,works
well for prediction and confidence intervals.

IV. NONMODEL ERROR

- This section will show that when non model error is present,
USeof the fl from the validation process with no nonmodel
error present gives an inaccurate estimate for Pm' and that use
of the online test residuals gives a good estimate for Pm. A
device has nonmodel error, if, as a result of changes in the
production line, the devices exhibit behavior not captured in
the original empirical model. For such devices" the relation
between the measurements and the original model is

yi = Axi + ,i + €i
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Fig. 3. Standard deviation of difference between the measurements and
predicted measurements Pm and the estimate for Pm with 0, 0.02. 0.05 and
0.10 nonmodel error.

where the nonmodel component J.Liis orthogonal to A. The
true or expected measurement is then given by

ii = Axi + J.Li . (12)

The empirical model E will approximate the original model
A, and will therefore be approximately orthogonal to J.Li.The
J.Lis fixed for anyone device. Over many devices J.Lis assumed
to have a zero mean and a standard deviation of v independent
of the t test points, i.e., the variance of J.Lat the test points is
the same as the variance at the nontest points. Fig. 3 shows
the effects on Pm with various amounts of nonmodel error
present in addition to the 0.1 level of measurement noise. As
the amplitude of the nonmodel error increases, Pm increases
proportionally the same for all t. For large t, as

t -+ m, Pm -+ v'u2 + 1/2. (13)

(10)

Fig. 4 shows that as the amplitude of the nonmodel error
increases, Pt increases most for the larger number of reduced
measurements. At the larger number of measurements the
value of Pt is most dramatically reduced so one would expect
the effects of nonmodel error to be most significant there.

Figs. 3 and 4 show that the approximations of (9) and (10)

are not valid/for devices which have nonmodel error. An
estimate, which' is not sensitive to the presence of nonmodel
error, can be expressed in terms of the residuals at the reduced
measurements. The standard deviation of the residuals, r s, is
given by

rs = Iys - Ysl2
t-k (14)

(11)

where Ys is the vector of predicted measurements at the
reduced measurements.This quantity estimates for each device
the magnitudeof the combination of measurement error, €, and
nonmodel error, J.L.The accuracy of this estimate is a function
of the number of reduced measurements. Fig. 5 shows the
rms of the I 024 r s's, the rms plus and minus one standard
deviation,and the extremesof r s for each of the reduced
number of measurements. Note how large the range of r s is
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Fig. 4. Standard deviation of difference between the expected value of the
measurements and the predicted measurements Pt and the estimate for Pt with
0, 0.02. 0.05, and 0.10 non model error.
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Fig. 5. Rms of residual Ts, rms plus and minus one standard deviation, and
extremes for I 024 simulations with 0.05 nonmodel error.

for ~mallt. This large variabilityin rs is due to the small
number of degrees-of-freedom, t - k, when t is close to k (k
is 10 here). The variance of rs, vCrs), is proportional to

1
vCrs) rv - k ' (15)t-

The variance of rs decreases rapidly as t increases from k + :L
Thus, a stable estimate for rs usually requires that t be at least
three to five times as large as k. For smaller t's the variance
of r s will be large and so will any prediction intervals based
on rs.

An estimate for Pm that is insensitive to non model error is
obtained:1>yusing rs in place of a- in (9). The new estimate,
Prm, is given by

Prm = rsVl + Pc'

Fig. 6 shows Prmand Pm for the 1024 simulations plotted as
a function of t for 0 and 0.1 levels of nonmodel error, 1/.This
new estimate approximates the correct value very well with
nonmodel error present, and it appears to be nearly unbiased.
However, because of the variation in rs, this estimate has a
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wide variation for small t. This can be seen in Fig. 7, which
shows the rms of the ratio of Prm to Pm and the rms plus
and minus one standard deviation and the ratio extremes of
the 1024 simulations with a nonmodel error of 0.1. When t

is greater than 44 (greater than four times k), one standard
deviation of Prm is 19s.than 10 percent of the mean value of
Pm. This demonstra(e~the validity of the remark made after
(15) that t should be at least three to five times as large as k
to get a stable value for rs'

The estimate for Pt can not be extended to account for
nonmodel error as easily as for Pm. However, since Pm is
always greater than Pt, Prm can be used as a bound for Pt.

(16)

V. CONCLUSION

With nonmodel error present, the predicted measurements
will be inaccurate, and the estimates for the uncertainty in
these predictions will be low. However, a nearly unbiased
estimate for this uncertainty can be calculated with the use
of the residuals at the reduced measurements. This paper has
shown that this estimate is accurate if the number of reduced
measurements is at least three to five times the number of
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parameters being used in the model. Thus, this estimate of
the uncertainty in the predictions can be used to assess the
reliability of the model-based testing results.

This paper has not described how to monitor the measure-
ments to detect a change in the underlying model or how to
update the model estimate. This can be done by performing
statistical tests on the ratio of u to rs to detect a change
in the model. The appropriate action then depends on the
frequency and level of the model changes observed and the
desired testing accuracy.
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