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Abstract—We describe a method for calibrating the voltage that
a step-like pulse generator produces at a load at every time point
in the measured waveform. The calibration includes an equivalent-
circuit model of the generator that can be used to determine how
the generator behaves when it is connected to arbitrary loads.
The generator is calibrated with an equivalent-time sampling os-
cilloscope and is traceable to fundamental physics via the electro-
optic sampling system at the National Institute of Standards and
Technology. The calibration includes a covariance-based uncer-
tainty analysis that provides the uncertainty at each time in the
waveform vector and the correlations between the uncertainties
at the different times. From the calibrated waveform vector and
its covariance matrix, we calculate pulse parameters and their
uncertainties. We compare our method with a more traditional
parameter-based uncertainty analysis.

Index Terms—Covariance matrices, deconvolution, oscillo-
scopes, pulse measurements, signals, uncertainty, waveforms.

I. INTRODUCTION

IN THIS paper, we describe a new methodology for mea-
suring a repetitive step-like signal with an equivalent-time

sampling oscilloscope and for calibrating these measurements
to obtain the voltage or current that the signal generator delivers
to an arbitrary load. The calibration is traceable to fundamen-
tal physics through the electro-optic sampling system at the
National Institute of Standards and Technology (NIST). The
methodology includes a novel covariance-matrix uncertainty
analysis that characterizes the uncertainty in the waveform at
every time point in the measured waveform epoch as well as
pairwise correlations at different times.

Calibrated signals such as combs [1], multisines [2], and
step-like pulses [3]–[5] are often used to measure the transfer
function of various electronic or optoelectronic components,
oscilloscopes, and other waveform recording devices. In the
step-like pulse measurements that we focus on in this paper,
it is sometimes adequate to quantify the performance of the
system under test simply in terms of pulse parameters, such as
transition duration, amplitude, and settling duration (e.g., [3]–
[5]). In other applications, more detailed characterization of the
waveform and its features is necessary. This is true, for exam-
ple, when comparing different measurement systems (e.g., [6]
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and [7]), measuring high-speed communications signals (e.g.,
[7]–[9]), and probing high-speed circuits (e.g., [10]). Details
of these experiments may not be completely characterized by
a few waveform parameters. Furthermore, as the measurement
bandwidth increases into the microwave and millimeter-wave
regions, impedance mismatch, loss, and dispersion must be
accounted for because they can cause complicated distortions
in the signal at these frequencies. In the past, many calibration
services have treated these effects in an ad hoc manner.

In the following, we describe traceable calibration of the
whole waveform. That is, our calibration procedure returns
an estimate of the waveform value at every time point in the
measured waveform epoch, as well as a characterization of
its uncertainty and pairwise correlations. Once the waveform
is calibrated, various metrics that characterize the waveform
can be calculated. The pulse parameters in [3] are examples of
scalar waveform metrics that are commonly used. Our approach
is fundamentally different from previous work in waveform
metrology (such as in [3]–[5] and [11]). In our approach,
we divide the measurement of waveform metrics into two
steps. We first calibrate the waveform (a vector) and estimate
its covariance matrix based on a characterization of various
sources of uncertainty in the measurement system. Calibration
of the waveform includes use of the generator and sampler
impedances (as in [12] and [13]), along with the waveform mea-
surement, to derive an equivalent-circuit model of the generator.
This model is used to determine the waveform the generator
will deliver to an arbitrary load. Then, algorithms, such as
those described in [14] and [15], can be used to “project” the
waveform vector onto an arbitrary scalar or vector waveform
metric. Standard multivariate propagation of uncertainty [16],
employing the linearization of the algorithms and the waveform
covariance matrix, is then used to find the uncertainty in the
desired metric.

While traditional waveform uncertainty analyses (see, e.g.,
[11]) propagate uncertainty directly from the physical source
of uncertainty in the measurement system to a specific pulse
parameter, we propagate uncertainty from the source of uncer-
tainty to the waveform uncertainty, and then propagate from
the waveform uncertainty to the uncertainty of the waveform
metric. Daboczi advocated a similar approach in [17] but did
not propose a method for calculating pulse parameters or other
waveform metrics from the calibrated waveform or for propa-
gating their uncertainty. Analytically, the two-step uncertainty
analysis that we propose may be viewed as uncertainty propaga-
tion using the chain rule for derivatives. Separating the steps of
calculating waveform and calculating the uncertainties makes
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Fig. 1. (a) Calibrated waveform that the pulse generator delivers to a 50-Ω
load at its 3.5-mm connector. (b) Standard uncertainty at every point in the
waveform. The uncertainty is the square root of the diagonal elements of the
covariance matrix.

our approach convenient for characterizing a broad class of
waveforms beyond those discussed in [3] and [11], enabling
the user of the calibrated waveform generator to calculate
arbitrary waveform metrics, with rigorous uncertainty estimates
if desired. Finally, our covariance-based techniques can be used
outside the calibration laboratory environment to characterize
various stochastic properties of signals.

Although our methodology can be applied to a broad range
of waveforms, we demonstrate our measurement strategy in
this paper by calibrating the step-like pulse generated by a
commonly used pulse generator, allowing us to compare results
with an analysis similar to that used in [11]. The 10%–90%
and 20%–80% pulse transition durations of the voltage that
the generator produces at a 50-Ω load are about 15 and 10 ps,
respectively, while the pulse amplitude is about 248 mV. We
describe the apparatus used for the measurements (previously
outlined in [18]) and the signal processing that we use to correct
for systematic errors. The result of our calibration is shown in
Fig. 1.

The waveform approach also requires new methods for
averaging the measured waveform vectors and for calculating
the covariance matrices that describe their repeatability and
reproducibility.1 We present these methods and show that pulse
parameters and their uncertainties, found using the averaged

1We define repeatability as the short-term variations observed while attempt-
ing to keep the measurement conditions the same. We define reproducibility
as the variation in measurements due to changes in the measurement apparatus
while attempting to keep all other measurement conditions the same.

Fig. 2. Schematic diagram of the pulse measurement apparatus. The synthe-
sized signal generator produces sine waves that are used to correct for jitter and
timebase distortion in the equivalent-time oscilloscope. The signal conditioning
block includes a delay line (about 32 ns), a limiting amplifier, and a bias-T.
Three 3.5–1.0-mm adapters (G, R, B) and three samplers (1, 2, 3) are used to
characterize our ability to correct for changes in the measurement system and
possible effects of high-order modes.

waveform and its covariance, agree with the more traditional
approach of calculating the mean pulse parameter and its
uncertainty obtained from each measured waveform (as in [3,
Sec. 5.9]). We end this paper with a discussion of a 2 × 1 vector
waveform metric example whose elements are the state levels
of the two-level pulse of this work.

II. WAVEFORM MEASUREMENT

A. Apparatus and Correction for Timebase Errors

Fig. 2 shows our measurement apparatus. Our apparatus and
measurement procedures are designed to correct for systematic
effects in the measurement system and to quantify various
sources of uncertainty that are beyond our control. The mea-
sured waveform has errors in both the time and voltage of each
sample, and we compensate errors in both dimensions in our
analysis.

We use the NIST timebase correction technique [19] to
correct for jitter and timebase distortion in the measurement
system. The synthesized signal generator produces 6.5408-GHz
sine waves that are used to correct for jitter and timebase dis-
tortion. The 90◦ hybrid coupler produces quadrature sinusoids
that are measured on channels 1 and 2. The prescaler produces
pulses with a fast transition at a repetition rate at which the
pulse generator will trigger (200 kHz). This pulse is used to
trigger the oscilloscope, and a replica of the pulse is delayed
(as in [20]), passes through a limiting amplifier to steepen
the transition after the lossy delay line, and is then used to
trigger the pulse generator and remote pulse head (collectively
referred to here as the “pulse generator” or the “generator”).
The resulting pulse from the generator is measured on channel 3
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simultaneously with the sinusoids on channels 1 and 2. The
system then transfers the data to a computer for postprocessing.

Because all of the samplers in the oscilloscope are activated
by the same trigger pulse and timebase, the timing errors in all
the channels in the oscilloscope mainframe are nearly identical.
The NIST timebase correction software [21] uses an orthogonal
distance regression technique [22] to fit the sinusoids2 and
estimate the timing error in their measurement. We then use this
estimate to compensate for the timing error in each sample of
the signal of interest (from the pulse generator). This procedure
eliminates the need to separately correct for timebase distortion
and jitter.

The timebase of the oscilloscope we use has significant dis-
tortion, including discontinuities every 4 ns. Although the time-
base correction procedure compensates for this discontinuity,
we still take caution to minimize residual errors by positioning
the pulse so that discontinuities in the timebase do not occur
near the fast transition or in a region of the pulse where there
is a significant structure. By adjusting the delay (about 32 ns)
between the oscilloscope trigger and the pulse generator trigger,
we can shift the time at which the fast transition of the pulse that
we are testing occurs relative to the timebase discontinuity.

Voltage errors must also be compensated. Static voltage
errors are reduced by using the built-in dc calibration of the
oscilloscope before each set of measurements to correct for
gain errors, offset errors, and “nonlinear distortion”—the man-
ufacturer’s term for nonuniformity in the discrete levels of the
oscilloscope’s analog-to-digital converter. The finite-impulse
response (dynamic error) of the oscilloscope is calibrated by
use of the techniques in [13] and [23], and then the measured
step waveform is corrected for the oscilloscope response, as
outlined below in Sections III and IV.

B. Signal Processing Considerations

The waveform epoch must be carefully considered to main-
tain accuracy while compensating for timebase error, im-
pedance mismatch, and the dynamic response of the sampler.
The measured waveform (not shown) has a structure, approxi-
mately 1–2 ns after the main transition, which is caused by the
impedance mismatch of the oscilloscope and the pulse gener-
ator, and it is important to choose the waveform epoch such
that all the significant reflections are captured. This is different
from many experiments where reflections are intentionally win-
dowed out of the measured data or where impedance mismatch
is ignored. The epoch duration and the occurrence of the fast
transition in the epoch must also be chosen such that settling ef-
fects are captured to an acceptable level of accuracy. Finally, the
deconvolution process used to compensate for the oscilloscope
and adapters shifts the waveform in time. Significant features
of the waveform must occur in the waveform epoch such that
they are not displaced by deconvolution to a time that is earlier
than the beginning of the measured epoch. In our measurement,
we place the transition at roughly 1 ns after the beginning of the
measured waveform.

2We also measure sinusoids at 6.5 and 6.6 GHz to estimate the timebase
distortion as an initial guess for the orthogonal-distance regression algorithm.

The measured waveform is initially sampled at 4096 points
in a 5.1-ns epoch. After correction for timebase errors, the
corrected epoch duration (for our oscilloscope) is compressed
slightly and the time interval between samples is nonuniform.
To facilitate further signal processing, we linearly interpolate
the corrected waveform to N = 2048 evenly spaced points in a
5.0-ns epoch that is entirely inside the initially measured 5.1-ns
epoch. This subsampling procedure avoids possible extrapo-
lation at the endpoints of the waveform. The discrete Fourier
transform (DFT) of the 5-ns waveform sampled at 2048 equi-
spaced time points results in spectral information from dc to
204.8 GHz at frequencies spaced by 200 MHz. We choose this
sampling rate and the associated Nyquist frequency (2.44 ps
and 204.8 GHz) such that there is minimal aliasing in the
measured waveforms that we discuss here (see Fig. 10). We ex-
perimented with higher order interpolation schemes and found
that the present sampling rate relative to the waveform features
was chosen such that there was no significant difference. This
could change when measuring waveform generators with faster
transitions (see [24] and [25]).

We acquire a data set consisting of K = 100 waveforms,
as described in Section II-A, and average them to achieve an
approximately 20-dB improvement in the signal-to-noise ratio.
After averaging, the signal-to-noise ratio in the ramp-subtracted
signal is about 80 dB at low frequencies and falls to 0 dB
between 70 and 80 GHz (see discussion and Fig. 10). We also
acquire statistics on the 100 waveforms to characterize the
additive noise and the residual jitter and drift after timebase
correction.

III. OSCILLOSCOPE AND ADAPTER CALIBRATION

We next correct for the dynamic response of our measure-
ment system. We model the system as linear and time invariant.
Therefore, the time-domain waveform vector y, once corrected
for timebase errors and averaged, is a discretized convolution of
the pulse generator’s output signal x(t) and the system response
function a(t).3 That is

y = ax (1)

where a is a matrix form of the (time domain) convolution op-
eration. The system response function consists of the following
two parts [13]: 1) the response function of the oscilloscope
when connected to an ideal 50-Ω source and 2) the effects of
the impedance of the source, adapter, and oscilloscope. We now
consider the calibration of these two contributions and their
combination, resulting in the operator a. Section IV will be
concerned with the deconvolution problem, i.e., solving (1) for
a discretized representation x of the generator’s output.

A. Oscilloscope Response Function

We use a photodiode with a calibrated electrical output
pulse to determine the oscilloscope’s impulse response [23].

3We denote vectors and matrices in bold font and continuous functions of
time in italics.
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The photodiode generates an electrical pulse at its 1.0-mm
coaxial output when it is excited with a short optical pulse at
its fiber input. We calibrated the electrical pulse generated by
the photodiode at its 1.0-mm output using NIST’s electro-optic
sampling system with the procedures described in [15], [26],
and [27]. This calibration is mismatch corrected to determine
the voltage that the photodiode would supply to an ideal 50-Ω
load. The photodiode calibration allows for oscilloscope cali-
bration up to a scale factor. The absolute magnitude response of
the oscilloscope is scaled using a swept-sine technique similar
to those described in [12] and [28].

The calibration is reported at frequencies between dc and
110 GHz. The high-frequency limitation arises from lim-
its on our present impedance characterization. However, this
strict bandwidth cutoff exceeds the useable spectral content
of our pulse generator and is not a concern in our present
analysis.

In order to maximize the bandwidth of the oscilloscope
calibration, we dedicate a 1.0–1.85 or 2.4 mm adapter to each of
our oscilloscope samplers, as shown in Fig. 2. This provides a
single-mode interface up to 110 GHz, allowing us to determine
the response of the oscilloscope and the adapter to a 50-Ω
source at the 1.0-mm coaxial reference plane to 110 GHz.
We also calculate the covariance matrix for the oscilloscope
response using a generalization of the techniques described
in [23].

B. Impedance Calibration

We wish to calibrate the voltage the generator delivers to
a specified load (usually 50 Ω) [13] at its 3.5-mm connector.
However, the pulsed signal from our generator has significant
energy above the single-mode cutoff frequency of the 3.5-mm
connector (∼33 GHz), and the possibility of higher order
modes propagating in the generator, adapters, and samplers
used in the measurement must be considered. If the coupling
between the fundamental mode and higher-order modes were
known, along with the reflection coefficient of all the modes at
each junction, a multiport model of the measurement system
could be constructed, and the effects of the higher-order modes
could be calibrated in a systematic way. As this information
is not available, we take a different approach. We measure the
(fundamental mode) scattering parameters of the 3.5–1.0-mm
adapters directly up to 33 GHz, and extend these scattering-
parameter measurements to 110 GHz with an empirical single-
mode model. We also measure the reflection coefficient of
the generator directly to 33 GHz and extend this reflection
coefficient to 110 GHz using measurements of the reflection co-
efficient of the generator plus adapter (performed at the 1.0-mm
reference plane).

When measuring the reflection coefficient of the generator,
the generator circuit is biased to the post transition state.
Other considerations are described in [13]. All the coaxial
measurements were calibrated using the techniques in [29] with
uncertainty analysis following the covariance-based techniques
in [15, Sec. 6.1]. In Section V, we describe our methodology
for quantifying variations due to high-order modes and other
uncontrolled or unmodeled effects.

C. System Response

Our oscilloscope response measurements and scattering-
parameter measurements are on a 200-MHz grid from dc to
110 GHz. Based on these measurements, we estimate the
response of the oscilloscope and the adapters at the 3.5-mm
reference plane in Fig. 2, accounting for the response of the
sampler and all of the (fundamental mode) mismatch correc-
tions of the oscilloscope, adapters, and generator to 110 GHz
[13]. Finally, we calculate the covariance matrix associated with
the response of the oscilloscope and the mismatch corrections.
This covariance matrix will be used in our uncertainty analysis
in Section VI.

In principle, dividing the measured waveform spectrum by
the system’s frequency response yields the spectrum of the volt-
age waveform that the generator supplies in the fundamental
coaxial mode of its 3.5-mm connector to a perfect 50-Ω load.
As is well known, this naïve deconvolution strategy is generally
ill-posed, leading to time-domain results with greatly amplified
noise. We discuss our regularized deconvolution procedure in
Section IV.

IV. WAVEFORM DECONVOLUTION

Deconvolution of step-like waveforms using a DFT is com-
plicated by boundary effects such as severe ringing near
the boundary discontinuity (e.g., see [30] and the references
therein). We use a ramp subtraction routine that is described
in the Appendix to reduce these effects. Furthermore, decon-
volution of our data is an ill-posed problem [17], [31]–[34]
and requires regularization to obtain a meaningful result. We
perform regularized deconvolution for each averaged waveform
y using a Tikhonov regularization with a standard smoothness
penalty defined by the discretized second-difference operator l
and regularization parameter λ. That is, for a given λ, we obtain
the reconstructed waveform xλ from

Δxλ = �−1A−1
λ �Δy (2)

where

A−1
λ = diag

(
Ā

|A|2 + λ2|L|2
)

. (3)

In (2), � denotes the DFT matrix, �−1 denotes its inverse, A
and L denote the frequency-domain matrix representation of
the system impulse response function and the second-difference
operator, and A denotes the complex conjugate of A. The vari-
ables Δxλ and Δy refer to “ramp-subtracted” waveforms. The
ramps are different for xλ and y but are known and described
in the Appendix [specifically (31) and (33)]. In writing this
solution, we have used the property that A and L are diagonal
matrices. Note that subject to elementary algebra, (2) and (3)
are identical to [34, eqs. (6)–(10)]. However, our parameter
selection algorithm is different.

Early work in regularized deconvolution applied to wave-
form metrology used subjective methods for determining the
regularization parameter [34]. Later work [17] argued that the
parameter selection procedure should be automated based on
knowledge of the noise in the measurement system. A review of
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Fig. 3. (Dots) Typical “L-curve” used to find the regularization parameter λ∗

at the point with maximum curvature.

Fig. 4. (Dots) Curvature of L-curve. (Solid curve) Parabolic fit near max-
imum. The fit is used to estimate the regularization parameter λ∗ and its
uncertainty.

different methods for parameter selection can be found in [32,
Ch. 7]. We use the heuristic “L-curve” method advocated in
[32]. We choose the regularization parameter that balances the
least squares error ‖aΔxλ − Δy‖2 and the smoothness penalty
‖lΔxλ‖2. We select λ = λ∗ that maximizes the curvature in
the L-curve shown in Fig. 3. This maximum is found by
parameterizing λ as follows:

λ = λ(q) = λ010qc

where q is an integer, and λ0 and c are constants chosen so that
λ(q) spans a reasonable range for inspecting the L-curve. We
plot the curvature of the L-curve as a function of q in Fig. 4. We
then fit the curvature in the region near the maximum with a
parabola. The λ corresponding to the maximum of the parabola
is λ∗.

Fig. 5. Response magnitude for the three oscilloscope samplers used in this
paper.

V. INPUT SIGNAL ESTIMATE

We vary our measurement system by use of different adapters
and samplers and combine measurements taken with different
system configurations to characterize the reproducibility un-
certainty in our waveform calibration. For example, differently
constructed adapters and oscilloscope samplers may introduce
variations due to high-order modes, which, in turn, contribute
to the uncertainty in the calibration of the response function of
our measurement system. We use three 3.5–1.0-mm adapters
(labeled B, R, and G) and three samplers (labeled 1, 2, and
3), giving a total of I = 9 possible measurement configura-
tions. The 3.5–1.0-mm adapters, which are not commercially
available, are constructed from two or three adapters with
2.4- and/or 1.85-mm coaxial connectors at the intermediate
interfaces. We expect that the reflection coefficient for the gen-
erator and samplers, and the scattering parameters for the
adapters will be different for high-order modes than for the fun-
damental mode. The waveform variations resulting from the
different configurations are characterized by the reproducibil-
ity uncertainty that we estimate in Section VI. If the pulse
generator has sufficient bandwidth to excite high-order modes,
the variation in our measurements will include the uncertainty
due to their excitation. If the pulse generator does not have
enough bandwidth to excite high-order modes, variations in our
measurements will not be due to their excitation, and our single-
mode characterization will be sufficient.

By measuring waveforms using measurement systems with
markedly different response functions, we sample our ability to
characterize such differences and to remove their effect on the
waveform calibration. We use three different sampler models
from the same manufacturer. The magnitude of their frequency-
domain response function is shown in Fig. 5. The response of
sampler 1 is peaked at about 40 GHz and rolls off rapidly to
a −3 dB point around 50 GHz and exhibits a deep notch at
about 70 GHz. The response of sampler 2 is fairly flat up to
about 70 GHz, with a notch roughly 4 dB deep near 75 GHz.
The response of sampler 3 rolls off roughly monotonically,
achieving −3 dB around 60 GHz.
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Fig. 6. Closeup of the pulse transition, as measured with the three different
samplers and the first set of measurements (j = 1) with the B adapter (a) before
correction for the system response and (b) after correction. The measured pulses
have been aligned in time at the 50% crossing level instant. Before correction
the 10%–90% transition durations are 16.5, 15.7, and 17.7, and after correction,
they are 14.6, 15.3, and 15.1 ps. The inset in (b) shows pretransition ringing in
the reconstructed waveform from sampler 1 that is due to the deconvolution
process.

The most obvious difference between measured waveforms
occurs between measurements made with different samplers.
A portion of the waveforms measured by use of the B adapter
and samplers 1, 2, and 3, without deconvolution of the system
response, are shown in Fig. 6(a). We show the same portion
of the waveforms after deconvolution in Fig. 6(b). The most
notable difference between the waveforms is the overshoot
immediately after the transition. The peak difference between
the three waveforms in the region between 0.7 and 0.8 ns
decreases by about a factor of 3 after deconvolution. None of
the reconstructed waveforms exhibit ringing due to the hard
cutoff at 110 GHz. This is consistent with our observation that
the pulse generator does not produce significant energy at these
frequencies (see Fig. 10). On the other hand, the deconvolved
waveform measured with sampler 1 does have some ringing
visible at times before the transition [shown in the inset of
Fig. 6(b)] at a frequency of about 77 GHz.

We averaged the measurements over the full set of adapter
and sampler combinations and characterized variations in the
measurements obtained with different adapters and samplers
(after correction for their respective system response functions).
Each measurement of the generator, with a given configuration,
included J = 4 repeat measurements consisting of the K =
100 averaged waveform measurements. Between each of the
four repeat measurements, the pulse generator, adapters, and

oscilloscope were disconnected and reconnected, and the sys-
tem was allowed to equilibrate for one-half hour before begin-
ning the next repeat measurement. This disconnect/reconnect
procedure is intended to determine uncertainties from con-
nector repeatability and other short-term measurement and
instrumentation errors. In all, we measured I × J = 36 sets of
K = 100 waveforms.

The 36 data sets were measured over the course of a few
days, during which the standard deviation of the laboratory
temperature was 1.0 ◦C. Because of temperature variations and
long-term drift of our measurement system, the relative delay
between the oscilloscope timebase and the generated pulse can
drift significantly. In addition, we do not attempt to temporally
align measurements that use different length adapters during
the measurement process. Therefore, we numerically align the
50% reference level crossing time of each of the measured
waveforms with the reference level crossing time of the first
waveform to obtain a meaningful average and to quantify
variations between the waveforms. This is achieved by the use
of a frequency-domain technique with ramp subtraction (see the
Appendix). All 36 waveforms are then averaged to find x. The
procedure for averaging and statistically quantifying variations
between the measurements is described further in Section VI-B.

VI. WAVEFORM UNCERTAINTY ANALYSIS

In this section, we describe the propagation of uncertainty
through our measurement processes. As recommended by the
International Organization for Standardization (ISO) Guide to
the Expression of Uncertainty in Measurements [35], we cat-
egorize contributions to our uncertainty budget into two types,
namely, type A and type B. Type A are those that are determined
by statistical means based on repeated measurements. Type B
are those that are determined in some other way, including sci-
entific judgment based on all available information on the vari-
ability of the uncertainty source, as discussed in [35, Sec. 4.3.1].

A. Deconvolution Uncertainty

Following the techniques described in [15], [16], and [35],
we use the first-order Taylor expansion for algorithms and
procedures, as well as functions, as long as they are sufficiently
linear and differentiable with respect to the sources of error. We
refer to the above process of deconvolving the system response
as a procedure D = D(A,y, λ(q)). We use a covariance-
matrix-based approach for propagating the uncertainty in A,
y, and λ(q) through the deconvolution procedure.

We determine the sensitivity of the deconvolution procedure
D to its various arguments (described in Section IV) by calcu-
lating the following Jacobians using a finite difference method:

JA =
∂D
∂A

Jy =
∂D
∂y

Jq =
∂D
∂q

. (4)

Note that JA and Jy are matrices, while Jq is a column vector.
Furthermore, all the derivatives are evaluated at λ = λ∗. The
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Fig. 7. Contributions to diag(Σxλ ) in (5) from uncertainty in the system re-
sponse function (top), the signal measurement (middle), and the regularization
parameter (bottom).

covariance Σxλ
in the estimated waveform is found using

propagation of uncertainties [15], [16], [35] as follows:

Σxλ
= JAΣAJT

A + JyΣyJT
y + Jqσ

2
qJ

T
q (5)

where ΣA is the covariance matrix of the system response
function in the time domain, and Σy is the covariance matrix
of the timebase-corrected mean waveform y. The 1 × 1 matrix
σ2

q is the squared uncertainty of the regularization parameter λ.
We have verified, using Monte Carlo simulations, that the first-
order Taylor series expansions used in (5) are valid approxi-
mations of the deconvolution uncertainty, given the range of
dispersion characterized by ΣA, Σy, and σ2

q . We next describe
the different terms to (5) in more detail.

1) System Response Covariance ΣA: Details on how the
covariance ΣA is calculated are given in [15] and [23]. This is a
type B uncertainty component. The square root of the diagonal
elements of JAΣAJT

A are plotted as the top curve in Fig. 7.
We observe that the primary contribution to the uncertainty
of xλ comes from the uncertainty in the convolution kernel a
(i.e., the system response function) from which the discretized
operators a and A are found. In the present measurement
context, we find that this contribution to the uncertainty in xλ

decreases as a function of time. We attribute this to the fact that
a large component of the uncertainty in deconvolution arising
from uncertainty in the underlying convolution kernel can itself
be represented as some convolution applied to the measured
waveform.

To see this, recall that the deconvolution operator, even with
regularization, is diagonal in the frequency domain. Assuming
for the moment that there are no cross-frequency correlations,
one can verify that the Jacobian operators required for uncer-
tainty propagation with respect to the system response function
(i.e., the convolution kernel a) will preserve this diagonal

structure in the frequency domain. Now, it is a mathematical
fact that an operator is convolutional in the time domain if and
only if it is diagonal in the frequency domain. It follows that
the time-domain contribution to the uncertainty arising from
the underlying convolution kernel is itself convolutional. This
argument ignores cross-frequency correlations. In practice, we
do not ignore these correlations but rather propagate them
faithfully through our analysis. Nevertheless, assuming a large
diagonal component to the deconvolution kernel uncertainty,
by this argument, we can conclude that some correspondingly
large contribution to the uncertainty in the calibrated waveform
has a convolutional structure in the time domain. Next, we
recall that the uncertainty in the system response function (i.e.,
our convolution kernel a) is largest at low frequencies due to the
corresponding relatively large uncertainty at these frequencies
in the electro-optic calibration of the photodiode. In the time
domain, this low-frequency uncertainty manifests as a “time-
domain uncertainty convolution kernel” with a relatively long
time constant. Applying this kernel to a step-like waveform
that transitions to zero, it follows that there should exist a
corresponding decay in the uncertainty in the estimate of xλ.
Note that the same argument implies that this component of
uncertainty grows if the waveform transitions to a nonzero
constant, as we have observed in other measurement situations.

2) Signal Covariance Σy: This is the covariance of the
measured waveform after correction for timebase errors. The
matrix is estimated by the sample covariance as

(Σy)m,n =
1

K(K − 1)

K∑
k=1

(yk,m − ym)(yk,n − yn) (6)

where m, n = 1, . . . , 2048, and K = 100. This is a type A
uncertainty component. The square roots of the diagonal ele-
ments of JyΣyJT

y are represented by the middle curve plotted
in Fig. 7. The broad background in this contribution is due to
noise in the measurement system, while the bump occurring
at the pulse transition is probably due to residual jitter (about
450 fs) that is contributed by the prescalers in Fig. 2, the pulse
generator, and the firing of the samplers. The discontinuity at
about 4.8 ns is a boundary effect due to the time translation
in the deconvolution process, as is the level region in the
curve corresponding to JAΣAJT

A. These aberrations in the
uncertainty estimate occur because of the periodic nature of
the DFT. Such boundary effects are common in deconvolution
problems [30]. Despite our best efforts to minimize this effect,
it still appears, but at a level of less than 0.15% (approximately
0.36 mV/250 mV). We intend to explore this effect further in
the future.

3) Regularization Parameter Variance σ2
q : The 1 × 1 matrix

σ2
q is the squared uncertainty in the parameter q of λ(q).

Although there is no “true” value for λ∗ = λ(q∗), there is a
range of λ around λ∗ over which xλ is reasonably stable. We
estimate σq as the half width of a parabolic fit to the curve
shown in Fig. 5 at half of its maximum. This term generally has
negligible contribution compared to the preceding two terms.
This is a type B uncertainty component.

4) Total Deconvolution Correlation Matrix: The total de-
convolution uncertainty is dominated by the uncertainty in
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Fig. 8. Values of correlation matrix corresponding to Σxλ in (5).

the oscilloscope calibration, which, in turn, is dominated by
uncertainty in the calibration of the photodiode that is used to
calibrate the oscilloscope. Fig. 8 shows a plot of the 2048 ×
2048 correlation matrix described as follows:

(Rxλ
)m,n =

(Σxλ
)m,n√

(Σxλ
)m,m

√
(Σxλ

)n,n

. (7)

Fig. 8 shows that the uncertainties in the deconvolution
process are highly correlated due to uncertainties in the low-
frequency calibration and gain of the oscilloscope.

B. Repeatability and Reproducibility

To characterize our ability to calibrate our measurements,
we use a type A evaluation and separate the components of
repeatability (the variations observed while attempting to keep
the measurement conditions the same) and the reproducibility
(the variation in measurements due to specific changes in the
measurement apparatus while attempting to keep all other mea-
surement conditions the same). We follow a procedure similar
to that described in [36, Ch. 9] and in [37, Sec. 15.2].

The mean waveform xi for the ith oscilloscope and adapter
measurement configuration (i = 1, . . . , I , where I = 9, and
dropping the λ∗ subscript for clarity) is then calculated by
averaging over the J = 4 repeated (time aligned) measurements
xi

j performed within a given oscilloscope and adapter measure-
ment configuration as

xi =
1
J

J∑
j=1

xi
j . (8)

Repeatability uncertainty within a measurement set, includ-
ing variations due to connector repeatability, is described by the
following sample covariance matrix:

Si
r =

1
J − 1

J∑
j=1

(
xi

j − xi
) (

xi
j − xi

)T
. (9)

We assume that the repeatability for each measurement con-
figuration is the same and pool within-measurement repeatabil-
ity by averaging over all the measurement sets as follows:

Sr =
1
I

I∑
i=1

(
Si

r

)
. (10)

We estimate the reproducibility covariance matrix SR as

SR =
1
J

(Srms − Sr) (11)

where Srms is the mean square variation between the I = 9
measurement configurations, i.e.,

Srms =
J

I − 1

I∑
i=1

(xi − x)(xi − x)T (12)

and

x =
1
I

I∑
i=1

xi (13)

is the average of the means xi, averaged over all I measurement
configurations. x is the average over all 36 measurements.

For SR to be a covariance matrix, it must be nonnegative
definite. That is, zT SRz ≥ 0 for every N × 1 real vector z. This
can be verified by showing that all the eigenvalues of SR are
nonnegative. If a negative eigenvalue is found, we set SR equal
to zero. In practice, however, this computationally intensive test
is not necessary when SR is projected to a much smaller dimen-
sion such as the 1-D and 2-D pulse metrics discussed in this
paper. For example, in calculating the uncertainty of the pulse
amplitude, SR is projected to a scalar, and we set the resulting
projection to zero if it is negative. We find that the projection is
greater than zero for the generator and all the pulse parameters
reported in this paper. It should be noted that we are not inter-
ested in the inference of the individual off-diagonal elements of
the full 2048 × 2048 covariance matrix, which are estimated
based on a relatively small number of measurements [15]. As
we will see in Section VII, the number of measurements taken
here is sufficient for estimating the uncertainties of the low-
dimensional waveform metrics discussed in this paper.

C. Timing Errors

We find that the residual jitter after correction for timebase
errors is about 450 fs, which has a negligible effect on the
measurement of pulses with a roughly 15-ps transition duration.
We have analyzed the uncertainty associated with the timebase
correction algorithms and have found it to be negligible for
this application [38]. We also find that the drift within the
100-sweep data set for this pulse generator is negligible. We
conclude that with our typical laboratory stability, we do not
need to include uncertainty terms for these potential effects in
the present work.
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Fig. 9. Combined uncertainty from (14) and the various components con-
tributing to it.

D. Combining Uncertainties

Equations (5), (10), and (11) evaluate the individual con-
tributions of various sources of uncertainty. We combine the
uncertainties using the full covariance matrices to find the
standard uncertainty of the averaged waveform vector x using

Sc =
Sr

J
+ SR + Σxλ

(14)

where Σxλ
is the covariance matrix for the systematic uncer-

tainty pooled over all I = 9 measurement configurations. The
diagonal elements of the covariance matrices in (14) are plotted
in Fig. 9.

VII. PULSE PARAMETERS

In this section, we use the procedures that were described
in [14] for calculating pulse parameters and give a detailed
description of how we calculate the uncertainties for the mea-
surements described in this paper. We write all procedures in
terms of matrix operations on the averaged waveform vector
x and its covariance, and thus, we refer to this method as
the waveform method. In the last part of this section, we also
describe similar but somewhat more traditional procedures to
calculate the pulse parameters from the individual (unaveraged)
waveforms. We then conduct the uncertainty analysis on the
pulse parameters themselves. We refer to this approach as the
parametric method. The results of the two methods are given
in Table I. Although the procedure P = P(x) for extracting
a pulse parameter from the waveform might be expected to
be nonlinear, it was also shown in [14] that the operations
are sufficiently linear that a first-order Taylor expansion gives
adequate accuracy for our uncertainty estimate. We show here
that the method is also locally linear in the sense that

P(x) ≈ 1
IJ

∑
i,j

P
(
xi

j

)

within the uncertainty of our experiment, thereby validating
our procedure for combining measurements from different
instruments.

A. Extracting Pulse Parameters: Waveform Method

We first cluster the individual time samples of the estimated
pulse x into the initial voltage state S1 before the step and
the final voltage state S2 after the step using the “k-means”
method, described in [39] and [40]. The samples are thereby
sorted by their distance from a particular cluster mean. Each
state level is determined through the shorth, that is, the mean of
the data contained in the shortest interval that contains half the
data in the cluster corresponding to that state [41].

The vector L = (L1, L2)T , representing the state levels, can
be expressed as a linear transformation of x. That is

L = HLx (15)

where HL is a 2 × 2048 matrix. The jth element of the first
row of HL is

{
1/N1, if xj is used in the calculation of state S1
0, if xj is not used in the calculation of state S1.

(16)

The jth element of the second row of HL is
{

1/N2, if xj is used in the calculation of state S2
0, if xj is not used in the calculation of state S2.

(17)

Here, N1 and N2 are the number of points in the clusters
describing states S1 and S2, respectively, and N1 + N2 =
2048.

We find the pulse amplitude A = L2 − L1 from the linear
transformation of the vector L as

A = Jamp−LL (18)

where Jamp−L = (−1 1). A similar transformation for calcu-
lating the pulse transition duration is described in [14].

B. Pulse Parameter Uncertainties: Waveform Method

Writing the pulse parameter extraction procedure as a func-
tion of the waveform vector, that is, P = P(x), allows us
to use the standard propagation of uncertainty techniques to
estimate the uncertainty in our estimated pulse parameters. The
sensitivity of the pulse parameter to a given waveform is found
by calculating the following Jacobian:

JP =
∂P
∂x

. (19)

Since the first-order Taylor-series expansion gives adequate
accuracy, the Jacobian is simply the matrix used to transform
between the waveform vector and the pulse parameter. For
example, the pulse amplitude Jacobian Jamp = Jamp−LHL.

The deconvolution-related uncertainties given in Table I are
found by using propagation of uncertainties as

uP =
√

JPΣxλ
JT
P . (20)

Note that JP is a row vector, and therefore, the transfor-
mation inside the radical of (20) gives a scalar quantity. The
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TABLE I
SOME PULSE PARAMETERS AND THEIR UNCERTAINTIES CALCULATED USING THE WAVEFORM

AND PARAMETRIC METHODS DESCRIBED IN SECTION VII

repeatability- and reproducibility-related uncertainties shown
in Table I are derived similarly by their respective covariance
matrices, i.e.,

uP,r =
√

JPSrJT
P (21)

uP,R =
√

JPSRJT
P . (22)

As shown in Table I, the reproducibility is the dominant source
of uncertainty in the estimated transition durations, while the
deconvolution uncertainty is the dominant contribution in the
uncertainty in the amplitude estimate.

C. Combining Uncertainties

Finally, the combined uncertainty in the pulse parameter is
found from the combined covariance matrix Sc as

UP =
√

JPScJT
P . (23)

To find the expanded uncertainty kUP (95% confidence
interval), we use the individual contributions to the uncertainty
in the pulse parameter in the Welch–Satterthwaite formula [35]
and calculate the number of degrees of freedom ν. The factor k
is the appropriate t-table value with ν degrees of freedom.

D. Parametric Method

To demonstrate the validity (and linearity) of our approach,
we also use the more traditional approach to calculate the
pulse parameter P from each waveform vector xi

j individually
using the same algorithm as above. By using P instead of

x in (8) and (13), we calculate the average parameter P .
By using P instead of x in (9) and (12), we also calculate
the within-set repeatability and rms between-sets variation of
the parameter. We then calculate the pooled repeatability, the

reproducibility, and the combined uncertainty using analogous
versions of (10), (11), and (14), respectively. Note that the
parametric method does not require waveform alignment before
averaging.

E. Discussion

The pulse parameters in Table I agree to 0.2% or less, which
exceeds the number of significant digits of our calibration. This
validates our method of averaging the waveforms and demon-
strates the algorithms, given in [14], in a practical application.
Additionally, the uncertainties typically agree to within 20%,
except for the repeatability of the amplitude. It is important to
note that in the individual parameter approach, the repeatability
and reproducibility are determined by 36 measurements of
the scalar parameter. This number of measurements is usually
adequate to obtain a high confidence in the result. In our
waveform approach, we determine the 2048 × 2048 covariance
matrices for repeatability and reproducibility with only 36 mea-
surements so that the matrices are severely underdetermined.
Nevertheless, we obtain good agreement in the uncertainties
calculated by the two different methods. This is because the
pulse parameter operators can be locally approximated by a
linear projection of the 2048-D waveform vectors onto a 1-D
space, effectively giving us 36 measurements of the scalar
quantity.

The uncertainty in the pulse amplitude is dominated by
deconvolution uncertainties, as can be seen by the relative
magnitudes of the uncertainty contributions in Table I, as well
as the number of degrees of freedom determined from the
Welch–Satterthwaite formula (e.g., see [35, Sec. G.4]). In turn,
the system response uncertainty is dominated by uncertain-
ties that we trace back to the low-frequency uncertainty in
the electro-optic calibration of the photodiode that we used
to calibrate the oscilloscope. Reducing these low-frequency
uncertainties is an area for further study.
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The long tail in the combined uncertainty of Fig. 9 includes
significant contributions from the deconvolution uncertainty
and our measurement reproducibility. The uncertainties in the
transition durations are dominated by variations between mea-
surement configurations. While we can detect and quantify
these variations, determining their physical source is a subject
for further study. Possible sources of these variations include
long-term variations in the measurement system or the genera-
tor, temperature effects, uncalibrated high-order mode effects,
and artifacts in the deconvolution process, such as the ring-
ing observed in the (corrected) measurements made by using
sampler 1. This last effect might be part of a justification to
reject the measurements made by sampler 1, although we do
not attempt such justification here.

VIII. STATE-LEVEL VECTOR

The scalar pulse parameters described in [3] are examples
of scalar waveform metrics. Vector waveform metrics are also
possible. Vector waveform metrics and their associated co-
variance matrices can give useful information regarding the
variability in a set of waveform measurements and various
sources of uncertainty. In this section, we apply our analysis
to the following vector:

L = ( L1 L2 )T = (−0.25044 −0.00260 )T (24)

whose elements are the state levels of our two-level pulse x.
We estimate the covariance matrix ΣL of L from the combined
covariance matrix as

ΣLc = HLScHT
L =

[
6.6 × 10−6 3.8 × 10−6

3.8 × 10−6 3.8 × 10−6

]
(25)

with a positive correlation of 0.7. We find the pulse amplitude
uncertainty as

Uamp = Jamp−LΣLcJT
amp−L (26)

and obtain the same combined standard uncertainty as in (23)
and Table I, i.e., 1.7 mV. However, if the correlations between
the state levels are neglected, which we can do here by set-
ting the off-diagonal elements to 0, the combined uncertainty
becomes 3.2 mV, overestimating the amplitude uncertainty by
nearly 90%. This example demonstrates the importance of
including correlations in pulse waveform measurements.

We can look for the source of this correlation by calculating
the contributions to the combined state-level covariance ma-
trix due to deconvolution uncertainty, repeatability, and repro-
ducibility as

ΣLxλ
=HLΣxλ

HT
L =

[
4.0 × 10−6 1.1 × 10−6

1.1 × 10−6 5.6 × 10−7

]

ΣLr =HLSrHT
L =

[
1.9 × 10−7 5.1 × 10−10

5.1 × 10−10 3.4 × 10−9

]

ΣLR =HLSRHT
L =

[
2.6 × 10−6 2.7 × 10−6

2.7 × 10−6 3.3 × 10−6

]
. (27)

The correlations are 0.7, 0.02, and 1.0, revealing high corre-
lations in the uncertainty contributions from deconvolution and
reproducibility. Further inspection of the waveforms reveals
that measurements from the I = 9 measurement configurations
are visibly shifted in voltage relative to each other. If we apply
an offset to each of the measurements equal to the deviation of
its high level from the mean high level of all the waveforms,
the point-by-point uncertainty is greatly changed, but the en-
tries in Table I and the mean state levels are unchanged. The
adjusted state-level covariance matrix due to reproducibility is
reduced to

Σ′
LR = HLS′

RHT
L =

[
5.3 × 10−7 3.4 × 10−8

3.4 × 10−8 2.2 × 10−8

]
(28)

with a correlation of 0.3. Since the amplitude is invariant with
respect to overall voltage shifts of the pulse, this transformation
leaves the amplitude and the amplitude uncertainty unchanged,
as can be verified using (14) and (26)–(28). The remaining
state-level correlations are then dominated by the contribution
from the deconvolution, and hence, the oscilloscope calibration
uncertainty.

IX. CONCLUSION

In conclusion, we have presented an apparatus for measuring
pulsed waveforms produced by a popular step-like pulse gen-
erator, and we have described our procedures for calibrating
those measurements. We also described statistical procedures
for characterizing how well these calibrations perform with
respect to various changes in the measurement apparatus.

Our procedures are designed to fully calibrate the pulse
generator and its output waveform. That is, we calibrate an
equivalent-circuit model of the generator that can be used to
calculate the voltage or current that the generator delivers to an
arbitrary load at every time point in the measured waveform.
The calibrated waveform vector and covariance matrices can
be used to determine both scalar and vector waveform metrics
and their uncertainty. As an example, we calculated pulse
parameters using our approach and compared these with pulse
parameters calculated using the more traditional procedure in
which pulse parameters and their statistics are individually
obtained from each measured waveform. We showed that the
mean 10%–90% and 20%–80% transition durations, and the
amplitude obtained from the two different methods are the same
and that the uncertainties calculated by the two methods are, for
practical purposes, the same, thus demonstrating the validity of
our waveform-based approach. We further demonstrated a vec-
tor waveform metric, consisting of the two pulse-state levels,
and showed the importance of correlations in the measurement
uncertainty. We also showed that correlations in this vector can
be used as a diagnostic tool.

Because we divide the calibration into two steps, i.e.,
1) waveform calibration and 2) waveform metric calibration,
our procedures can be used to calibrate arbitrary waveform
metrics that can be determined, subject to the constraint
that the desired metric computation admits a linear approx-
imation. Furthermore, because we compensate for time and
impedance errors, the waveform calibration procedures we
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describe here can be extended to a wide variety of signals,
including frequency combs [1] and multisines [2], and the
relevant time- and frequency-domain waveform metrics per-
taining to such signals can be calibrated completely. Certain
applications may ultimately benefit from knowledge of the
whole waveform that is calibrated by our procedures when,
for example, the aberrations cannot easily or adequately be
described by a few pulse parameters or other such metrics.
The capability of calibrating the whole waveform, not just
pulse parameters or other low-dimensional metrics, was not
previously available. We anticipate that this new approach will
open new avenues of waveform characterization to practitioners
of high-speed signal metrology.

APPENDIX

In this appendix, we describe our procedure for computing
the deconvolution of step-like waveforms. We model our mea-
sured waveform as the convolution of the waveform generator
output and the response function of a linear time-invariant
system subject to noise, i.e.,

y(t) = [a ∗ x](t) + n(t).

Here, y(t) is the measured waveform, x(t) is the output of
the waveform generator, a(t) is the system response function,
and n(t) is a stationary and time-invariant noise process. The
response function a(t) is determined by a particular config-
uration of adapter and oscilloscope sampler. As discussed in
Section III, the components of a are estimated along with
their correlated uncertainties as a result of calibrations per-
formed independently of the step waveform measurement of
interest here. The estimation of x(t) requires a deconvolution
of the measurement. Furthermore, the functions of interest here
[i.e., x(t) and y(t)] are “step-like,” as opposed to “impulse-
like.” Consequently, the values of the waveform at the two
endpoints do not agree. As is well-known in waveform metrol-
ogy, this adds an additional difficulty to standard deconvolution
strategies. In part, this is due to the fact that the Fourier
transform of a step-like waveform does not exist in the usual
sense but must be understood as a generalized object (for a
discussion, refer to [42, Ch. 3 and Appendix I]).

Deconvolution of step-like waveforms shares many of the
same features as the closely related problem of numerical
estimation of the Fourier transform of step-like waveforms.
However, there is a fundamental difference between the two,
which we elaborate upon here. As customary in the analysis
of linear time-invariant systems, we make use of the fact that
convolution and deconvolution operators are diagonal in the
frequency domain [recall the Fourier transform convolution
identity [a ∗ x](t) ↔ A(f)X(f)]. Therefore, something akin to
frequency-domain estimates of the functions a(t) and y(t) is re-
quired to facilitate the procedure. However, unlike the problem
of estimating the Fourier transform Y (f) from discretization of
y(t), the goal of our analysis is to estimate x(t). This, combined
with the linearity of the deconvolution, means that we are free
to add and subtract terms as intermediate steps to facilitate the
appropriate spectral transforms. In this appendix, we discuss

a discretized deconvolution procedure. We do not attempt to
estimate the spectrum of step-like waveforms.

Our approach is very similar to the “ramp-subtraction”
method discussed by Nicolson [43] and Waldmeyer [44] in the
context of spectral estimation, and by Paulter and Stafford [30]
in the context of deconvolution. The primary distinction here
is that we do not subtract a linear ramp, but rather a smoother
function that can be designed to achieve quiescent levels before
and after the transition.

We assume an equi-spaced discretization of time tn = nΔt
for n = 0, . . . , N − 1. Recall that a(t) is determined by inde-
pendent adapter and oscilloscope calibrations. If these mea-
surements naturally occur on different time scales from the
step waveform measurement, then we assume that the response
function has been interpolated to the measurement time grid.
Thus, we have vectors4 corresponding to measurements of the
impulse response function (combined oscilloscope/adapter) and
the step waveform on the same time grid, i.e.,

a = a(tm), m = 0, . . . ,M − 1

y = y(tn), n = 0, . . . , N − 1.

The different lengths of the two time records merit dis-
cussion. As mentioned in Section II-B, we arrange the time
interval of the step waveform measurement to be sufficiently
long such that pre-transition and post-transition aberrations are
negligible near the time boundaries. The idea is that, given
initial and final values of the waveform, i.e., yinit and yfinal,
extension of the measured waveform y by these two constant
values at either end of the time window accurately represents
y(t) outside the measurement window. The impulse response
function within the limits of measurement accuracy and noise
is assumed to be active for some finite time, i. e., a(t) is nonzero
for 0 < t < MΔt, and a(t) ≈ 0 for t > MΔt. Necessarily,
M < N ; otherwise, the claim that the measured step waveform
y has settled near the time boundaries would be invalid. It is
more desirable that M � N . Experimentally, this corresponds
to a time buffer occurring between the dynamic region of
the step waveform (transition instant and aberration intervals)
and the boundaries of the measurement time interval. Again,
these statements are all subject to the limits of measurement
accuracy.

The time-discretized vectors a along with y and the settled
state values (yinit, yfinal) are the assumed data. We compute
both a “standard” ramp waveform and the convolution of that
waveform with the response vector a. For the standard ramp
function, we use a shifted and scaled error function erf as
follows:

rn = erf
(

tn − τ

σ

)
(29)

The choice of τ and σ are subject to the same constraints as the
measured waveform y, i.e., the transition occurs in the interior

4Note that there is a slight abuse of notation here. Sometimes a refers to a
vector and other times it refers to a matrix form of convolution by that vector.
Here, and in the following, the usage should be clear from context.
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of the measured time window, and the waveform has settled
to its initial and final values near the time-interval boundaries
but are otherwise free parameters. With appropriate caveats
(addressed below), the final estimation of x(t) does not depend
on τ and σ. Note that a linear ramp function, as used in [43],
does not settle but is dynamic over the entire time record. This
can cause problems as discussed in [30].

The convolution r̃ = a ∗ r is computed as the following
discrete sum:

r̃n =
M∑

m=0

r(tn − tm)a(tm). (30)

A few points are worth noting.

1) The sum need not extend to negative values of m, as the
response function is assumed to be causal; a(t) = 0 for
t ≤ 0.

2) There are no issues interpreting the sum for values
tn − tm < 0, as r can be extended to those time values
by (29).

3) The sum in (30) is computed in direct space at a com-
putational cost O(NM). It is common practice to com-
pute convolutions via a fast Fourier transform (FFT) to
decrease this cost. However, FFT implementation of a
convolution has an implicit assumption of periodicity.
The mismatch between periodicity and step waveforms is
at the heart of the problem. Therefore, we compute (30)
directly.

Next, we rescale the pair r and r̃ to match the measurement
y at the initial and final values as follows:

r̃ →hr̃ + (yinital − hr̃initial)

r →hr + (yinital − hr̃initial)/α (31)

with the scaling factors defined as

h ≡ (yfinal − yinital)/(r̃final − r̃inital)

α ≡
∑

an

where r̃inital and r̃final are calculated before rescaling.
At this point, we have constructed a pair of ramps that

are consistently related by (nonperiodic) convolution with the
system response, r̃ = ar. Additionally, subject to noise in the
measurement y, the vector y − r̃ is zero at both ends.

Returning to the deconvolution problem, we wish to find x
such that ax = y. Recalling that ar = r̃, we can subtract it
from both sides, i.e.,

ax =y

aΔx = Δy (32)

where

Δy ≡y − r̃

Δx ≡x − r. (33)

Fig. 10. (a) Ramp-subtracted waveform measured by the use of sampler 2.
(b) Spectrum of the ramp-subtracted waveform. The Nyquist frequency is
204.8 GHz.

The point is that Δy, as well as all derivatives, is zero at
both ends, within the noise limits. In addition, to the extent
that the transition region is well separated from the interval
boundaries, it is also acceptable within measurement error to
replace the convolution with a periodized convolution matrix.
The deconvolution problem is then diagonalized by the DFT
matrix. In this form, (32) can be restated in the following
convenient form:

A�Δx = �Δy (34)

where � denotes the DFT matrix, and A denotes the frequency-
domain matrix representation of the system impulse response
function. The ramp-subtracted waveform Δy, corresponding to
a measurement with sampler 2 and the B adapter, is shown in
Fig. 10.

Finally, as all measurements are subject to uncertainty, some
form of regularization is required. As discussed in Section IV,
we choose a Tikhonov regularization procedure and select the
regularization parameter using the “L-curve” method [32]. We
choose a periodized second-difference operator as our penalty
metric. As this matrix is also circulant, it is simultaneously
diagonalized by the DFT. The rest of the deconvolution, i.e.,
parameter selection and application of the regularized inver-
sion, are performed as described in Section III to solve for
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Δxλ. By reversing the steps in (32), we estimate the regularized
deconvolution xλ as

�Δxλ =A−1
λ �Δy

Δxλ =�−1A−1
λ �Δy (35)

where

xλ ≡ Δxλ + r (36)

and A−1
λ is given in (3). The idea is that the ramp functions r

and r̃ have been added and subtracted in such a way as to have
no net effect. By performing some algebra, we find that this is
true to the extent that

r = �−1A−1
λ �r̃ = �−1A−1

λ �(ar) = a−1
λ r̃. (37)

Informally speaking, A−1
λ is designed to invert A on a “low-

frequency subspace.” Thus, it is desirable to set the steepness
of the ramp r(t) [i.e., the parameter σ in (29)] to be much less
than the steepness of the measured waveform y. We verify (37)
as a diagnostic for our procedure.
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