IEEE Instrumentation and Measurement Technology Conference Brussels, Belgium, June 4-6, 1996

DC - 1 MHz Wattmeter Based on RMS Voltage Measurements

B.C. Waltrip and N.M. Oldham Rm. B162, Bldg. 220 National Institute of Standards and Technology Gaithersburg, MD 20899 Tel: (301) 975-2438 Fax: (301)926-3972 E-mail: waltrip@eeel.nist.gov WWW:http://eeel.nist.gov

<u>Abstract</u> - A wideband wattmeter for measuring active power over a frequency range of dc to 1 MHz is described. The wattmeter is based on the three voltmeter method in which three rms voltage measurements are used to calculate power.

I. INTRODUCTION.

The three voltmeter method for measuring power was described by Ayrton nearly 100 years ago. More recently, various implementations of the technique have been described [1,2]. The applied power is derived from a set of three rms voltage measurements using the law of cosines.

II. WATTMETER DESIGN

A wideband wattmeter has been developed based on this principle that consists of a commercial digital voltmeter (DVM), a four-terminal resistor, two inductive voltage dividers, an isolation transformer, and associated control circuitry. This wattmeter was designed to be used with a source of synthetic power to test wattmeters over a wide range of power, power factor, and frequency. A simplified circuit diagram of the test system is shown in Fig. 1.

A test voltage V is applied to the voltage terminals of the wattmeter under test (MUT) and to inductive voltage divider T_1 , which is used in conjunction with the buffer amplifier A_1 to scale V to V_1 (approximately 5 Vrms). The test current I is applied to the four-terminal resistor R in series with the current terminals of the test wattmeter. The voltage developed across R is converted to a ground-referenced voltage V_2 (also approximately

5 Vrms) using the two-stage transformer T_2 and buffer amplifier A_2 . Amplifiers A_1 and A_2 are special composite, non-inverting amplifiers needed to minimize the loading errors of T_1 and T_2 . They introduce errors of less than 5 parts in 10⁶ in the 50 Hz to 1 kHz range [3]. Difference voltage $V_D = V_1 - V_2$ is converted to a groundreferenced voltage V_3 using a center-tapped inductive voltage divider T_3 , thereby avoiding the need for any active circuitry to perform the difference function. A high precision, wideband DVM is used to measure the three ground-referenced voltages V_1 , V_2 , and V_3 . These voltages are related to the phase angle θ between V_1 and V_2 by the *Law of Cosines*:

$$V_{D}^{2} = V_{1}^{2} + V_{2}^{2} + V_{1} V_{2} \cos \theta$$

which may be expressed as:

$$V_1 V_2 \cos \theta = V_D^2 - V_1^2 - V_2^2$$
.

The magnitude of the difference voltage V_D can be described in terms of the three measured voltages and the ratio of T_3 (0.5) by the following equation:

$$V_{\rm D} = [2(V_1^2 - V_2^2 - 2V_3^2)]^{\frac{1}{2}}$$

The power applied to the test wattmeter is given by:

$$P = VI\cos\theta = (r_1 r_2 V_1 V_2 \cos\theta)/R$$

where r_1 is the step-down ratio of T_1 and r_2 is the step-up ratio of T_2 .

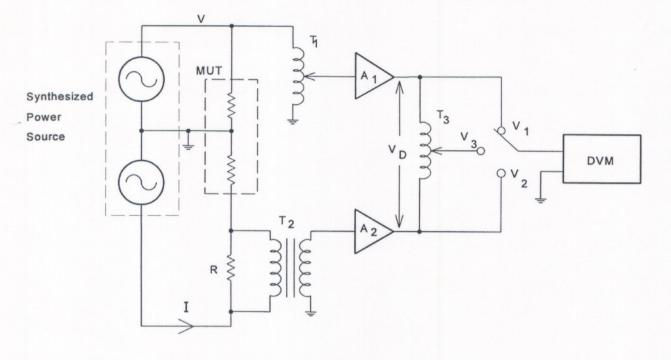


Fig. 1. Simplified diagram of the wattmeter based on rms voltage measurements.

III. CONCLUSION

The final paper will describe the implementation of this [1] wattmeter in a system to calibrate test wattmeters that operate at 120 V and 5 A, at any power factor, over a wide frequency range with a low audio-frequency active power uncertainty of 30 parts in 10^6 (1- σ).

Standards to support precision power measurements presently are limited to the audio frequency range [4]. The wattmeter described here was developed to support the calibration of commercial power analyzers capable of [3] measuring power components out to 1 MHz. Complete performance results as well as results of comparisons with other power measurement standards will be given in the final paper. [4]

REFERENCES:

- L. A. Marzetta, "An evaluation of the threevoltmeter method for ac power measurement," IEEE Trans. Instrum. Meas., vol. IM-21, no. 4, November 1972.
- P. S. Wright, J. R. Pickering, "Accurate traceable high frequency power calibration," Cal Lab, vol. 2, no. 1, January 1995.
 - L. Lingxiang, Q. Zhongtai, and T. Guangqui, "A new precision ac resistance divider," IEEE trans. Instrum. Meas., vol.37, pp. 462-464, Sept. 1988
 - N. M. Oldham, O. Petersons and B. C. Waltrip, "Audio-frequency current comparator power bridge: development and design considerations," IEEE Trans. Instrum. Meas., vol. 38, no. 2, April 1989.