
1. Introduction

The carrier concentration is a key figure of merit
associated with a go/no-go decision for determining
whether a wafer or an epitaxial layer meets specifica-
tions and should undergo further processing.
Technology roadmaps from the microelectronics and
nanomaterials industries [1-3] call for non-destructive
and fast-turn around methods to measure transport
properties such as carrier concentrations in semicon-
ductor wafers and epitaxial layers. Non-destructive
measurements are economically more significant for
III-V compound semiconductor wafers with epitaxial

layers than for Si-based wafers with epitaxial layers
because the regions of wafers used for making contacts
cannot be used for product. Contacting measurement
methods may be acceptable for Si wafers, but such
destructive methods are much less acceptable for III-V
compound semiconductor wafers with epitaxial layers
because Si wafers are much less expensive per unit area
than compound semiconductor wafers.

Raman spectroscopy has been proposed as one pos-
sible way to measure carrier concentrations non-
destructively. The shape of the Raman spectral lines
due to the longitudinal-optical phonons interacting with
the plasmon collective modes of the electron gas (so
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called coupled longitudinal optical (LO) phonon-plas-
mon modes) provides information on transport proper-
ties of the electron gas in polar semiconductors [4-8].
The frequencies ω of the coupled modes are propor-
tional to carrier concentrations, and the peak widths ∆ω
of the coupled modes are proportional to the scattering
rates due to electron-phonon interactions. The qualita-
tive determination of carrier concentration and mobili-
ty, which is inversely proportional to the scattering rate,
from Raman spectra is reasonably straightforward
based on these proportionalities. The quantitative deter-
mination of carrier concentrations and mobilities
requires more sophisticated modeling of the spectra.
Many of these higher level models involve fitting the
spectra with the Fermi energy as a parameter and then
determining the carrier concentration from knowing the
fitted Fermi energy [6].

Most interpretations of Raman measurements on
compound semiconductors such as GaAs require phys-
ical models and associated input parameters that
describe how carrier densities vary with dopant concen-
trations and Fermi energies. In this paper, we develop
the theory for extracting electron densities from Raman
measurements of n-type GaAs at room temperature. We
introduce two main classes of models that relate carrier
concentrations to the Fermi energy for a given temper-
ature and donor dopant density:
a) Bandgap narrowing (BGN) models based on two
equivalent bands at the Γ point in the first Brilluoin
zone, and
b) Parabolic densities of states (PDOS) models with
and without a quartic term in the electron energy dis-
persion EcΓ (k) for the Γ conduction sub-band, where k
is the wave vector.

The BGN models include many-body quantum
effects and bandgap narrowing. The many-body quan-
tum effects describe the electron-electron, electron-
hole, and dopant ion-carrier interactions. The results
are unique in two respects: 1) the many-body effects
are treated self-consistently and 2) the theory is valid at
room temperature for arbitrary values of the ratio R =
(Q2/α), where Q is the magnitude of the normalized
wave vector and α is the normalized frequency used in
the Raman measurements. Other reported work either
is valid at low temperatures near 0 K for arbitrary ratios
(Q2/α) [4] or is valid at arbitrary temperatures for ratios
R typically R 1 [5-7].

2. Theory

Because the Fermi energy is one of the variables for
calculating line shapes in the Raman spectra from semi-
conductors, we first present in Sec. 2.1 the theory for
the BGN and PDOS models by which numerical meth-
ods give closed-form analytic expressions that relate
carrier concentrations to Fermi energy EF , temperature
T, and donor dopant densities ND . Then, within the con-
text of these BGN and PDOS models, we develop in
Sec. 2.2 the theory for calculating the line shapes
observed in Raman spectra.

2.1 Fermi Energy and Electron Density

The temperature and donor dopant density are the
independent input parameters for evaluating the Raman
line shape factor given in Eq. (19). The Fermi energy
depends in turn on the dopant density, in this case the
donor density ND and T. For given ND and T, we pres-
ent here models to compute the Fermi energy with full
Fermi-Dirac statistics for the carriers at finite tempera-
ture. By using these models, we calculate the majority
electron density as a function of the Fermi energy in
zinc blende, n-type GaAs for donor densities between
1016 cm–3 and 1019 cm–3. These calculations solve the
charge neutrality equation self-consistently in terms of
two main classes of models: the bandgap narrowing
(BGN) model and three different parabolic densities of
states (PDOS) models.

Some researchers propose that Raman spectra may
be a way to determine temperatures with spatial resolu-
tions across wafers on the order of micrometers when
the Fermi energy and dopant density are known from
other independent measurements. Comparing the
results given by the BGN and PDOS models, which are
described below, also provides predictions on the sen-
sitivity of the Fermi energy and Raman spectrum to
variations in temperature.

2.1.1 BGN Model

The bandgap narrowing (BGN) model is a two-band
model with one equivalent conduction band and one
equivalent valence band at the Γ point in Brilluoin
space. The BGN model is related to earlier work on n-
type GaAs [9] and includes modifications to the densi-
ties of states due to high concentrations of dopants,
bandgap narrowing, and many-body effects associated
with carrier-carrier interactions (carrier-carrier
exchange and correlation). This BGN model is fully
self-consistent and uses the Klauder self-energy (fifth
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level of approximation) to calculate the distorted-per-
turbed densities of states for the carriers. This BGN
model has the following main features:
1) Many-body quantum effects of carrier-carrier inter-
actions and carrier-dopant ion interactions, bandgap
narrowing, and distorted-perturbed densities of states
for the carriers [9],
2) Iterative and self-consistent solutions of the coupled
charge neutrality equation and Klauder’s fifth level of
approximation for the renormalized self-energy propa-
gator from which the distorted-perturbed densities of
states are calculated,
3) Full Fermi-Dirac statistics for the carriers at finite
temperature, and
4) Statistical analyses to give closed-form analytic
expressions from very large, calculated data sets for
carrier densities as functions of the Fermi energy.
Tables 1 and 2 contain the input parameters for the
BGN calculations in Ref. [9] and for the BGN model
given here.

The electron n and hole h concentrations in units of
cm–3 at thermal equilibrium are given, respectively, by

(1)

where ρC (E) and ρV (E) are, respectively, the electron
density of states for the equivalent conduction band and
the hole density of states for the equivalent valence
band [9], where f0(E) = {1 + exp[(E – EF)/kBT]}–1 is the
Fermi-Dirac distribution function. The calculations
incorporate the Thomas-Fermi expression for the
screening radius,

(2)

and the charge neutrality condition

(3)

to compute self-consistently the Fermi energy EF and
the screening radius rs for given values of the ionized
dopant concentration NI and temperature T. The static
dielectric constant is ε and the permittivity of free space
is ε0. The ionized dopant concentration is positive for n-
type material (donor ions) and negative for p-type
material (acceptor ions). The results reported here are
for n-type material. For the case discussed here, NI =
ND. The results for the screening radius rs are not
reported here because they are not needed to extract
carrier concentrations from Raman scattering measure-
ments.
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Table 1. Fundamental Constants

Parameter Symbol Value Units

Planck’s constant 6.5836 × 10–16 eV·s
Boltzmann’s constant kB 8.6174 × 10–5 eV/K
electron rest mass m0 9.1072 × 10–28 g
electronic charge e –4.802 × 10–10 esu
Bohr radius aB 0.5291 × 10–8 cm
energy associated with 1 Rydberg e2/2aB 13.6 eV
speed of light c 2.9979 × 1010 cm/s
wave length associated with 1 eV [λ0] 1.2396 × 10–4 cm
wave number associated with 1 eV [k0] 8.0668 × 103 cm–1

dielectric constant in vacuum ε 8.854 × 10–12 F/m

Table 2. BGN model input parameters for intrinsic zinc blende GaAs at 300 K. The energies of the extrema of the con-
duction and valence sub-bands are referenced to the bottom of the conduction sub-band at the Γ symmetry point in the
Brillouin zone of the reciprocal lattice space. The mass of the free electron is m0. These GaAs data are from Ref. [12].

Parameter Symbol Value Units

bandgap EG = |–EvΓ | 1.424 eV
effective mass for conduction band (2-band model) density of states mC 0.067 m0
effective mass for valence band (2-band model) density of states mV 0.572 m0
number of equivalent conduction bands NC 1
number of equivalent valence bands NV 1
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2.1.2 PDOS Models

The PDOS models use parabolic densities of states
for all equivalent bands and sub-bands. Unlike the
BGN model in Ref. [9], PDOS models such as the four-
band PDOS model for GaSb in Ref. [10] do not include
modifications to the densities of states due to many-
body effects and high concentrations of dopants and
carriers because of computational limitations associat-
ed with treating a four-band model in the context of the
Klauder self-energy method (fifth level of approxima-
tion).

The zero of energy is at the minimum energy value
(bottom) of the conduction Γ sub-band, EcΓ 0 = 0.0. The
bottoms of the conduction L and X sub-bands are,
respectively, at EcL and EcX. The maximum energy value
(top) of the degenerate valence Γ sub-band is –EG,
where EG is the intrinsic bandgap of GaAs. The split-off
valence sub-band at Γ due to spin-orbit coupling is neg-
lected. The probabilities for typical holes in equilibri-
um to occupy appreciably these states in the split-off
valence sub-band at Γ are very low. This means that the
Fermi energies should be sufficiently above the valence
sub-band maximum at Γ. Placing exact limits on the
Fermi energies for which the PDOS models are valid
would be tenuous, because knowledge of how the vari-
ous sub-bands move relative to one another due to the
dopant concentrations considered here and due to many

body effects is not adequate. Table 3 lists the input
parameters for the PDOS models.

The heavy hole mass mhh and light hole mass mlh for
the two degenerate sub-bands at the top of the valence
band are combined to give an effective mass

(4)

for the valence topmost sub-band, which becomes the
equivalent valence band with a hole energy dispersion
given by EνΓ (k) ≈ – EG – ( 2k2/2mνΓ m0).

The general expression for the parabolic densities of
states for electrons and holes per band extrema and per
spin direction is given by

(5)

where Ne is the number of equivalent ellipsoids in the
first Brillouin zone, the volume of the unit cell is V =
aL

3, aL is the lattice constant, m* is one of the effective
masses listed in Tables 2 and 3 for the appropriate band
extrema, and m0 is the free electron mass.

We sub-divide the PDOS models into the PDOS2,
PDOS2NPG, and PDOS4 models. All three PDOS
models include the equivalent valence band described
by Eq. (4).
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Table 3. PDOS model input parameters for intrinsic zinc blende GaAs at 300 K. The energies of the extrema of the conduction and valence sub-
bands are referenced to the bottom of the conduction sub-band at the Γ symmetry point in the Brillouin zone of the reciprocal lattice space. The
mass of the free electron is m0. These GaAs data are from Refs. [11,12].

Parameter Symbol Value Units

bandgap EG = |–EvΓ | 1.424 eV
bottom of the conduction L sub-band EcL 0.29 eV
bottom of the conduction X sub-band EvX 0.48 eV
top of the degenerate valence Γ sub-band –EvΓ 1.424 eV
spin-orbit splitting –Eso 0.34 eV
top of the split-off (spin-orbit splitting) valence Γ sub-band –EsoΓ = –EvΓ – Eso 1.764 eV
effective mass of conduction Γ sub-band mcΓ 0.063 m0
non-parabolicity factor (quartic term prefactor) for conduction Γ sub-band ξ 0.824
transverse L sub-band mass mtL 0.075 m0
longitudinal L sub-band mass mlL 1.9 m0
effective mass of conduction L sub-band mcL = (mlL mtL

2)1/3 0.222 m0
transverse X sub-band mass mtX 0.19 m0
longitudinal X sub-band mass mlX 1.9 m0
effective mass of conduction X sub-band mcX = (mlX mtX

2)1/3 0.409 m0
light hole mass of valence Γ sub-band mlh 0.082 m0
heavy hole mass of valence Γ sub-band mhh 0.51 m0
effective mass of valence Γ sub-band mvΓ 0.53 m0
splitoff band mass of the valence sub-band at Γ mso 0.15 m0
number of equivalent conduction L sub-bands NcL 4
number of equivalent conduction X sub-bands NcX 3

3/ 2 3/ 2 2 / 3
hh lh( ) ,m m m= +vÃ

e
3 2 3/ 2

0

4
( ) ,

(8 )( / 2 * )
N V EE

m m
πρ

π
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PDOS2 Model

The PDOS2 model uses one equivalent conduction
band and one equivalent valence band at the Γ symme-
try point in the Brilluoin space for the integrals that
appear in Eqs. (1) to (3). The electron energy dispersion
for the equivalent conduction band is EcΓ(k) ≈ EcΓ 0 +
( 2k2/2mCm0).

PDOS2NPG Model

The PDOS2NPG model is a two-band model with
one equivalent conduction band and one equivalent
valence band at the Γ point in Brilluoin space. It has no
bandgap narrowing, but it includes the non-parabolici-
ty for the electron energy dispersion in the equivalent
conduction band at Γ. According to Ref. [11], we may
include non-quadratic |k|l terms in the electron energy
dispersion EcΓ(k) for the conduction Γ sub-band in
GaAs when k is small, namely,

(6)

where ξ is the non-parabolicity factor. We use the Kane
three level k·p model [11], which does not include the
conduction sub-bands at L and X, to include quartic
terms in E(k) with l = 4.

PDOS4 Model

The PDOS4 model has three conduction sub-bands
at the respective Γ, L, and X symmetry points in the
Brilluoin space and one equivalent valence band at the
Γ symmetry point. For the PDOS4, we modify here the
PDOS model for GaSb in Ref. [10] so that it is valid for
GaAs. It uses the parabolic electron energy dispersion
EcΓ(k) for the conduction Γ sub-band in GaAs when k
is small, namely, EcΓ (k) ≈ EcΓ 0 + ( 2k2/2mC m0). The
general expression for the temperature dependence of
conduction sub-band minima relative to the top of the
valence band at Γ is given by [12],

(7)

in units of eV, where i = Γ, L, or X. The values for the
coefficients Ei0 , Ai , and Bi are listed in Table 4. Because
8 permutations of the wave vector in the (111) direction
exist, there are 8 L sub-band ellipsoids with centers
located near the boundary of the first Brillouin zone.
Also, because 6 permutations of the wave vector in the
(100) direction exist, there are 6 X sub-band ellipsoids

with centers located near the boundary of the first
Brillouin zone. Since about half of each ellipsoid is in
the neighboring zone, the number of equivalent sub-
bands NcL for the EcL is four, and the number of equiv-
alent sub-bands NcX for the X sub-band is three.

In terms of the four-band PDOS4 model for room
temperature n-type GaAs, the total density of states
ρc(E) for the majority carrier electrons in n-type GaAs
then becomes

(8)

where ρcΓ(E), ρcL(E), and ρcX(E) are the sub-band den-
sities of states for the conduction Γ, L, and X sub-bands
with effective masses of mcΓ , mcL , and mcX , respective-
ly. The density of states for the minority carrier holes is

(9)

with an effective mass of mvΓ .

2.2 Dielectric Response Function

The longitudinal optical (LO) phonons and plasmons
interact in polar semiconductors such as GaAs to form
LO phonon-plasmon modes. The theoretical line shape
function LA(q,ω) of the Raman spectrum due to longi-
tudinal optical (LO) phonon-plasmon coupled modes is
then given for the configuration to which this theory
will be applied by [8]

(10)
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Table 4. Coefficients for the temperature dependence of the conduc-
tion band extrema that are used in Eq. (15). These data are from Ref.
[12].

Parameter Symbol Value Units

Γ sub-band coefficients EΓ0 1.519 eV
AΓ 5.405 × 10–4 eV/K
BΓ 204 K

L sub-band coefficients EL0 1.815 eV
AL 6.05 × 10–4 eV/K
BL 204 K

X sub-band coefficients EX0 1.981 eV
AX 4.60 × 10–4 eV/K
BX 204 K
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where q is the scattering wave vector, ω is the Raman
angular frequency shift, is the Planck constant, kB is
the Boltzmann constant, T is the temperature in Kelvin,
ω0 = ωTO(1 + CFH)1/2 is a parameter with the dimensions
of angular frequency, CFH is the dimensionless Faust-
Henry coefficient which includes the LO/transverse
optical (TO) phonon scattering ratio, and ωTO is the TO
phonon angular frequency. Table 5 contains values for
the parameters in Eq. (10). The total longitudinal
dielectric response function ε (q,ω) in the random
phase approximation (RPA) is described by

(11)

where the dielectric susceptibility χVE is the contribu-
tion from valence electrons, χL(ω) is the contribution
from the polar lattice phonons, and χe(q,ω) is the con-
tribution from the conduction electrons. The high fre-
quency dielectric constant ε∞ is defined to be ε∞ = 1 +
4πχVE . Equation (11) then becomes for a binary semi-
conductor,

(12)

The contribution of the polar lattice is given by [8]

(13)

when phonon damping may be neglected and where
ωLO is the LO phonon angular frequency.

Within the context of the RPA, the Lindhard expres-
sion [13] gives the electronic contribution to the dielec-

tric response function 4πχe
0(q,ω) that describes light

scattering by the conduction electrons in doped semi-
conductors. We introduce the collision relaxation time
τ that describes the losses associated with electron-
phonon and electron-dopant interactions and the corre-
sponding angular collision frequency Γ = τ–1. Mermin
[14] showed that replacing ω with ω + iΓ in the
Lindhard expression for 4πχe

0(q,ω) fails to conserve
the number of local electrons and therefore is not the
correct way to include collision broadening in
4πχe

0(q,ω). Instead, Mermin assumed that within the
framework of a relaxation time approximation the elec-
tron-phonon and electron-dopant interactions relax the
electron density matrix to a local equilibrium density
matrix [4,14]. He then obtained the following
Lindhard-Mermin relation [14] for χe(q,ω),

(14)

where the Lindhard expression χe
0(q,ω + iΓ ) for elec-

trons occupying states in a single equivalent conduction
band is given by,

(15)
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Table 5. Dielectric response function input parameters for intrinsic zinc blende GaAs at 300 K. The energies
of the extrema of the conduction and valence sub-bands are referenced to the bottom of the conduction sub-
band at the Γ symmetry point in the Brillouin zone of the reciprocal lattice space. The mass of the free elec-
tron is m0. These GaAs data are from Ref. [14].

Parameter Symbol Value Units

lattice constant aL 5.65 × 10–8 cm
static dielectric constant ε0 13.1
high frequency dielectric constant ε∞ 10.9
longitudinal optical (LO) phonon energy ωLO 0.0353 eV

285 cm–1

transverse optical (TO) phonon energy ωTO 0.0332 eV
268 cm–1

Energy associated with the angular collision frequency Γ Γ ~0.0124 eV
due to electron-phonon and electron-dopant ion interactions ~100 cm–1

Faust-Henry coefficient CFH –0.4
effective mass for the single equivalent conduction mC 0.067 m0
band density of states in Eq. (6)
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where f0(E) = {1 + exp[(E – EF)/kBT]}–1 is the Fermi-
Dirac distribution function, EF is the Fermi energy in
eV, and T is the temperature in Kelvin.

The integrand in Eq. (15) is independent of the
azimuthal angle ϕ so that,

where µ = cosθ, dµ = –sinθ, and q·k = qkµ. To simplify
Eq. (15) further, we introduce the following dimension-
less normalized quantities: Q = qaB, K = kaB, K(E) =

, and Ω2 = { (ω + iΓ )mC /13.6 eV}
where (e2/2aB) = ( 2/2m0aB

2) = 13.6 eV. Equation (15)
then becomes with these definitions the following
expression,

(16)

Performing analytically the angular integration over µ
gives the complex results

(17)

where ρ± = Q2 ± 2QK – α, τ± = Q2 ± 2QK + α,
η± = –sign(ρ±)arctan(γ /ρ±) – (π /2)[1 – sign(ρ±)],
σ± = +sign(τ±)arctan(γ /τ±) + (π /2)[1 – sign(τ±)],
Ω2 = α + iγ, α = ( ωmC /13.6 eV), γ = ( ΓmC /13.6 eV),
and –π ≤ arctan(ψ) ≤ π.

When the temperature T = 0, the Fermi function
f0(E) = (1 + exp[{(13.6 eV K2/mC) – EF}/kBT])–1 is the
unit step function. Then, the integral in Eq. (17)

K2dK(...) is K2dK(...), and an analytic evaluation
is possible [4], where . But,
when T is room temperature, analytic evaluations are
not possible. Researchers approximated the integral

K2dK(...) at finite temperatures by expanding its inte-
grand in terms of the ratio R = (Q2/α) for either very
small or large R. However, such expansions do not cap-
ture all of the spectral information in Eq. (17).

The theoretical line shape function LA(q,ω) of the
Raman spectrum then becomes

(18)

where             

and

The Lindhard-Mermin relation Eq. (14) then gives
expressions for χre(q,ω + iΓ ) = Re{χe(q,ω + iΓ )} and
χie(q,ω + iΓ ) = Im{χe(q,ω + iΓ )} as functions of
χre

0(q,ω + iΓ ) = Re{χe
0(q,ω + iΓ )} and χie

0(q,ω + iΓ )
= Im{χe

0(q,ω + iΓ )}. Even though the factors in Eqs.
(10) and (18) give the contributions to the Raman line
shape for each scattering mechanism, an examination
of only the factor

(19)

gives the spectral information for extracting the Fermi
energy. The denominator in Eq. (19) is given by the
expression,

(20)

Section 3 below contains the procedures for extracting
electron densities from the Fermi energies.

3. Numerical Results – Electron Density
and Fermi Energy

Because the Fermi energy is one of the variables for
calculating the Raman line shape, we give the numeri-
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cal results for calculating the Fermi energy in terms of
the BGN and PDOS models and the analytic expres-
sions that relate the carrier concentrations to the Fermi
energy.

3.1 BGN Model

We solve self-consistently, by means of an iterative
procedure, Eq. (3) with the distorted-perturbed carrier
densities of states ρC(E) and ρV(E) from Ref. [9] used
in the numerical integrations for n and h given by Eq.
(1). The ρC(E) and ρV(E) are in tabular form and have
both localized and continuum states. Their associated
band edges contain the many body effects related to
exchange and correlation. The independent variables
are the temperature T and donor density ND. The Fermi
energy is varied for a given temperature until Eq. (3) is
satisfied to within an error of plus or minus 10–3 × ND.

Numerical fitting procedures then give a closed-form
analytic expression for the dependence of carrier con-
centration nBGN on the Fermi energy EF ; namely,

(21)

During the fitting analyses, we rely substantially on
graphics and keep the number of fitting parameters to a
minimum, subject to the constraint that the residual
standard deviation Sres is acceptably small; i.e., Sres ≤
0.01. The standard deviation is a measure of the “aver-
age” error by which a fitted model represents a set of
data points and thereby is a metric for assessing the
quality of the fit. A smaller Sres indicates a better fit. The
residual standard deviation for a model Y f = f (Z) is

(22)

where Yj are the calculated data values, the are the
predicted values from the fitted model, N is the total
number of data points (here N = 28), and P is the total
number of parameters to be fitted in the model. We use
the NIST-developed DATAPLOT [15] software for
both the exploratory graphics and for the statistical
analyses.

In addition, we compare the above BGN model
results with an equivalent two-band PDOS2 model for
which there is no bandgap narrowing and for which the
tabular carrier densities of states ρC(E) and ρV(E) from
Ref. [9] are replaced with

(23)

The corresponding polynomial fit for the carrier con-
centration n0 versus Fermi energy EF relation is then
denoted by

(24)

Figure 1 compares the calculated carrier concentra-
tion nBGN and n0 data for 28 values of donor densities
between 1016 cm–3 and 1019 cm–3. For a given Fermi
energy, the electron densities predicted by the BGN
model (solid-black curve) are typically factors of two
smaller than the electron densities predicted by an
equivalent parabolic two-band model (dashed-blue
curve).

3.2 PDOS Models

We solve self-consistently, by means of an iterative
procedure, Eq. (3) with Eq. (5). The independent vari-
ables are the temperature T and donor density ND.

We give here the results for fitting the logarithm to
the base 10 of the total electron density and the electron
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Figure 1. The calculated electron density nBGN from the BGN model
as a function of Fermi energy for n-type GaAs at 300 K is given by
the solid-black curve. The calculated electron density n0 from the
two-band PDOS2 model, no bandgap narrowing model, as a function
of Fermi energy for n-type GaAs at 300 K is given by the dashed-
blue curve. The Fermi energy is relative to the majority conduction
band edge at the Γ symmetry point in the first Brillouin zone.
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densities in each of the three conduction sub-bands at
Γ, L, and X, nΓ , nL , and nX, respectively, to polynomi-
als in EF , namely,

(25)

(26)

(27)

(28)

Figures 2 and 3 give the calculated electron densities
as functions of the Fermi energy. The corresponding fit-
ted curves are not shown in Figs. 2 and 3 because the
pairs of curves (calculated and fitted) for each of the
electron densities nt , nΓ , nL , and nX, lie on top of one
another to within the line widths of each curve. Also,
since the screening radii for the carriers from Eq. (2)
are not needed when interpreting the proposed meas-
urements considered here, the corresponding screening
radii are not presented in this paper. Figure 2 compares
the results from the PDOS2 model (dashed-blue curve
with long spaces), PDOS2NPG model (solid-green
curve), and PDOS4 model (dashed-red curve with short

spaces). The data for the blue curve in Fig. 1 is the same
data for the blue curve in Fig. 2. Figure 3 shows the
results for the four-band PDOS4 model. Unlike GaSb,
most of the electrons are in the conduction sub-band at
Γ . The conduction sub-band at L is only weakly popu-
lated at the highest Fermi energies, and the conduction
sub-band at X is negligible.

3.3 Polynomial Fits – Closed-Form Analytic
Expressions

Tables 6 to 11 give the fitting parameters for polyno-
mial fits to log10(nBGN cm3), log10(n0 cm3), log10(nt cm3),
log10(nΓ cm3), log10(nL cm3), and log10(nX cm3) as shown,
respectively, in Eqs. (21) and (24) to (28) and the cor-
responding residual standard deviations Sres. In general,
the values of Sres decrease monotonically with increas-
ing number l of terms in these polynomials. But, care
must be taken to avoid fitting noise in data sets. The
general guideline for many data sets is that when the
t-ratio (i.e., the absolute value of the ratio of the esti-
mated parameter value divided by its estimated stan-
dard deviation) is less than about 2, then the rate of
decrease in Sres with increasing l tends to decrease, and
proceeding with higher l values probably is not war-
ranted. Because the changes in values of Sres between
l = 4 and l = 5 are not experimentally significant, we
use the fitting parameters for the quartic case l = 4 in
Eqs. (21) and (24). Similary, because the changes in
values of Sres between l = 3 and l = 4 are not experimen-
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Figure 2. Comparisons among three PDOS models with and with-
out the non-parabolic factor ξ in Eq. (5) for the electron energy dis-
persion EcΓ (k). The solid-green curve shows the results for an equiv-
alent two-band model that has one equivalent Γ conduction band
with non-parabolicity factor ξ and one equivalent Γ valence band;
that is, the PDOS2NPG model. The dashed-blue curve with long
spaces shows the results for an equivalent parabolic two-band model
PDOS2 (ξ = 0). The dashed-red curve short spaces shows the results
for the four-band PDOS4 model. The Fermi energy is relative to the
majority conduction band edge at the Γ symmetry point in the first
Brillouin zone.

Figure 3. The calculated electron densities nt , nΓ , nL , and nX from
the four-band PDOS4 model as functions of the Fermi energy for n-
type GaAs at 300 K. The Fermi energy is relative to the majority con-
duction band edge at the Γ symmetry point in the first Brillouin zone.
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Table 6. Bandgap narrowing BGN model for log10(nBGN cm3). The five fitting parameters for a quar-
tic polynomial fit Eq. (21) of the theoretical calculation for the equivalent conduction band electron
density in n-type, zinc blende GaAs at 300 K as a function of the Fermi energy relative to the bottom
of the equivalent conduction band at Γ. This quartic polynomial fit, which represents the theoretical
results for Eq. (3), is valid only when –0.067 eV ≤ EF ≤ 0.286 eV. The t-ratio is the absolute value of
the estimated fitting parameter |aBGNi| divided by its estimated standard deviation. The residual stan-
dard deviation is Sres = 0.0130.

Fitting parameter Estimated value Estimated standard Units t-ratio
deviation

aBGN0 17.3292 0.4191 × 10–2 4.135 × 103

aBGN1 13.1545 0.7646 × 10–1 eV–1 1.72 × 102

aBGN2 –37.4789 1.473 eV–2 25.45
aBGN3 26.5678 12.86 eV–3 2.067
aBGN4 53.7760 29.43 eV–4 1.827

Table 7. Two-band, no bandgap narrowing PDOS2 model for log10(n0 cm3). The five fitting parame-
ters for a quartic polynomial fit Eq. (24) of the theoretical calculation for the L sub-band electron den-
sity in n-type, zinc blende GaAs at 300 K as a function of the Fermi energy relative to the bottom of
the conduction Γ sub-band. This quartic polynomial fit, which represents the theoretical results for Eq.
(3), is valid only when –0.0974 eV ≤ EF ≤ 0.250 eV. The t-ratio is the absolute value of the estimated
fitting parameter |a0i| divided by the its estimated standard deviation. The residual standard deviation
is Sres = 0.0122.

Fitting parameter Estimated value Estimated standard Units t-ratio
deviation

a00 17.5156 0.3411 × 10–2 5.136 × 103

a01 12.8520 0.8063 × 10–1 eV–1 3.1 × 102

a02 –34.5783 0.6672 eV–2 51.83
a03 –27.3728 9.166 eV–3 2.986
a04 223.720 29.54 eV–4 7.573

Table 8. Four-band PDOS4 model for total electron density log10(nt cm3). The four fitting parameters
for a cubic polynomial fit Eq. (25) of the theoretical calculation for the total electron density in n-type,
zinc blende GaAs at 300 K as a function of the Fermi energy relative to the bottom of the conduction
Γ sub-band. This cubic polynomial fit, which represents the theoretical results for Eq. (3), is valid only
when –0.0974 eV ≤ EF ≤ 0.229 eV. The t-ratio is the absolute value of the estimated fitting parameter
|ati| divided by its estimated standard deviation. The residual standard deviation is Sres = 0.0234.

Fitting parameter Estimated value Estimated standard Units t-ratio
deviation

at0 17.5198 0.6519 × 10–2 2.687 × 103

at1 12.3461 0.9401 × 10–1 eV–1 1.31 × 102

at2 –35.5542 1.322 eV–2 26.90
at3 40.1630 6.488 eV–3 6.190
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Table 9. Four-band PDOS4 model for electron density in the Γ sub-band log10(nΓ cm3). The four fit-
ting parameters for a cubic polynomial fit Eq. (26) of the theoretical calculation for the Γ sub-band
electron density in n-type, zinc blende GaAs at 300 K as a function of the Fermi energy relative to the
bottom of the conduction Γ sub-band. This cubic polynomial fit, which represents the theoretical results
for Eq. (3), is valid only when –0.0974 eV ≤ EF ≤ 0.229 eV. The t-ratio is the absolute value of the esti-
mated fitting parameter |a Γ i| divided by its estimated standard deviation. The residual standard devia-
tion is Sres = 0.0214.

Fitting parameter Estimated value Estimated standard Units t-ratio
deviation

aΓ0 17.5187 0.5978 × 10–2 2.930 × 103

aΓ1 12.3944 0.8621 × 10–1 eV–1 1.438 × 102

aΓ2 –35.1795 1.212 eV–2 29.03
aΓ3 33.7647 5.950 eV–3 5.675

Table 10. Four-band PDOS4 model for electron density in the L sub-band log10(nL cm3). The four fit-
ting parameters for a cubic polynomial fit Eq. (27) of the theoretical calculation for the L sub-band
electron density in n-type, zinc blende GaAs at 300 K as a function of the Fermi energy relative to the
bottom of the conduction Γ sub-band. This cubic polynomial fit, which represents the theoretical results
for Eq. (3), is valid only when –0.0974 eV ≤ EF ≤ 0.229 eV. The t-ratio is the absolute value of the esti-
mated fitting parameter |aLi| divided by its estimated standard deviation. The residual standard devia-
tion is Sres = 0.001 17.

Fitting parameter Estimated value Estimated standard Units t-ratio
deviation

aL0 14.2422 0.3269 × 10–3 4.357 × 104

aL1 16.8180 0.4714 × 10–2 eV–1 3.568 × 103

aL2 0.162418 0.6627 × 10–1 eV–2 2.451
aL3 –2.1988 0.3253 eV–3 6.759

Table 11. Four-band PDOS4 model for the electron density X sub-band log10(nX cm3). The four fit-
ting parameters for a cubic polynomial fit Eq. (28) of the theoretical calculation for the X sub-band
electron density in n-type, zinc blende GaAs at 300 K as a function of the Fermi energy relative to the
bottom of the conduction Γ sub-band. This cubic polynomial fit, which represents the theoretical results
for Eq. (3), is valid only when –0.0974 eV ≤ EF ≤ 0.229 eV. The t-ratio is the absolute value of the esti-
mated fitting parameter |aXi| divided by its estimated standard deviation. The residual standard devia-
tion is Sres = 0.000 019 5.

Fitting parameter Estimated value Estimated standard Units t-ratio
deviation

aX0 11.2919 0.5452 × 10–5 2.071 × 106

aX1 16.7999 0.7862 × 10–4 eV–1 2.137 × 105

aX2 –0.542 16 × 10–3 0.1105 × 10–2 eV–2 0.4905
aX3 –0.4041 × 10–2 0.5426 × 10–2 eV–3 0.7448



tally significant, we use the fitting parameters for the
cubic l = 3 case in Eqs. (25) to (28).

4. Conclusions

The foregoing theory for extracting electron densi-
ties from Raman spectra is unique in two ways: 1) It
treats the many-body effects self-consistently, and 2) it
is valid at room temperature for arbitrary values of the
ratio R = (Q2/α). When high concentrations of carriers
exists, this theory and its associated numerical proce-
dures for determining carrier concentrations from
Fermi energies are necessary for interpreting room tem-
perature Raman spectra self-consistently for arbitrary
values of the ratio R, even for R ≈ 1. The BGN models
presented here include many-body quantum effects and
bandgap narrowing. However, obtaining Fermi ener-
gies from experimental Raman spectra is beyond the
scope of the present paper and involves the following
steps to implement contactless measurements of carrier
densities:
1) Numerical evaluation of Eq. (17) with adaptive
grids to treat the integrable singularities of the inte-
grands,
2) Three-dimensional visualization of computer results
for predicted Raman line shapes as functions of Fermi
energy and frequency, and
3) Iteration of the predicted Raman line shape with the
Fermi energy as a variation parameter to give the best
self-consistent fit to the measured Raman line shape.
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