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ABSTRACT

This paper derives new soft decision metrics for coded orthogo-
nal signaling in symmetric α-stable noise, which has been used
to model impulsive noise. In addition to the optimum metrics
for Gaussian (α = 2) noise and Cauchy (α = 1) noise, a class
of generalized likelihood ratio (GLR) metrics with lower side in-
formation requirements is derived. Through numerical results for
a turbo code example, the Cauchy decoder is found to be robust
for a wide range of α, and GLR metrics are found which provide
performance gains relative to the Gaussian metric, but with lower
complexity and less a priori information.

1. INTRODUCTION

While noise in communications systems is often modeled as a
Gaussian process, some systems experience noise or interference
that is better characterized by the more general class of α-stable
distributions (0 < α ≤ 2), of which the Gaussian distribution is a
special case (α = 2). Consequently, systems designed specifically
for Gaussian noise can perform poorly in impulsive noise environ-
ments. One example of such an environment (and an application
of this work) is a wireless link in an ad hoc network modeled as a
Poisson field of interferers, for which the index of stability, α, of
the interference was shown to be inversely related to the path loss
exponent [1]. The smaller the value of α, the more impulsive the
noise becomes.

The purpose of this paper is to derive soft decision metrics
for receivers experiencing α-stable noise that vary in complexity
and required side information. We study these metrics in the con-
text of non-coherently detected orthogonal signals. While previ-
ous work on non-coherent receivers in α-stable noise addressed
uncoded systems [2, 3], this work applies to coded systems using
soft decision decoding, and numerical results are given for a turbo
code example.

2. SYSTEM MODEL

Encoded bits are mapped log2 M bits at a time to one of M orthog-
onal signals, such as M -ary FSK signals, and transmitted over a
channel that injects additive noise modeled as a sequence of in-
dependent and identically distributed (i.i.d.) symmetric (about the
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origin) α-stable (SαS) random variables. The received signal is
correlated, in-phase and quadrature, with each of the M signals.
The output of the ith correlator, 0 ≤ i ≤ M − 1, is modeled as

Zi = aiSi + Yi

where all vectors are two-dimensional, representing the in-phase
and quadrature components, Yi is the additive SαS noise at the
output of the demodulator, and ai is the amplitude of the received
signal. The desired signal Si may be expressed as

Si =

� �
cos θi sin θi

�
; i = i′

0 ; i �= i′.

where θi is the relative phase of the signal, and the i′th signal is
transmitted. This model allows for the amplitude and phase to
differ for different signals. We shall assume that the random noise
vectors Yi, 0 ≤ i ≤ M − 1, are i.i.d., such as when the noise
results from independent Poisson field processes [1, 3].

Soft decisions of coded symbols are generated from the de-
modulator outputs, plus any available side information, and passed
to the decoder in the form of log-likelihood ratios (LLRs). The
LLR of the jth coded bit, cj , is defined as

Lj (z,a, θ) � log
Pr [cj = 1|z,a, θ]

Pr [cj = 0|z,a, θ]
(1)

where z =
�
z0 z1 . . . zM−1

�
is a vector of the outputs

of all M in-phase and quadrature correlators, and likewise, a =�
a0 a1 . . . aM−1

�
and θ =

�
θ0 θ1 . . . θM−1

�
.

Since each transmitted signal represents a length-log2 M se-
quence of coded bits, c, (1) can be expressed as

Lj (z,a, θ) = log

�
c:cj=1 p (c|z,a, θ)�
c:cj=0 p (c|z,a, θ)

(2)

where p (c) is the probability of sequence c. Using Bayes’ rule
and assuming all coded sequences are equiprobable,1 (2) can be
written in terms of the conditional probability density function of
the correlator outputs:

Lj (z,a, θ) = log

�
c:cj=1 f (z|c,a, θ)�
c:cj=0 f (z|c,a, θ)

. (3)

Writing the conditional density function in (3) in terms of the
density of the noise, we have

f (z|c,a, θ) = fY (zi − aisi(θi))
�
k �=i

fY (zk) ; c → i (4)

1This assumption can be relaxed by inserting p (c) in (3).
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where the notation c → i means that the coded bit sequence c
results in transmission of the ith signal.

Typically, orthogonal signals are detected non-coherently, and
in a Bayesian approach the conditional density (4) would be av-
eraged over the unknown random vector θ. We shall assume that
the components of θ are i.i.d., uniform on (0, 2π). Similarly, if
the amplitudes are unknown, the conditional density would be av-
eraged over the appropriate distribution of a.

3. DECISION METRICS

The LLR input to the decoder is derived in this section under vari-
ous assumptions for the SαS noise and available side information.
A SαS random vector has characteristic function

Φ (ω) = exp (−γ ‖ω‖α)

where the index of stability α is limited to the interval 0 < α ≤ 2
and the dispersion γ > 0 [4]. Closed forms for the density of a
SαS random vector exist only for the cases of α = 1 and α = 2,
which correspond to the Cauchy and Gaussian distributions, re-
spectively. In the Gaussian case, the variance σ2 of each compo-
nent is related to the dispersion through σ2 = 2γ.

The LLR is derived below first under the assumption of Gaus-
sian noise (α = 2), then under Cauchy noise (α = 1). Both
of these metrics assume knowledge of the dispersion, γ, and sig-
nal amplitude, a. Three additional metrics that rely on less side
information are derived using the generalized likelihood ratio ap-
proach. The performance of these metrics is compared under dif-
ferent noise environments in the subsequent section.

3.1. Gaussian Metric

Under the assumption of S2S noise, the random vectors Yi, 0 ≤
i ≤ M − 1, are i.i.d. bivariate Gaussian with density

fY (y) =
1

4πγ
exp

�
−‖y‖2

4γ

�
. (5)

Using (5) in (4), the conditional density of z is

f (z|c,a, θ)

=
1

(4πγ)M
exp

�
−‖zi − aisi(θi)‖2 +

�
k �=i ‖zk‖2

4γ

�
(6)

=
1

(4πγ)M
exp

�
−a2

i − 2aiwi cos (θi − φ) + ‖z‖2

4γ

�
(7)

where the last line uses zi = wi

�
cos φ sin φ

�
.

For non-coherent detection, (7) is averaged over θi, giving

f (z|c,a)

=
exp

	
−a2

i +‖z‖2

4γ



(4πγ)M

1

2π

� 2π

0

exp

�
aiwi cos (θ − φ)

2γ

�
dθ

=
exp

	
−a2

i +‖z‖2

4γ



(4πγ)M

I0

�
aiwi

2γ

�
(8)

where I0(x) � 1
2π

� 2π

0
ex cos θ dθ is the zeroth-order modified

Bessel function of the first kind.

Using (8), and after canceling terms, the Gaussian LLR for
non-coherent detection with known amplitudes and dispersion is

Lj (z,a) |α=2,γ known = log

�
c:cj=1 f (z|c,a)�
c:cj=0 f (z|c,a)

= log

�
i:cj=1 e−a2

i /4γ I0
	

aiwi
2γ



�

i:cj=0 e−a2
i /4γ I0

	
aiwi
2γ


 (9)

where in the second line the summations are over all M/2 signals
to which are mapped coded sequences for which cj = 1 and cj =
0, respectively.

3.2. Cauchy Metric

Under the assumption of Cauchy (i.e., S1S) noise, the density of
the noise vector is

fY (y) =
γ/2π

(γ2 + ‖y‖2)3/2
. (10)

The conditional density of z averaged over θi is

f (z|c,a) = Eθi [fY (zi − aisi(θi))]

k �=i

fY (zk) . (11)

The expectation above evaluates to

Eθi [fY (zi − aisi(θi))]

=
1

2π

� 2π

0

γ/2π dθ

[γ2 + w2
i + a2

i − 2aiwi cos (θ − φ)]3/2

=
γ/π2

(βi − δi)
√

βi + δi

E

��
2δi

βi + δi

�
(12)

where E(k) �
� π/2

0

�
1 − k2 sin2 φ dφ is the complete elliptic

integral of the second kind, βi = γ2 + w2
i + a2

i , δi = 2aiwi, and
where [5, (2.575.4)] was used to obtain (12).2

Using (11) together with (10) and (12), and after simplifying,
the Cauchy LLR for non-coherent detection with known ampli-
tudes and dispersion is

Lj (z,a) |α=1,γ known = log

�
i:cj=1 g (wi, ai)�
i:cj=0 g (wi, ai)

(13)

where

g (wi, ai) = E

��
2δi

βi + δi

� �
γ2 + w2

i

�3/2

(βi − δi)
√

βi + δi

.

3.3. Generalized Likelihood Ratio Metrics

The metrics derived in the previous section require knowledge of
the amplitude vector a and the noise dispersion parameter γ. This
knowledge may not be available in practice. A Bayesian approach
towards elimination of a and γ does not seem feasible: first, aver-
aging the likelihood functions in closed form does not appear to be
possible. Second, the choice of priors p(a) and p(γ) requires a pri-
ori information that may be unavailable. An alternative approach

2A previously published evaluation of this integral in [2], and later used
again in [3], contained an error.

III - 698

➡ ➡



is to derive metrics using the generalized likelihood ratio (GLR)
paradigm. The philosophy behind GLR is to maximize the likeli-
hood function with respect to the unknown parameters (rather than
to average it over the parameter vector, as done in the Bayesian
approach) [6]. The GLR approach is less commonly seen in the
communication theory literature, but it has been used before with
success [7, 8]. In this section, we derive three different decision
metrics (that need different amounts of a priori knowledge) based
on the GLR paradigm.

3.3.1. GLR for Gaussian distribution (α = 2)

Using (6), we have that

f(z;a, θ, γ, c) =
1

(4πγ)M
exp

�
−‖zi − aisi(θi)‖2

4γ

�

·
M−1�

k=0,k �=i

exp

�
−‖zk‖2

4γ

�
. (14)

Jointly maximizing (14) w.r.t. a and θ gives3

f̂(z; γ, c) � max
a,θ

f(z;a, θ, γ, c)

=
1

(4πγ)M
exp

�
�−

M−1�
k=0,k �=i

‖zk‖2

4γ

�
�.

The resulting metric after simplifying is

Lj(z)|GLR,α=2,γ known = log

�
i:cj=1 ew2

i /4γ

�
i:cj=0 ew2

i /4γ
. (15)

(For M = 2, (15) reduces to Lj(z) = (w2
1 − w2

0)/(4γ).)
If γ is unknown, we can proceed one step further and eliminate

it by maximizing f̂(z; γ, c) w.r.t. γ. This leads to

f̂(z; c) � max
γ

f̂(z; γ, c) =
e−M

πM

1	
1
M

�M−1
k=0,k �=i ‖zk‖2


M

and the associated bit metric

Lj(z)|GLR,α=2,γ unknown = log

�
i:cj=1

	�M−1
k=0,k �=i w2

k


−M

�
i:cj=0

	�M−1
k=0,k �=i w2

k


−M
.

(16)
(For M = 2, (16) simplifies to Lj(z) = 2 log(w2

1/w2
0).)

3.3.2. GLR for Cauchy distribution (α = 1)

For α = 1, we have from (10) that

f(z;a, θ, γ, c) (17)

=
γ/2π

(γ2 + ‖zi − aisi(θi)‖2)3/2

M−1�
k=0,k �=i

γ/2π

(γ2 + ‖zk‖2)3/2
.

Maximizing (17) w.r.t. a and θ yields

f̂(z; γ, c) =
1

2πγ2

M−1�
k=0,k �=i

γ/2π

(γ2 + ‖zk‖2)3/2
(18)

3We use (̂·) to denote profile (concentrated) likelihoods.
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Fig. 1. Performance in S(α = 2)S (Gaussian) noise (side info.
required by each metric, and equations, indicated in ()’s in legend)

and the resulting metric after simplification is

Lj(z)|GLR,α=1,γ known = log

�
i:cj=1

�
γ2 + w2

i

�3/2

�
i:cj=0 (γ2 + w2

i )3/2
. (19)

(For M = 2, (19) reduces to Lj(z) = 3
2

log
	

γ2+w2
1

γ2+w2
0



.)

Unlike the Gaussian case, (18) is monotonic with γ, and there-
fore the GLR metric for unknown γ does not exist under the Cauchy
assumption.

4. QUANTITATIVE RESULTS

Quantitative results for the performance of the aforementioned met-
rics are obtained through Monte Carlo simulation of a coded binary
FSK system in SαS noise. Information bits are encoded with a rate
1/2 binary parallel concatenated convolutional (turbo) code with
interleaver size of 1024 bits and constituent encoder constraint
length of four. Coded bits are mapped to binary FSK channel
symbols with unit amplitude. After non-coherent detection and
LLR computation, decoding is performed iteratively by a pair of
soft-input/soft-output MAP decoders and is terminated after eight
iterations. Generation of the bivariate SαS noise is straightforward
for α = 1 and 2; for other values of α we approximate the noise
with the first 100 terms in a bivariate version of the series repre-
sentation of a SαS random variable given in [4, Theorem 1.4.2].

Fig. 1 compares the performance of the metrics developed in
Section 3 on an additive white Gaussian noise (AWGN) channel in
terms of bit error rate (BER) versus the inverse of the dispersion,
1/γ, in dB. Recall that 1/γ is proportional to the conventional
signal-to-noise ratio in AWGN. As expected, the Bayesian-derived
Gaussian metric performs best, as it is matched to the noise distri-
bution and assumes knowledge of the amplitudes and dispersion.
Nevertheless, we observe that the Bayesian Cauchy and the GLR
metrics perform within 1 dB and 0.5 dB of the Gaussian metric,
respectively. It is notable that the GLR metrics achieve this per-
formance without knowledge of the amplitudes (and, in one case,
without the dispersion) and with lower computational complexity
than the Bayesian-derived Gaussian and Cauchy metrics.

Fig. 2 compares performance on a Cauchy noise channel. Here,
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Fig. 2. Performance in S(α = 1)S (Cauchy) noise
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Fig. 3. Performance in S(α = 1.5)S noise

as expected, the Bayesian Cauchy metric outperforms the other
metrics, but by much larger margins than those in the Gaussian
channel (4 dB and up). Interestingly, knowledge of the dispersion
appears to degrade the performance of the Gaussian GLR met-
ric, which is mismatched to the actual noise distribution. Similar
trends are observed on channels with S(α = 1.5)S noise (Fig. 3)
and S(α = 0.5)S noise (Fig. 4), but with smaller and larger margins,
respectively, as might be expected in these less and more severe
impulsive noise environments. In general, while the Bayesian Gaus-
sian metric degrades performance in non-Gaussian stable noise,
the Bayesian Cauchy metric gives much improved performance
over a wide range of α < 2. Furthermore, the Gaussian GLR met-
ric (without knowledge of γ) provides substantial gains relative to
the Bayesian Gaussian metric over this range, with no side infor-
mation and lower complexity than either of the Bayesian metrics.

5. SUMMARY

New soft decision metrics were derived for coded orthogonal sig-
naling with non-coherent detection in symmetric α-stable noise. In
addition to the optimum metrics for Gaussian and Cauchy noise, a
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Fig. 4. Performance in S(α = 0.5)S noise

class of generalized likelihood ratio metrics was derived requiring
less (or no) side information (signal amplitudes, noise dispersion).
Performance was evaluated for a turbo code example by Monte
Carlo simulation. While all the studied metrics perform closely
(within 1 dB) for α = 2 (Gaussian noise), the Bayesian-derived
Cauchy metric performs best for a wide range of α < 2, con-
sistent with findings in [2, 3] for uncoded systems. Moreover, a
GLR metric with lower complexity has been found that provides
a substantial performance improvement over the Gaussian metric
over this range while requiring no side information. Future work
will evaluate the performance of those metrics that rely on side
information when these parameters are estimated from noisy mea-
surements rather than being assumed known a priori.
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