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Abstract: We demonstrate a technique for optical performance monitoring by simultaneously 
identifying optical signal-to-noise ratio (OSNR), chromatic dispersion (CD), and polarization-
mode dispersion (PMD) using artificial neural networks trained with parameters derived from 
delay-tap asynchronous sampling. 
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1. Introduction 
  
As optical fiber transmission systems become more transparent and reconfigurable, optical performance monitoring 
(OPM) is essential for ensuring high quality of service [1]. Crucial impairments in optical networks include optical 
signal-to-noise ratio (OSNR), chromatic dispersion (CD), and polarization-mode dispersion (PMD). 

Several techniques have been proposed for monitoring optical performance by use of off-line digital signal 
processing of received data signals [2-10]. Three of these methods [2-4] utilize amplitude histograms or power 
distributions to estimate bit error rate (BER); three [5-7] employ delay-tap plots to distinguish among impairments; 
and two [8-9] use parameters derived from eye diagrams for the same purpose.  

Only two of them, however, have been shown to concurrently quantify at least three different impairments [6, 9]. 
Of these monitoring techniques, one [6] exploits pattern recognition for estimating simultaneous impairments using 
asynchronous, delay-tap sampling, and the other [9] uses artificial neural networks (ANNs) trained with parameters 
derived from synchronously sampled eye diagrams. In asynchronous sampling, the signal of interest is sampled 
without regard to an instant relative to a decision time, and thus clock recovery is not necessary. Synchronous 
sampling, however, necessitates a standard receiver with clock recovery, but can easily be used to generate eye 
diagrams from which numerous performance parameters may be derived.  

Since ANNs have been shown to be a powerful modeling tool for identifying simultaneous impairments derived 
from eye-diagram parameters, we explore their use for the same purpose using parameters derived from delay-tap 
asynchronous sampling   In the following sections, we briefly overview ANNs, and provide examples of our 
proposed method with a simulated optical channel operating at 10 Gbps and using non-return-to-zero, on-off keying 
(NRZ-OOK). 
 
2. Artificial Neural Networks 
 
Artificial neural networks (ANNs) are neuroscience-inspired computational tools that are trained by use of input-
output data to generate a desired mapping from an input stimulus to the targeted output [10-11].  ANNs consist of 
multiple layers of processing elements called neurons. Each neuron is linked to other neurons in neighboring layers 
by varying coefficients that represent the strengths of these connections. ANNs learn relationships among sets of 
input-output data that are characteristic of the device or system under consideration. After the input vectors are 
presented to the input neurons and output vectors are computed, the ANN outputs are compared to the desired 
outputs, and errors are calculated. Error derivatives are then calculated and summed for each weight until all of the 
training sets have been presented to the network. The error derivatives are used to update the weights for the 
neurons, and training continues until the errors drop below prescribed values.  

The ANN architecture used in this work is a feed-forward, three-layer perceptron structure (MLP3) consisting of 
an input layer, a hidden layer, and an output layer, as shown in Figure 1.  The hidden layer allows complex models 
of input-output relationships.  The mapping of these relationships is given by   Y = g[W2•g(W1•X)],   where X is the  
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Fig. 3. Dividing the delay-tap plot into quadrants. 

input vector, Y is the output vector, and W1 and W2 are respectively the weight matrices between the input and 
hidden layers and between the hidden and output layers. The function g(u) is a nonlinear sigmoidal activation 
function given by g(u)=1/[1+exp(-u)], where u is the input to a hidden neuron. According to [12], an MLP3 with one 
hidden sigmoidal layer is able to model almost any physical function accurately, provided that a sufficient number 
of hidden neurons are available. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
                      Fig. 1. Artificial neural network architecture.                     Fig. 2. B/2 (one-half bit-period) delay-tap plots with various impairments.  
 
3. Methodology 
 
Recently, Dods and Anderson introduced an asynchronous sampling technique based on a two-tap delay line, where 
each sample point is comprised of two measurements separated by a specific period corresponding to the length of 
the delay [5]. By creating a scatter plot of the measured pairs, they observed that delay lengths of less than half of 
the bit period (B/2) represented the power evolution within each bit. Furthermore, they showed that plots making use 
of delays of B/2 highlight distortion effects. Figure 2 illustrates simulated B/2 delay-tap scatter plots for a 10 Gbps 
NRZ-OOK signal at a few select combinations of CD and PMD for a given value of OSNR. Visually, it is obvious 
that these impairments produce distinct features.  

To quantify the distinct features, we need to derive parameters that 
can be calculated from the delay-tap plots. Whereas eye diagrams give 
rise to widely used parameters such as Q-factor, closure, jitter, and 
crossing amplitude, there are no such parameters available for delay-
tap plots. Thus, we propose new parameters that will help us to capture 
the behavior of such plots. One possibility is to divide the plots into 
four quadrants, Q1-Q4. The data pairs are divided into the quadrants as 
follows: 1Q),( ∈ii yx  if {0 ≤ xi ≤ Max(x)/2 and 0 ≤ yi ≤ Max(y)/2}; 

2Q),( ∈ii yx  if {0 ≤ xi ≤ Max(x)/2 and Max(y)/2 < yi ≤ Max(y)}; 
3Q),( ∈ii yx  if { Max(x)/2 < xi ≤ Max(x) and Max(y)/2 < yi ≤ Max(y)}; 

and quadrant 4 is not used in this case because it contains data that are 
the mirror image of quadrant 2. Figure 3 illustrates this concept.  

With three quadrants defined, we can perform some basic statistical 
calculations on the data within each quadrant, such as means and standard deviations. For quadrants 1 and 3, we 
calculate the means and standard deviations of the magnitudes ( 3311 ,,, rr rr σσ ), rather than the x’s and y’s 
separately, because these quadrants contain data that are symmetric about the 45º axis. For quadrant 2, we calculate 
the means and standard deviations of the x’s and y’s separately, because this quadrant is on the off-diagonal. For the 
purpose of training our ANNs, we do not make use of the second quadrant’s standard deviations, because they do 
not vary significantly with different combinations of impairments. One final parameter we make use of is similar to 
the Q-factor, which we define as )/()( 311331 rrrrQ σσ +−= . 

To illustrate our method, we performed 125 simulations using the following impairment combinations: OSNR – 
16, 20, 24, 28, and 32 dB; CD – 0, 200, 400, 600, and 800 ps/nm; and PMD with values of differential group delay 
(DGD) equal to 0, 10, 20, 30, and 40 ps. The simulated fiber channel included a laser with a center wavelength of 
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1550 nm and a FWHM line-width of 10 MHz; a 10 Gbit/s logic source; a single-arm, Mach-Zehnder optical 
modulator biased at the quadrature point with a Vπ drive voltage; and a fourth-order Bessel-Thomson filter. 

The ANN consisted of seven inputs ( 31223311 ,,,,,, Qyxrr rr σσ ), three outputs (OSNR, CD, and DGD), and 28 
hidden neurons. The ANN was trained by use of a software package developed by Zhang et al. [13]. Although 
alternatives were explored, a conjugate-gradient technique was chosen, because it offers a nice compromise in terms 
of memory requirements and implementation effort.  

Once the model was trained, we validated its accuracy with a different set of testing data. We used 64 
simulations with the following impairment combinations: OSNR – 18, 22, 26, and 30 dB; CD – 100, 300, 500, and 
700 ps/nm; and DGD – 5, 15, 25, and 35 ps. The software reported a correlation coefficient of 0.97 for the testing 
data. Figure 4 compares the testing and ANN-modeled data for OSNR, CD, and DGD. 
 

35

30

25

20

15

O
SN

R
 (d

B
)

6050403020100
Test Sample Number

 ANN Model 
 Test Data

40

30

20

10

0

D
G

D
 (p

s)

6050403020100
Test Sample Number

800

600

400

200

0

C
D

 (p
s/

nm
)

6050403020100
Test Sample Number  

 
Fig. 4. Comparison of testing and ANN-modeled data for the 10 Gbps NRZ-OOK channel. 

 
4. Conclusions 
 
We have shown how ANN models trained with parameters derived from B/2 delay-tap plots can be used to 
simultaneously identify levels of OSNR, CD, and DGD for 10 Gbps NRZ-OOK signals. This method provides a 
powerful technique for monitoring the performance of optical channels without requiring synchronous sampling. 
Furthermore, the results of the ANN modeled in this paper compare favorably to those of the ANN developed by use 
of eye-diagram parameters in ref. 9.  
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