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ABSTRACT

It is typical for Nb3Sn-Cu superconductor specimens to be wound into
coils on tubular specimen holders for critical-current measurements. If the
thermal contraction of the holder is different than that of the specimen,
axial strain may be applied to the specimen upon cooling from room to
liquid-helium temperature. This strain can affect the measured critical
current. The thermal contraction was measured for three different NbaSn-Cu
superconductors. Also, the thermal contraction was measured for several
different specimen holders, all of which were made from fiberglass-epoxy
composites. The specimen holder measurements were made using an electrical-
resistance strain-gage technique, and they were confirmed by direct
mechanical measurements. The tubes varied in diameter, wall thickness, and
fabrication technique. Some of the tubes were made directly from tube
stock, and others were machined from plate stock. The results of these
measurements show that the thermal contraction of tube stock is strongly
dependent on the ratio of its wall thickness to its radius, while the
contraction of tubes machined from plate stock is relatively independent of
these dimensions. Critical-current measurements of Nb3Sn-Cu specimens
mounted on these various holders show that the presence of differential
thermal contraction between the specimen and its holder can significantly
affect the measured critical current.

INTRODUCTION

Critical-current (I.) measurements of Nb3Sn-Cu superconductors can be
affected by the relative thermal contraction of the material on which the
test specimen is mounted. This measurement variable became apparent in the
recent VAMAS (Versailles Project on Advanced Materials and Standards)
interlaboratory comparative measurements (round robin) of the critical
current of Nb3Sn.1 Differential thermal contraction between the specimen
and its holder in cooling from room to liquid-helium temperature can cause
either a tensile or compressive strain of the specimen, either of which can
affect the measured I.. '3 For coil specimens that are mounted on the
surface of cylindrical holders, the strain is predominantly along the axis
of the specimen. The amount of strain depends on the magnitude of the
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differential contraction, the relative strengths of the specimen and holder,
and the mechanical coupling between the specimen and its holder.

The literature contains considerable data on the compressive pre-strain
of Nb3Sn filaments caused by differential thermal contraction between the
filaments and the matrix material. However, very little data on the overall
thermal contraction of Nb3Sn-Cu wires are presently available. The thermal
contraction of a Nb3Sn-Cu cable is given in Ref. 4; however, this conductor
has a tungsten core that reduces its thermal contraction. Consequently, the
thermal contraction of three different Nb3Sn wires was measured as a part of
this study.

Fiberglass-epoxy composites are commonly used sample holder materials.
These materials are anisotropic in three mutually perpendicular directions.
The three directions are associated with characteristics of the fiberglass
fabric, and they are designated as the warp, fill, and normal directions.
The fabric orientation for plate stock is shown in Fig. 1. The normal
direction is perpendicular to the fabric planes, while the warp and fill
directions are parallel to the fabric planes. The density of the fabric is
not the same in both directions of the weave. The warp and fill directions
are determined by the fabric’'s thread count. The number of threads per unit
length of fabric is lower in the warp direction than in the fill direction.
This structural anisotropy causes a three-dimensional variation in thermal
contraction. The contraction in the fill direction is slightly greater than
in the warp direction, but the contraction in the normal direction is
considerably larger. )2

Figure 1 also shows the typical fabric orientation for a rolled tube.
The radial thermal contraction of the tube results from a competition
between the larger contraction in the normal direction and the smaller
contraction in the warp direction. Consequently, it depends on the ratio of
the tube’s wall thickness to its outside radius (wall-to-radius ratio). For
thin-walled tubes the radial thermal contraction approaches that of a plate
in the warp direction, and for thick walled tubes it approaches that of a
plate in the normal direction.

A holder whose thermal contraction is relatively independent of its
wall-to-radius ratio can be made by machining a cylindrical tube from thick
fiberglass-epoxy plate stock with the axis of the tube perpendicular to the
surface of the plate (plate tube). For this orientation (Fig. 1) the radial
contraction is based on the contraction in the warp and fill directions,
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Fig. 1. Geometries of fiberglass-epoxy composites.



which are both similar to that of a Nb3Sn-Cu wire. In addition to thermal
contraction measurements of both rolled tubes and plate tubes, I.
measurements were made using both types of specimen holder to confirm the
relationship between thermal contraction and the I, measurement.

EXPERIMENTAL DETAILS

Fiberglass-Epoxy Composites

Two different types of fiberglass-epoxy composite were used in this
study, NEMA (National Electrical Manufacturers’ Association) G-10 and G-11.
All of the rolled tubes were G-10 and the plate tubes were G-11. This was
not a matter of choice but, rather, one of material availability. The
thermal contraction of the G-11 is slightly less than that of G-10. Neither
of these materials was cryogenic-radiation (CR) grade, which is designated
as G-10CR or G-11CR. The manufacturing specifications for the CR grade
materials are more stringent and their performance at cryogenic temperatures
is more predictable.

Thermal Contraction

All of the thermal contraction measurements were conducted between room
temperature and liquid-nitrogen (LNj) temperature. We assume that, if a
material’s contraction is well matched to a Nb3Sn-Cu wire from room to LNj
temperature, then the additional differential thermal contraction that
occurs between LN and liquid-helium temperature will be insignificant.

The Nb3Sn-Cu thermal contraction measurements were made using quartz
reference tubes and reacted Nb3Sn-Cu specimens that measure approximately
35 cm in length. The specimen is placed in a quartz tube and attached to
one of the tube’s ends. At room temperature, the quartz tubes are
approximately 1 mm longer than the specimens. This differential length is
measured with a micrometer, the tube and specimen are cooled to LNo
temperature, and the differential length is remeasured. The thermal
contraction of the specimen is deduced from the measured change in the
differential length and the known contraction of the quartz tube. The
uncertainty of these measurements is estimated to be *5%.

Two different methods were used to measure the thermal contraction of
the fiberglass tubes. The first was a mechanical method, where the tube was
submerged in liquid nitrogen, allowed to reach thermal equilibrium, removed
from the nitrogen, and the diameter was then quickly measured with a
precision micrometer. To address the thermally transient nature of these
measurements, the tube’s diameter was measured as a function of time while
it was warming toward room temperature. These measurements allowed an
extrapolation of the data to liquid-nitrogen temperature. In the case of
the plate tubes, two orthogonal measurements were made at each time, one in
the warp direction and one in the fill direction. The uncertainty of the
mechanical measurements of thermal contraction was estimated to be *10% of
the measured value (for example, 0.20% *0.02%).

The second type of thermal contraction measurement used electrical-
resistance strain gages.6 For this measurement, two well matched 350 Q
strain gages were used in a half-bridge configuration. One of the gages was
bonded to the test specimen and the other was bonded to a reference
material, a quartz tube, whose thermal contraction was known. All of the
strain-gage measurements reported here were taken with the strain gages
mounted on the circumference of the test specimen since this represents the
contraction which is relevant for the Nb3Sn-Cu coil. Both the test specimen



and reference material were cooled to liquid nitrogen temperature and the
resulting output from the strain bridge was measured.

Two factors will cause a change in the resistance of the strain gages
when cooled from room to LN) temperature. First, the resistivity of the
strain gages’ grid alloy will change with temperature. Since this change in
resistance will be nearly equal for matched strain gages, there will be
little effect on the output of the strain bridge. The second source of
change in resistance is caused by thermally induced strain. This strain
results from differential thermal contraction between the strain gage and
the test specimen. If the thermal contraction of the test specimen material
is different than that of the reference material, the strain bridge will be
unbalanced and its output will be indicative of the difference in thermal
contraction between these two materials. Since the thermal contraction of
the reference material is known, the thermal contraction of the test
material can be deduced. The uncertainty of the strain-gage measurements of
thermal contraction was estimated to be *5% of the measured value (for
example, 0.20% +0.01%).

Critical Current

For the I, measurements, a Nb3Sn-Cu wire with a diameter of 0.68 mm was
used. This conductor was made by an internal-tin diffusion process, and it
has 37 sub-bundles of 150 Nb filaments. A single Ta diffusion barrier
separates the filament region from the outer Cu layer. The specimen was
wound onto a stainless steel tube and then vacuum heat treated at 700°C for
48 h. The stainless steel tube has a helical groove machined into its
surface to retain the specimen and define its geometry. Following heat
treatment, the specimen was removed from the stainless steel reaction holder
and transferred to the fiberglass measurement holder. The outside diameter
of the fiberglass holder is 3.12 cm and its surface is not grooved. A thin
continuous layer of filled epoxy adhesive was painted over the surface of
the specimen and holder. The typical specimen length was approximately
80 cm. Three pairs of adjacent voltage taps were placed along the center of
the specimen. Each pair had a separation of about 10 cm, and there was a 1
to 2 cm gap between adjacent pairs. An electric field criterion of 10 uV/m
was used for determining the critical current. The uncertainty of the I,
measurements may be as large as 15% because of the strong systematic effects
of the specimen holders.

RESULTS

Thermal Contraction Measurements

The results of the thermal contraction measurements are shown in Fig. 2
where the thermal contraction of the tubes’ diameters (Ad/d) is plotted as a
function of the tubes’ wall-to-radius ratios. The thermal contraction of
three different superconductors (the VAMAS I, round robin conductorsl) was
also measured. The dashed horizontal line labeled "Nb3Sn-Cu" indicates the
measured thermal contraction (0.28%) of the conductor whose I, was measured
in this study. The measured thermal contraction of the other two conductors
is 0.28% and 0.26%. The two types of data symbols that are labeled
"Mechanical” and "Strain Gage" show the thermal contraction of the G-10
rolled tube specimens as measured by the two different techniques. With the
exception of the "Mechanical" data, all of the data shown in this figure
were obtained using the strain-gage technique.

The data show a strong dependence of the thermal contraction on the
wall-to-radius ratio. The approximate thermal contraction of G-10CR plate
stock in cooling from room to liquid-nitrogen temperature is 0.224%, 0.264%,



and 0.687% in the warp, fill, and normal directions respectively, and it is
0.202%, 0.227%, and 0.585% for G-11CR.%+3 aAs expected from the structural
geometry of the rolled tubes, their thermal contraction fall between that of
the warp and normal directions of plate stock. The measured thermal
contraction of the G-11 plate tubes is shown for three wall-to-radius ratios
and in two structural directions, warp and fill. In both directions, the
thermal contraction is relatively independent of the wall-to-radius ratio
and it is comparable to that of plate stock. The error bars associated with
the high wall-to-radius ratio data points represent the range of values that
were measured on three different specimens with three repeat determinations
for each specimen.

Additional measurements were made using strain gages that were mounted
on the circumference of the plate tube halfway between the warp and fill
axes. The thermal contraction at these positions was within the
experimental uncertainty of the value measured in the warp direction. This
indicates that the effective circumferential thermal contraction of the
plate tube is closer to the value measured for the warp direction.
Mechanical thermal contraction measurements were also made on the plate
tubes and were within the experimental uncertainty of the strain-gage
measurements. Additional thermal contraction measurements were made on
tubes with different outer diameters to test the scaling of thermal
contraction with the wall-to-radius ratio. All of the data of Fig. 2 were
taken on tubes having outer diameters of about 3.18 cm and various inner
diameters. However, two rolled tubes with outer diameters of 11.4 and
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Fig. 2. Plot of room to liquid-nitrogen temperature thermal
contraction of G-10 rolled tubes and G-11 plate tubes
as a function of the tubes’ wall-to-radius ratio.



12.4 cm, and wall-to-radius ratios of 14 and 8%, respectively, were also
measured. The thermal contraction of these two tubes was within the
experimental uncertainty of the rolled tube data of Fig. 2. Finally, an
11.4 cm outer diameter (94% wall-to-radius ratio) plate tube was measured
and was within the experimental uncertainty of the plate tube data of
Fig. 2.

Critical-Current Measurements

The results of the I, measurements are shown in Fig. 3, where the I, is
plotted as a function of applied magnetic field for several different
conductor specimens and specimen holders. There are three variables, in
addition to the applied magnetic field, for these I, measurements: the
location where the specimen was reacted, "central" or "self"; the specimen
holder’'s wall-to-radius ratio, "thick" or "thin"; and the type of tube used
for the specimen holder, "rolled" or "plate". The self reacted samples were
reacted at NIST, whereas the central reacted samples were reacted at another
site and shipped to NIST for I, measurements. The thick and thin
designations do not indicate specific wall-to-radius ratios; instead, they
indicate two general categories of tube geometry. All of the thin tubes
have wall-to-radius ratios that are no greater than 13%
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(self 10% and central 13%) and the thick tubes have wall-to-radius ratios
that are at least 60% (plate 80% and rolled 60%). The measured I.'s are
nearly the same, within experimental uncertainty, for all of the specimens
except the one that was mounted on the thick, rolled tube. The measured I
is significantly lower for this specimen at all magnetic fields. The
difference is about 14% at 6 T and 40% at 12 T. The fact that the I
degradation increases with increasing magnetic field is consistent with a
strain effect. The magnitude of the change in I, and the measured thermal
contraction are in good agreement with the strain effect,3 At 12 T, a 33%
reduction was calculated from strain-effect measurements! that were made at
14 T, and the measured I, reduction was 40s%.

DISCUSSION

A practical reality of round robin measurements is that the dimensions
of the specimen holders vary between different laboratories. For consistent
measurements, the specimen holders should be designed so that the I
measurement is insensitive to this variable. The thermal contraction of a
tubular specimen holder that is made from an anisotropic material can vary
with its geometry. This presents the potential for variations in the strain
state of the specimen and, thus, variations in the measured I.. An apparent
solution to this problem is to use an isotropic material for the specimen
holders and to use a bonding technique that rigidly couples the specimen to
its holder. This will ensure that the strain transmitted to the specimen,
due to thermal contraction, is independent of the holder'’s geometry and,
thus, equivalent from laboratory to laboratory. This approach addresses the
issue of measurement consistency, but it does not address accuracy.

The I, measurement should, arguably, be made with a minimum of
externally applied strain on the superconductor. This requires a strong
bond between the specimen and holder to avoid specimen strain under the
influence of the Lorentz force, and it requires that the thermal contraction
of the sample holder be well matched to that of the superconductor. Also,
the holder should, ideally, be made from an electrically insulating material
to prevent current sharing with the test specimen. Unfortunately, an
isotropic and insulating material with a thermal contraction similar to that
of Nb3Sn-Cu is not readily available. Fiberglass-epoxy plate tubes are a
practical alternative to the ideal isotropic specimen holder. The thermal
contraction of a plate tube is slightly anisotropic; however, it is
relatively independent of the tube’s dimensions. Furthermore, the thermal
contraction in the radial direction (the pertinent direction for a coil-type
specimen) is similar to that of Nb3Sn-Cu. Based on the thermal contraction
of G-10CR and G-11CR plat:e,"v5 the thermal contraction of G-10 plate tubes
may be slightly closer to that of a Nb3Sn-Cu wire than the G-11 plate tubes
that were measured here. It is possible that the difference in the
circumferential thermal contraction between the warp and fill directions
will result in a spatial variation of the strain state of the Nb3Sn-Cu coil
sample, but the I, data indicate that this effect is not significant.

The plate tubes present some practical disadvantages. First of all,
machining a specimen holder from plate stock is considerably more difficult
than from tube stock. Also, the length of a plate tube is limited by the
thickness of the available plate stock. This, in turn, limits the length of
the superconductor specimen for a given coil diameter and pitch.
Furthermore, short specimen holders are often incompatible with existing I,
test fixtures. Satisfactory specimen holders of greater length could
perhaps be constructed by bonding a series of short plate tubes together.
This technique might require an alignment of the warp and fill fibers
between individual tube sections because of the anisotropic radial thermal
contraction of plate tubes.



CONCLUSIONS

For I. measurements, fiberglass-epoxy composites are suitable specimen
holder materials. However, the design of the specimen holder should take
into account the anisotropic nature of the material and the resulting
variability in thermal contraction. These characteristics of the material
can result in large variations in the measured I, for specimens mounted on
holders of different designs. A cylinder or tube can be machined from a
thick fiberglass-epoxy plate with the axis of the cylinder perpendicular to
the surface of the plate. This type of tube (plate tube) has a thermal
contraction that is relatively independent of its dimensions and that is
similar to that of a Nb3Sn-Cu specimen. Alternatively, the specimen holder
can be made from tube stock and machined to a wall-to-radius ratio that
results in a thermal contraction that closely matches that of the Nb3Sn-Cu
specimen.
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