S₂F₁₀ FORMATION BY ELECTRICAL DISCHARGES IN SF₆: COMPARISON OF

SPARK AND CORONA

I. Sauers and G. Harman Oak Ridge National Laboratory Oak Ridge, Tennessee

J. K. Olthoff and R. J. Van Brunt National Institute of Standards and Technology Gaithersburg, Maryland

ABSTRACT

Among the SF₆ by-products of electrical discharges that have been investigated S_2F_{10} is probably the least understood (physical, chemical, and biological properties) and the most toxic. Its production in electrical discharges has been controversial because the presence of this chemical has been reported by only a few groups. We report on the yields of S_2F_{10} in two types of discharges: spark and corona. The S_2F_{10} yields for corona and spark were 2-4 μ mol/C and 0.04-0.37 nmol/J respectively for experiments where the water content was low. For both types of discharges we have found that S_2F_{10} formation is dependent on the presence of moisture. For corona discharges model calculations based on known sulfurfluorine chemistry are shown to yield reasonable agreement with experimental data. We show S_2F_{10} is formed in electrical discharges that occur in compressed-gas insulated equipment and address questions concerning effects of moisture and surface conditions.

INTRODUCTION

In addition to the desirable electrical properties of sulfur hexafluoride (SF₆), SF₆ is nontoxic and chemically inert (below ~500 °C). However, decomposition of SF₆ will occur when SF₆ is exposed to breakdown conditions including corona, spark, and arc. The major decomposition products (SOF₂, SF₄, SOF₄, SO₂F₂) have been examined in previous studies ¹⁻³ and in some cases the production mechanisms are understandable in terms of interactions with impurities such as water or oxygen.

Probably the least understood SF₆ by-product is S_2F_{10} which can be formed by the reaction of SF₅ radicals

$$SF_5 + SF_5 \longrightarrow S_2F_{10}$$
 (1)

where SF_5 is formed by electron-impact induced fragmentation of SF_6 . Prior to 1985 this compound had only been observed by a few investigators ^{4,5}. Failure to detect S_2F_{10} in electrical discharges might be due to several factors including the use of inappropriate detection techniques such as mass spectrometry alone, or gas chromatography in which the column is not suitable for either separating or transmitting S_2F_{10} , and/or there is a lack of detection sensitivity. In addition, problems associated with low thermal and chemical stability, failure to use proper reference standards, and inappropriate sampling techniques can lead to

significant errors in detection and identification of S_2F_{10} in SF_6 . It is known that S_2F_{10} undergoes rapid unimolecular decomposition above about 200° C. At lower temperatures, S_2F_{10} has been found to undergo catalytic decomposition on surfaces⁶. As a result of its relatively low thermal stability, formation of S_2F_{10} in high-pressure SF_6 discharges has, been largely dismissed in the past. However, recent work has indicated that S_2F_{10} is formed in all major types of electrical discharges that can occur in practice, i.e., corona, spark, ⁸ and arc. ⁹.

The importance of establishing the existence of S_2F_{10} in SF_6 discharges stems from its high degree of toxicity as indicated by the low ceiling TLV (threshold limit value) of 10 ppb (parts per billion) as set by the American Conference of Governmental and Industrial Hygienists. Occupational Safety and Health Administration (OSHA) has adopted this limit but has stayed enforcement until suitable detection techniques down to the TLV have been developed. Thus even at S_2F_{10} concentrations significantly lower than that of other SF_6 by-products, S_2F_{10} may be important in controlling biological and health effects. This was evidenced by the carlier cytotoxicity studies, 10 in which the major by-products of spark discharges excluding S_2F_{10} could not account for the total cytotoxicity in "in vitro" cell culture assays.

In this paper we present the results of a collaborative quantitative study of the corona and spark induced yields of S_2F_{10} formation in SF_6 and examine some of the factors that influence formation and destruction of S_2F_{10} .

EXPERIMENT

Corona discharge experiment

Sulfur hexafluoride was subjected to corona discharges in a negative point-to-grounded plane geometry. Corona experiments were performed both at National Institute of Standards and Technology (NIST) and Oak Ridge National Laboratory (ORNL) using three different discharge cells: 3.7 liter at NIST and 1.1 and 0.2 liter at ORNL. Discharges were run at constant current, i_c , and data were obtained on the S_2F_{10} production rate measured in moles per total charge cellected $q=i_c \cdot t$, where t is the total discharge time. A detailed description of the NIST discharge cell and method of corona-discharge data analysis is given in Van Brunt ¹. Except where noted the electrodes were stainless steel.

Spark discharge experiment

Spark discharges were produced by repetitively discharging a 0.1 μ F capacitor into a small 70-ml stainless-steel cell with concentric cylindrical electrode geometry. The spark energy was determined by $E_s = 1/2 \text{ nCV}^2$ where n is the number of sparks, C is the capacitance of the charging capacitor and V is the voltage prior to breakdown. Since E_s is an upper limit to the injected energy, the energy-normalized yield is a lower limit. In the past, diagnostics have indicated that most of the energy is injected into the cell. However recent data of Derdouri et al ¹¹ suggest that not all of the stored energy went into the spark in their spark experiment. Because of the strong dependence of S_2F_{10} production on conditions such as moisture and surface contamination, possible errors in spark energy cited above are not significant.

Method of gas analysis

All gas analyses were made using samples taken from the discharge cell by syringe and injected into a gas chromatograph (GC). Analyses were performed on two different GC systems: GC-MS (mass spectrometer) at NIST and GC-TCD (thermal conductivity detector)

at ORNL. The GC parameters were similar in both systems as previously specified 6,7,12 . Calibration was made with reference samples containing S_2F_{10} in either SF_6 , N_2 , or Ar. The S_2F_{10} was synthesized at Clemson University and provided to us in liquid form with greater than 99% purity determined by infrared absorption spectroscopy and GC-MS. The reference samples were prepared at ORNL in a gas mixing vacuum manifold. Maintaining reliable reference samples was not trivial since S_2F_{10} was found to deteriorate on surfaces in the presence of moisture. A study of S_2F_{10} decomposition on surfaces has been reported recently 6 . Due to the slow decay of S_2F_{10} in reference mixtures, new reference samples were prepared periodically for use in quantitative analysis of S_2F_{10} in SF_6 . Because of errors due to unstable reference mixtures, preliminary corona yields reported by Sauers et al. 7 were overestimated in the NIST 60 μ A data (presented in Fig. 4 of ref. 7). By taking proper account of S_2F_{10} decay in the reference sample, the apparent current dependence originally observed was eliminated as discussed in the following section.

The GC-MS technique employed for S_2F_{10} detection has been described in detail ¹² and only the most salient points of the method will be given here. As a general rule, a gas sample of SF₆ containing a mixture of trace components is passed through a GC where the components are separated both spatially and temporally. Each component passing into the mass spectrometer is ionized by a 70 eV electron beam and one or more positive ions characteristic of that species may be used to monitor the relative concentration of that species. Because of the similarity of the S_2F_{10} and SF₆ electron-impact positive-ion mass spectra ¹³, the monitoring of ions characteristic of S_2F_{10} is severely hindered by background contributions from SF₆ ions, thereby reducing S_2F_{10} sensitivity to about 50 ppm. However, it has been found that when the S_2F_{10} containing effluent from the GC flows through a heated metal tube (T> 150° C) incomplete decomposition of the S_2F_{10} occurs to form SOF₂ possibly by surface processes such as:

$$S_2F_{10} \longrightarrow SF_5 + SF_5$$
 (2)

$$SF_5 + H_2O \longrightarrow SOF_2 + 2HF + F$$
 (3)

Thus the S_2F_{10} content can be monitored by observing the ion signals from SOF₂ (e.g. SOF₂⁺, m/z=86 or SOF⁺, m/z=67). Because the ion background signals are significantly lower at these m/z ratios than at m/z corresponding to SF₆ ion fragments, the S₂F₁₀ detection sensitivity is improved by several orders of magnitude to below 10 ppb. This method of analysis was employed for the corona experiments made using the NIST 3.7-*l* cell. The GC-TCD used for the analyses of spark and corona in the ORNL experiments was applied in the conventional manner with sensitivity of ~25 ppm.

RESULTS OF CORONA EXPERIMENTS

"Clean" Cell, no water added

In Figs. 1 and 2 are shown the data obtained from the 3.7-*l* corona discharge cell (p=2 atm, $T=23 \,^{\circ}$ C, stainless-steel electrodes, 1 cm gap spacing). The data points in Fig. 1 are a composite of three experiments, corresponding to one experiment at 60 μ A, and two at 40 μ A. The 60 μ A data supercedes the data reported earlier ⁷. There is no indication of a dependence on i_c of the charge rate-of-production, r_q, of S₂F₁₀. This set of data gives a production rate of r_q=2.4 μ mol/C. However there are factors including surface contamination and humidity that can either increase or decrease the net S₂F₁₀ charge rate-of-production from this value. Interestingly the least squares fit of the data in Fig. 1 does not pass through the origin, indicating a non-linear production rate at short times. This is shown more clearly by the data bounded by the dashed lines and replotted in Fig. 2. These data were obtained from a 40 μ A experiment at short elapsed times and analyzed by GC-MS, after modification for increased sensitivity. This data set indicates a steeper initial rise corresponding to a somewhat higher initial production rate (~4 μ mol/C).

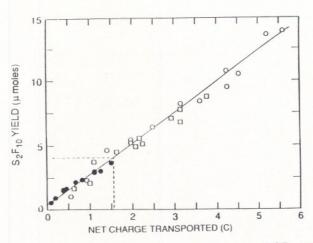


Fig. 1. Production of S_2F_{10} in corona discharge of SF_6 at 200 kPa (3.7-*l* cell) as a function of the net charge transported: $i_c=40 \ \mu A$, open squares and closed circles; $i_c=60 \ \mu A$, open circles. Data in the region delineated by the dashed lines are replotted in Fig. (2).

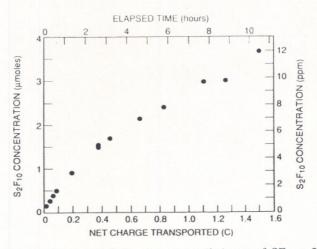


Fig. 2. Production of S_2F_{10} in corona discharge of SF_6 at 200 kPa (3.7-*I* cell) at short times, corresponding to S_2F_{10} concentrations in the lowand sub-ppm range. The actual clapsed time during which the discharge was active is shown on the top scale.

Effects of contaminated surface

When the electrodes were not cleaned between experimental runs, that is, the SF₆ gas plus gaseous by-products were pumped out and the cell refilled with SF₆, the S₂F₁₀ yield increased as shown in Fig. 3. Thus $r_q > 10 \ \mu \text{mol/C}$ were obtained. The initial run (Run 1) yielded a charge rate of production within a factor of two of that shown in Fig. 1, but made

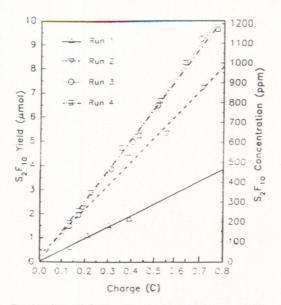


Fig. 3. Production of S_2F_{10} in corona discharge of SF_6 at 100 kPa (0.2-*l* cell) as a function of total charge for consecutive runs (Run 1-4) showing effects due to electrode contamination.

with a 0.2-*l* cell and tungsten (W) "point" electrode for $i_c=24 \ \mu$ A. It is not known at this time what causes this increase in S_2F_{10} production, but it could be an effect associated with the buildup of solid contaminants on the electrode surface. It should be noted that the differences in S_2F_{10} concentrations shown in Figs. 1 and 3 are due to the differences in cell volumes used for the two experiments.

Influence of moisture: SF6/H2O mixtures

It was previously shown that adsorbed moisture will increase the consumption of S2F10 on surfaces ⁷. Gas-phase water can also influence the net yield of S_2F_{10} in SF_6 corona. Figure 4 shows a comparison of data taken with the 1.1-l corona chamber (P=2 atm, T=23°C, stainless-steel electrodes, 1 mm gap spacing) under relatively dry conditions with data obtained after introduction of water vapor prior to the run, for $i_c = 20 \ \mu$ A. The water concentration was determined from the partial pressure of water after introducing water into the corona cell by syringe and allowing sufficient time (~ 1 h) for the water vapor to reach equilibrium with the walls of the chamber. Yields obtained after accumulation of q=2C total charge were substantially lower for water concentrations of 600 and 1200 ppm as shown in the figure. The three data sets represented by the open symbols were for experiments where the cell was "dry" meaning only that the cell was pumped down to 0.1 Pa prior to the run. The non-linear behavior for q>1 C could be due to electrode contamination as indicated by the data in Fig. 3, while the initial charge rate-of-production at q=1 C is similar to that exhibited in Fig. 1 and curve "Run 1" in Fig. 3. Because of the lower net S_2F_{10} yield ($r_0 < 1 \ \mu mol/C$) and the low sensitivity for the GC-TCD (25 ppm) used for these experiments, no data are shown below q=1C for the SF₆/H₂O experiments.

The above result appears contrary to previous data which showed a correlation between increased charge rate of production of S_2F_{10} with increased water as measured by GC-TCD using a Porapak T (Supelco) column ⁷. The results of reference 7 were obtained in a 0.2-*l* corona discharge cell and W "point" electrode. It was pointed out in that work that the GC peak areas for H₂O content were not always consistent with the amounts of water added. However, as will be shown in the next section, decomposition of S_2F_{10} on the walls can account for lower yields. The results shown here and in reference 7 suggest that it may be necessary to consider the combined counteracting effects associated with electrode

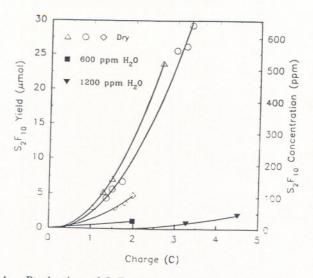


Fig. 4. Production of S_2F_{10} in corona discharge of SF_6 at 200 kPa (1.1-*l* cell) and $i_c = 10 \ \mu A$ as a function of total charge, showing the effect of water addition: open symbols correspond to the "dry" case (no water addition); closed square, 600 ppm water; closed triangle, 1200 ppm water. Differences in the three "dry" curves are probably due to small but different amounts of adsorbed water.

contamination which increases S_2F_{10} production and adsorbed water which decreases S_2F_{10} production.

RESULTS OF SPARK EXPERIMENTS

The energy rates-of-production for spark discharges (see Table 1) exhibited considerably more scatter than the rates obtained for corona, falling in the range 0.04-0.37 nmol/J. The experimental conditions covered the range 9.7-30 kJ total energy. In a 10 kJ experiment, when 600 ppm water was added to SF_6 , the S_2F_{10} yield dropped from 160 ppm to below detection limits (in this case 25 ppm using GC-TCD). As in the case of corona discharges, the S_2F_{10} yields probably depend on both surface conditions and on adsorbed trace moisture.

DISCUSSION

Model calculation of SF6 corona

Previous model calculations using a chemical kinetics code^{14} have achieved reasonable success in accounting for the charge rates-of-production of SOF_2 , SOF_4 , and SO_2F_2 . In assessing the S_2F_{10} reaction scheme, reactions (4)-(8) were considered to be most important to S_2F_{10} formation:

$$SF_6 \xrightarrow{\text{colona}} SF_5 + F$$
 (4)

$$SF_5 + SF_5 \longrightarrow S_2F_{10}$$
 (5)

$$SF_5 + SF_5 \longrightarrow SF_4 + SF_6$$
 (6)

$$F + H_2O \longrightarrow HF + OH$$
 (7)

$$SF_5 + F \longrightarrow SF_6$$
 (8)

Table 1. Comparisons of sulfur-oxyfluoride and $\mathrm{S_2F_{10}}$ by-product production rates from $\mathrm{SF_6}$ discharges

Species	Corona ^(a)		Spark ^(e)	Arc ^(g)
	(μmoℓ/C)	(nmoℓ/J)	(nmoℓ/J)	(nmoℓ/J)
SOF ₄	50	0.90	0.2	0.2-100
SOF	32	0.54	1-3	100-600
$SO_2\tilde{F}_2$ S_2F_{10}	$^{14}_{2-4^{(b)},(3.5\pm1.4)^{(c)},(1-12)^{(d)}}$	0.25 0.05 (b)	0.02 0.04-0.37 (f)	5.5-11x10 ⁻⁵ (h)

Discharge Type

(a) NIST data: P=200 kPa, $i_c = 40 \mu A$ (see Ref 1)

(b) Present data (see Fig 1), P=200 kPa, 3.7-l cell

(c) Present data (see Fig 4), P=200 kPa, $i_c=20 \mu A$, 1.1-l cell

(d) Model calculation: $[H_2O] = 50-400$ ppm (see Fig. 5)

(e) Data from Ref. 3

(f) Present data; range probably due to adsorbed water and varying electrode contamination

(g) Various sources and conditions (taken from Ref. 2)

(h) Yield determined from Refs. 9,15 (see text).

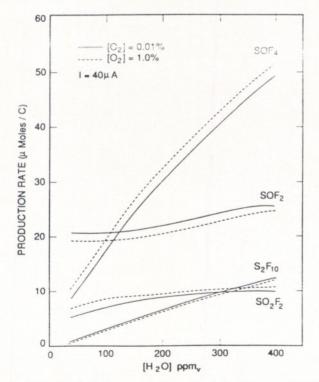


Fig. 5. Calculated charge rates-of-production of the oxyfluorides and S_2F_{10} as a function of H_2O content in 200 kPa SF_6 for a 40 μ A discharge and the different indicated O_2 concentrations.

In this scheme, the presence of H_2O enhances the production of S_2F_{10} by reaction with F (reaction (7)) which suppresses reformation of SF_6 (reaction (8)) allowing SF_5 radicals to

combine (reaction (5)) to form S_2F_{10} . According to this argument an increase in the gasphase water concentration [H₂O], would lead to an increase in the charge rate-of-production of S_2F_{10} . In Fig. 5 we show the results of model calculations for S_2F_{10} , SOF₂, SOF₄, and SO₂F₂ production rates as a function of gas-phase water concentration. In this model, only gas-phase reactions are considered, i.e., the model does not include loss of S_2F_{10} due to reactions occurring on surfaces, the rate of which depends on water as well.

The rate of S₂F₁₀ production can be expressed by

$$\frac{d[S_2F_{10}]}{dt} = r_t - k_d[S_2F_{10}]$$
(9)

where $[S_2F_{10}]$ is the S_2F_{10} concentration, $r_t = r_q i_c$ is the initial rate of S_2F_{10} formation as determined for example by reactions (4)-(8), and k_d is a rate constant for S_2F_{10} decay which can depend on time and in some unknown way on the conditions of the surface on which S_2F_{10} decomposition occurs. Assuming a constant k_d , $[S_2F_{10}]$ will approach an equilibrium value, $[S_2F_{10}]_{cq} = r_t/k_d$. If we use $r_q = 3 \mu \text{mol/C}$ (typical of the data reported here) and $i_c = 20 \mu$ A then $k_d > 2.8 \times 10^{-5}$ would account for the low net yield shown in Fig 4. In previous work $^{6,7}S_2F_{10}$ was found to decay exponentially with rate constants falling in the range 0.001-2 x 10^{-5} s^{-1} depending on the size of the chamber, amount of adsorbed water, and on the temperature. Since the previously measured 6,7 decay rates are slower than this, a possible explanation for the faster decay during discharges is that the S_2F_{10} decay rate via surface reactions is higher at lower S_2F_{10} concentration (<< 25 ppm).

Comparison of Corona and Spark yields

In Table 1 we summarize the results of S_2F_{10} production measurements from SF_6 in corona and spark discharges. In either case S_2F_{10} production rates are lower than for the other sulfur oxyfluorides listed. However the corona-induced S_2F_{10} charge rate-of-production is only an order of magnitude below that of the sulfur oxyfluorides for "clean" conditions where the water and oxygen contents are low. In the case of spark discharges, the yield of S_2F_{10} is lower relative to the most abundant by-product SOF₂. Included in the table for comparison are the production rates for the same sulfur oxyfluorides produced by arc discharges. The arc rate for S_2F_{10} production was determined from the S_2F_{10} concentration reported by Pettinga⁹ in a power arc burn-through experiment and arc energy was taken from the related work of Janssen¹⁵. In either the spark or corona cases S_2F_{10} formation is significant enough to merit consideration in any evaluation of the potential health effects of decomposed SF_6 .

CONCLUSIONS

Results of measuring S_2F_{10} production from both corona and spark discharges in SF_6 are reported here. Although the S_2F_{10} yield falls below the yields for SOF_2 , SOF_4 , and SO_2F_2 , it is significant in light of the relatively high toxicity of S_2F_{10} . The results presented here demonstrate that during a continous low-level corona discharge, it is possible for the concentration of S_2F_{10} in an enclosed chamber containing SF_6 to build up to levels far in excess of the TLV within a matter of minutes. The charge rate-of-production of S_2F_{10} r_q=2.4 μ mol/C, found for clean electrodes and relatively dry conditions can increase substantially under contaminated conditions. Under wet conditions, the net yield depends significantly not only on the formation rate of S_2F_{10} in the discharge, but also on the rate of decay as a result of contact with chamber walls. The larger the cell the smaller is the effect of degradation of S_2F_{10} after it is formed. An understanding of the influence of water on the S_2F_{10} formation rate requires additional experimental investigation. Results from model calculations of SF_6 by-product formation which show reasonable agreement with

experimental data on sulfur oxyfluorides, also indicate an increase in S_2F_{10} yield with increasing gas-phase water concentration. It is not clear from the present data whether a model which neglects surface reactions involving S_2F_{10} is sufficient to adequately account for the low S_2F_{10} yield reported here when water is added to the discharge cell.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. D. D. DesMarteau for his assistance in providing us with S_2F_{10} and to Dr. M. C. Siddangagappa for assistance in the early part of this work. This work was supported by the Office of Energy Management, Electric Energy Program, U. S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. and under interagency agreement with NIST.

REFERENCES

- R. J. Van Brunt, Production rates for oxyfluorides SOF₂, SO₂F₂, and SOF₄ in SF₆ corona discharges, <u>J. Res. NBS</u> 90(3):229 (1985).
- I. Sauers, H. W. Ellis, and L. G. Christophorou, Neutral decomposition products in spark breakdown of SF₆, <u>IEEE Trans. on Electrical Insulation</u>, EI-21(2):111 (1986).
- F. Y. Chu, SF₆ decomposition in gas-insulated equipment, <u>IEEE Trans. on Elect. Insul.</u> EI-21(5):693 (1986).
- W. Becher and J. Massonne, Contribution to the study of the decomposition of SF₆ in electric arcs and sparks, <u>ETZ-A</u> 91(11):605 (1970).
- B. Bartakova, J. Krump and V. Vosahlik, Effect of electric partial discharge in SF₆, <u>Electroteck. Obzor.</u> (Prague) 67:230 (1978).
- J. K. Olthoff, R. J. Van Brunt, J. T. Herron, I. Sauers, and G. Harman, Catalytic decomposition of S₂F₁₀ and its implications on sampling and detection from SF₆insulated equipment, <u>Conference Record of the 1990 IEEE International Symposium</u> on Electrical Insulation, pp 248-252 (1990).
- I. Sauers, M. C. Siddagangappa, G. Harman, R. J. Van Brunt and J. T. Herron, Production and stability of S₂F₁₀ in SF₆ corona discharges, <u>Proceedings of the Sixth</u> <u>International Symposium on High Voltage Engineering</u>, paper 23.08 (1989).
- I. Sauers, P. C. Votaw, and G. D. Griffin, Production of S₂F₁₀ in sparked SF₆, <u>J. Phys.</u> <u>D: Appl. Phys.</u> 21:1236 (1988).
- J. A. J. Pettinga, Full scale high current model tests on busbar constructions for GIS, <u>Proc. of the CIGRE Symposium on High Current in Power Systems</u>, pp. 506-511 (1985).
- G. D. Griffin, I. Sauers, K. Kurka, C. E. Easterly, Spark decomposition of SF₆: chemical and biological studies, <u>IEEE Trans on Power Delivery</u>, 4(3):1541 (1989).
- A. Derdouri, J. Casanovas, R. Grob, and J. Mathiéu, Spark Decomposition of SF₆/H₂O Mixtures, <u>IEEE Trans. on Elect. Insul.</u>, 24(6):1147 (1989).
- J. K. Olthoff, R. J. Van Brunt, J. T. Herron, and I. Sauers, Sensitive detection of trace S₂F₁₀ in SF₆, Analytical Chemistry (submitted, 1990).
- J. K. Olthoff, R. J. Van Brunt, and I. Sauers, Electron-Energy Dependence of the S₂F₁₀ Mass Spectrum, J. Phys D: Appl. Phys. 22:1399 (1989).
- R. J. Van Brunt, J. T. Herron, and C. Fenimore, Corona-induced decomposition of gaseous dielectrics, in "Gaseous Dielectrics V," (Proc. of the 5th International Symposium on Gaseous Dielectrics), ed. L. G. Christophorou and D. W. Bouldin, pp. 163-173 (1987).
- F. J. J. G. Janssen, Decomposition of SF₆ by Arc Discharge and the Determination of the Reaction Product S₂F₁₀, in "Gaseous Dielectrics V." (Proc. of the 5th International Symposium on Gaseous Dielectrics), ed. L. G. Christophorou and D. W. Bouldin, pp. 153-162 (1987).