
Developing Linear Error Models for Analog Devices

Gerard N. Stenbakken and T. Michael Souders

National Institute of Standards and Technology
Gaithersburg, MD 20899

Abstract: Techniques are presented for developing linear error models for analog and
mixed-signaldevices. A simulation program dev~lopedto understand the modelingprocess
is described and results of simulations are presented. Methods for optimizing the size of
empirical error models based on simulated error analyses are included. Once established,
the models can be used in a comprehensive approach for optimizing the testing of the
subject devices. Models are developed using data from a group of 13-bitAID converters
and compared with the simulation results.

Introduction

Testing of analog and mixed-signaldevices is a very critical element in the design cycleof
many new products. Test engineers must develop tests for these devices which can
accurately sort the good devices from the not so good, with a minimum of cost and time.
The process of developing an efficient test plan always involves a tradeoff of the test
confidence versus the test cost. This process requires getting the maximum information
possible from the tests that are performed.

Over the past several years, a comprehensive approach has been developed at NIST for
maximizing the tradeoffs associated with production testing of analog and mixed-signal
devices [1-4]. The approach is based on a simple relation between device errors measured
at a small number of test points and device errors at a large number of test points that are
predicted from those measurements. The simple relation is a linear coefficient matrix
model.

One point that is emphasizedin this paper is a technique for optimizingthe resultant model.
When an empirical model is being developed, a criterion is needed to determine the
optimum number of model parameters. Simulationsof error modeling showthat if too few
parameters are used in the model, then some of the true error structure cannot be
described. On the other hand, everyparameter added to the model increases the amount
of measurement noise that is modeled as device error. Thus, there is an optimum number
of parameters that should be used to estimate the errors of a device. This paper describes
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how to select a stopping criterion for empirical models that will minimize the difference
between the predicted device error and the true device error.

Once an accurate model has been developed,algebraic operations on the model can be used
to:

1. select an optimum set of test points which will minimize the test effort and
maximizethe test confidence,

2. estimate the parameters of the model (i.e., the error variables) from
measurements made at the selected test points,

3. predict the response of the device at all candidate test points from
measurements made at the selected test points, and

4. calculate the accuracyof the parameter estimates and response predictions,
based on the random error in the measurement.

The purpose of this paper is to describe the procedures used to develop empirical models.
Two methods are described, QR decomposition (QRD) and singular-valuedecomposition
(SVD). A program that uses these methods to simulate a device production line is
described and results are presented. These modeling techniques are applied to data from
13-bitAID converters and the results compared with the simulation results.

QR Decomposition Model Building

Consider the problem of designinga test for a device which has error limits set at m test
points. Make error measurements at all m test points and collect the errors into a vector
called y. Thus, y is an m by 1 vector of measured error values. Assume that the errors are
related to the process parameters xl, r, ...,xPof the production line by a linear error model
A and the measurements of the device are subject to an error of E. Then the measurement
on a device can be expressed as

y = Ax + E (1)

where A is an m by p matrix, x is a p-dimension vector and E is an m-dimension random
vector with normallydistributed elements with a mean of 0 and standard deviation of G. In
general the dimension of the test space m is much larger than the dimension of the
parameter space p.

To build an empirical model take n devices from the production line and measure their
errors. Let Y be the matrix of these n vectors, i.e.

Y = (yt, y, ..., y"). (2)
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Use the QRD algorithm to decompose the Y matrix into two matrices. The QRD process
sequentially selects or pivots the largest error vector i- and orthogonalizes the remaining
vectors to it. Denote the QRD of Y as

PY = QR (3)

where P is the pivot matrix, Q is an orthonormal m by m matrix, and R is an m by n right
triangular matrix. The pivot matrix P reorders the columns of Y (the device order) such
that the diagonal of R is monotonically decreasing. This pivoting puts these columns in
approximatelytheir order of importance. The first k columnsof Q (orthogonalized vectors
of Y) can be used to estimate the space spanned by the linear error model A To select
models of various sizes, the vectors of Q are selected in order until the desired size is
obtained. H Qk denotes the first k columns of Q, then

i- ~ Qk i + ei (4)

where the elements of z do not correspond one-for-onewith the x's, but the columnvectors
of ~ approximately span the same space as A The simulation results described below
show how to select an optimal value for k.

Singular-Value Decomposition Model Building

The other method that can be used to build an empirical model is singular-value
decomposition (SVD). Use the SVD algorithm to decompose the Y matrix into three
matrices. The SVD process selects those linear combinations of error vectors y which are
best able to describe the variation in Y and orthogonalizes them. Denote the SVD of Y as

Y=USyT (5)

where U is orthogonal m by m, S is diagonal m by n with min(m, n) monotonically
decreasingsingularvalues, and Y is orthogonaln by n. The . first k columnsof U
(orthogonalized linear combinationsof vectors of Y) can be used to estimate A The SVD
process puts these columnsin their order of importance. To select models of various sizes,
the vectors of U are selected in order until the desired size is obtained. H Uk denotes the
first k columns of U, then

i- ~ Uk i + ei . (6)

where again the elements of z do not correspond one-for-one with the x's, but the column
vectors of Uk approximatelyspan the same space as A

Given an empirical model Ok or Uk' a good set of test points can be selected using ORD
on the transpose of Ok or Uk' thus selecting rows of the empirical models or test points.
Additional test points can be selected bycalculatingthe prediction variance and sequentially
selecting the test point corresponding to the maximum prediction variance. The selected



parts of Qk and Uk are denoted as Qk and Ok and the corresponding measurements for
device i as f. These techniques are more fully described in reference 4.

Model Simulation Program

A model simulation program waswritten to gain a better understanding of the relationships
between the various factors involved in empirical modeling. This program simulates a
production line that can produce random devices. The data from simulated measurements
on these devices can be used to study the effects of various modeling factors on how well
these estimated models match the true model. Among the modeling factors that can be
studied with this program are the number of model parameters, their size relative to the
noise level, the complete number and the number of selected test points, and method of
selecting test points. This program was written in a programming language designed for
linear algebra called CLAM (TM)l. Figure 1 shows a block diagram of the model
simulation program. A brief description of the program is given next followed by a
description of some of the simulations run using the program.

The true model description is a set of parameters that gives the characteristics of the true
model. The simulations described below used a true model with random vectors. This
model allowsan arbitrary number of model vectors, an arbitrary number of test points, and
an arbitrary size of each vector. The individual vectors are created from elements drawn
from a uniform random distribution. For real production devicesthis step in the simulation
is equivalent to developinga processingline that builds devices. The true model describes
the amount and type of processvariations that result from this hypotheticalproduction line.

The program generates two sets of random vectors which conform to the true model. This
step in the program is equivalent to producing a number of devices on the production line
and setting aside one group to build an empirical model and another group to validate the
model. Random noise is added to the true model and validation sets to form the noisy
model and validation sets. This corresponds to the noise introduced during the process of
taking measurements on these devices. Measurements from real devices can also be
analyzed with the simulation program. Data from real devices, shown in figure 1 as a
predefined set, can be split into the noisymodel and validation sets. In this case the true
model set (TVS) and true validationset (TVS) are unknown, so some later analysescan not
be performed. .

The empirical model is derived from the noisy model set using either QRD or SVD

analysis [5, 6]. Empirical modelswith a varyingnumber of parameters ~~.~}kequal to the
range 1 to 128 in eq. 6 above) are used in the subsequent analyses. ~ each empirical

lCertain commercial software is identified in this paper in order to adequately describe the program
developed. Such identificationdoes not implyrecommendationor endorsement by the National Institute of
Standards and Technologynor does it implythat the softwareis necessarilythe best availablefor the purpose.



model a good subset of test points is selected by minimizing the prediction variance of each
submodel (shown as Select Test Points in figure 1). These selected test points represent the
small number of test points that would be measured in a real production operation.

The simulated measured errors of the corresponding test points of the noisyvalidation set
are fitted to those of the empirical submodel. The resultant fit parameters are referred to
as the Predicted Validation Parameter Set in figure 1. Since the number of selected test
points is in general larger than the number of model parameters, a least squares approach
is needed to calculate these parameters. Thus the estimated parameters can be computed
as

Zi = (OkT 0k)-l 0kT ¥ , (7)

for the SVD models (use Okin place of Ok for the QRD models). Note that the estimated
parameters Ziare a function of the selected test points and the number of vectors k used in
the model. The parameters are multiplied by the full empirical model to generate the
predicted validation set. This predicted set is compared with the true validation set (TVS
in figure 1), if available,and the noisyvalidation set (NVS) to determine the differencesdue
to the modeling process.

Simulations

The simulationswere used to address four questions about empirical modeling and testing.
First, what is the optimum number of empirical vectors to use in the model? In the past,
the number of vectors used in a model was determined by examiningthe r-diagonal values
from the QRD [4] or the singular values from the SVD. When the r-diagonal value
approached the level of the measurement noise, no additional vectors were selected. This
method gave good results but was not optimal. The simulations, however, show another
method which appears to be optimal. Second, how does the reduced number of test points
affect the accuracyof the results and the size of the optimum empirical model? Third, what
are the relative advantages of QRD versus SVD? QRD is roughly three times faster than
SVD, but how do the accuracies and sizes of the model compare? Finally, what are the
effects of the noise level on these results?

The simulations suggest answers to these questions, and give indications of where to look
for analytical solutions. The followingsimulation results are from runs with true model
vectors and parameters as described in table 1. In each case 130random deviceswere used
in the true mod"elset and the same number were used in the validation set.

Figure 2 showsthe average difference between the predicted error and the measured error
for the validation set using models derived with QRD and an rms noise level of 0.1 at each
test point. This noise level is about one sixth of the size of the true model contribution at
each point. Note from table 1 that this noise level is larger than the rms of the four
smallest true model vectors elements (0.03 and 0.06in table 1). The x axisof figure 2 is the
number of vectors used in the empirical model and the y axis is the rms error of all test



points for all devices.
Results are plotted for
five different test point
sets from 16 to a full
set of 128 test points.
The full test point set
gives the lowest
difference for any
model size and goes to
zero for a complete
model of 128 model
vectors. This is to be
expected since with
128 points to predict
and a full set of 128
parameters the

measured data can be exactlyrepresented. Each of the reduced test point curves has a
model size that gives a minimum difference. These minima, all slightly above the noise
level of 0.1, show the model size which gives the closest prediction to the full set of
measured values.

Table 1. Parameters for Simulations

Number of total test points = 128
Number of true model vectors = 10
Type of true model vectors = random
Distribution of vector elements = unbiased uniform
Size of true model vector elements

4 with maximumamplitude of :to.50 and rms of 0.29
2 with maximumamplitude of :to.25 and rms of 0.14
2 with maximumamplitude of :to.10 and rms of 0.06
2 with maximumamplitude of :to.05 and rms of 0.03

Distribution of parameters = normal
Size of parameters, rms = 1
Size of resultant devicevectors, rms = 0.62

The optimum model size,however,is the one which gives the minimum difference between
the predicted values and the true values, rather than the measured values. The results given
in figure 3 are similar to those described above but show the difference between the
predicted errors and the true errors for models derived using QRD. This difference can be
computed for simulated results but cannot be known for real devices. For any model size,
the full set of 128test points gives the smallest difference and for a complete model of 128
model vectors goes to 0.1 which is the measurement noise level added to the true values.
All of these test point sets have a model size that givesa minimum difference, includingthe
full test point set. Comparing these results with those of figure 2 shows that predicted
values of the four reduced test point sets are always closer to the true values than to the
measured values. The minimum difference for 32 test points is at the measurement noise
level of 0.1 and the minima for 64 and 96 test points are lower than the noise level. These
error levels are below the measurement noise level.

Recall that the measurement noise level is the difference between the measured values and
the true values. This noise level is the error obtained when all test points are measured and
no model is used. Byusing a model a lower error level can be obtained. Thus, by making
use of the constraints on the device errors that are expressed in the models, a reduced
number of test points can giveresults closer to the true values than measuring all test points
and not using a model. At first this result seems contradictory; one can take fewer
measurements and get a better result than by taking more measurements. This result shows
the power of the model to give a better prediction than not using a model.

The results obtained when SVD is used to derive the empirical models are given in figures 4
and 5. These graphs show that the differences obtained using SVD derived models are



qualitatively similar but always smaller than those from QRD derived models. For the
optimal points on plots of the differencesbetween predicted and true data, figures 3 and 5,
the SVD models give results that are as much as 60 percent better than the corresponding
QRD models. The SVD optimal models alwayshave fewer vectors than the corresponding
optimal QRD models.

The effects of increasing the noise level can be seen by comparing figure 6 with a
measurement noise level of 0.3 to figure 5 with a measurement noise level of 0.1. Figure 6
showsthe results for model sizesof 4 to 32 model vectors. The optimal models have fewer
vectors than for the corresponding simulations with a noise level of 0.1. The effects of
decreasing the noise level to 0.03,shown in figure 7, are to increase the number of model
vectors in the optimal models. This effect of noise level and method of derivation are
summarized in table 2. This table gives the optimum number of model vectors for the
reduced set of 32 test points for both model derivation methods and three noise levels and
compares them with the minimum difference locations for the difference between the
predicted values and the measured values. A range of model sizesis givenif other locations
have a difference within 1 percent of minimum difference. The qualitative results for 16,
64, and 96 reduced test points are very similar to those shown in table 2.

Table 2. Optimum Number of Model Vectors for 32 Test Points

Summary of Simulation Results

The following summarizes the observations that relate to the four questions which were
presented above. On the question of how to determine the optimum model size, the
simulationsshowthat, in general, the optimum sizefor the differencebetween the predicted
values and the true values occurs at the same location as the optimal size for the difference
between the predicted values and the measured values. For real data the true values can
not be determined, thus, one way to estimate the optimum model size is to determine the
location of the minimum differencebetween the predicted values and the measured values
using the validation set. Regarding the effects of the number of test points, as the number
of test points increases the size of the optimum model increases and the differences
decrease. With a larger number of test points, more model information can be pulled out
of the noise.

The simulation showsthat on the question of the relative advantages of using QRD versus

Noise 0.03 Noise 0.1 Noise 0.3

QRD SVD QRD SVD QRD SVD

Pred-Meas 13-16 10 11-17 10 10 6-8

Pred-True 16 10 11-15 10 10 7



SVD to derive the models, SVD does significantlybetter. The model sizesare consistently
smaller. This means that less random error is mapped on to the model. The differences
between the predicted and the true values are from 40 to 60 percent smaller for SVD
models versus QRD models. Even thoughthe SVD algorithm takes about three time longer
than the QRD algorithm, this analysis is done off-line from the testing and so does not
affect testing time. In fact, the smaller differences obtained using SVD mean that when
using SVD models fewer test points are necessary to obtain the same accuracythan when
using QRD models, thus speeding up the test times. Finally, the simulations show that as
the noise level increases, the number of vectors in the optimum model decreases and the
differences between the predicted values and the true values increases. With more noise
present the QRD and SVD methods can pull less of the model information out of the
empirical data.

Real Data Example

This same analysis was applied to data taken on 13-bit AID converters. Data from 78
devices were separated into 50 error vectors for the model vector set and 28 error vectors
for the validation set. This data was run through the simulation program and modeled with
both QRD and SVD. The measurement errors have an rms amplitude of about 0.5 least
significantbits (Isb's) and the measurement noise is about 0.021Isb's. This model-to-noise
ratio is about the same as that of the simulation data with a noise of 0.03. Figure 8 shows
the rms difference between the predicted values and the measured values for QRD and
SVD derived modelswith sizesfrom 4 to 32vectors and two sets of test points, 32 and a full
set of 8192. As with the simulation, the SVD results give a sharper comer than the QRD
results. The SVD and to a lesser extent the QRD results indicate that nine model vectors
account for the major portion of the deviceerrors. The remaining model vectors are small
compared to the noise level. Based on these curves, a reasonable estimate for the optimal
model size would be 12 for the QRD derived models and 9 for the SVD derived models.

Summary

The simulation program showed the relationship that exists between the two methods of
deriving empirical models described here, and the resultant differences between the
predicted values, the measured values and the true values. The SVD derived models gave
results significantlybetter than the QRD derived models. The simulations were run with
a well defined ]podel structure. To what extent these observations apply to other cases is
not clear. Certainly,the resultswith the real data indicate the same kind of behavior as was
observed for the simulations.

The size of the optimal model varied with the number of selected test points, the method
used to derive the models and the ratio of the model size to the noise level. In all cases,
however, the model size that gave minimum difference between the predicted values and
the measured values was very near the optimal model. Thus, this appears to be a good
method for locating the optimal model size. Another observed feature was that the



difference between the predicted and the measured was alwayslarger than the difference
between the predicted and the true. A theoretical proof of this observation is being
developed.
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models and an rms measurement noise of 0.3

Figure 7. RIDs difference between predicted values and true values using SVD derived
models and an rms measurement noise of 0.03

Figure 8. Rms differencebetweenpredicted values and measured valuesusingQRD derived
models (dashed lines) and SVD derived models (solid lines) for data from 13-bit
AID converters with an rms measurement noise of about 0.021
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Figure 2. rIDSdifference between predicted values and measured values using QRD derived
models and an rIDSmeasurement noise of 0.1
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Figure 3. rms difference between predicted values and true values using QRD derived
models and an rms measurement noise of 0.1
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Figure 4. rms difference between predicted values and measured values using SVD derived
models and an rms measurement noise of 0.1
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Figure 6. rms difference between predicted values and true values using SVD derived
models and an rms measurement noise of 0.3
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