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ABSTRACT 
 
The advancement of imprint lithography as a method for fabricating nanostructures is impeded 
by a lack of effective tools for characterizing mechanical properties and geometry at the 
nanoscale.  This paper describes progress in establishing methods for determining elastic moduli 
and cross sectional dimensions of imprinted nanolines from Brillouin light scattering (BLS) 
measurements using finite-element (FE) and Farnell-Adler models for the vibrational modes.  An 
array of parallel nanoimprinted lines of polymethyl methacrylate (PMMA) with widths of ~65 
nm and heights of ~140 nm served as a model specimen.  Several acoustic modes were observed 
with BLS in the low-gigahertz frequency range, and the forms of the vibrational displacements 
were identified through correlation with calculations using measured bulk-PMMA moduli and 
density as input.  The acoustic modes include several flexural, Rayleigh-like, and Sezawa-like 
modes.  Fitting of Farnell-Adler calculations to the measured dispersion curves was explored as a 
means of extracting elastic moduli and nanoline dimensions from the data.  Some of the values 
obtained from this inversion analysis were unrealistic, which suggests that geometric 
approximations in the model introduce significant systematic errors.  In forward calculations, the 
frequencies determined with the FE method were found to more closely match experimental 
values, which suggests that this method may be more accurate for inversion analysis.  Initial 
estimates of uncertainties in the FE calculations support this conclusion. 

 

INTRODUCTION 
 

Nanoimprint lithography (NIL) has emerged as a leading candidate for relatively low-
cost nanoscale patterning of materials.  It has attracted particular attention as a method for 
fabricating patterned polymers with length scales beyond the fundamental limits of conventional 
photolithography used for integrated circuits.  However, numerous technical obstacles must be 
overcome before NIL reaches the point of broad industrial implementation [1].  These obstacles 
primarily are associated with the mechanical behavior of imprinted material during stamping, 
cooling, and removal from the mold.  To successfully model and optimize these processes, one 
must have information on the mechanical properties of the material, which generally is 
unattainable from conventional techniques because of the length scales involved.  Direct 
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measurements of the elastic moduli of imprinted polymeric nanostructures are especially 
important because of the expected deviations from bulk values and appearance of elastic 
anisotropy when dimensions approach the scale of the macromolecular diameters (typically, tens 
of nanometers) [2].   

In collaboration with the University of Akron, we previously explored the use of 
Brillouin light scattering (BLS) for characterizing the vibrational modes and elastic moduli of 
nanolines [3].   The specimens in that study were photolithographically patterned arrays of 
nanolines of photoresist fabricated on oxidized silicon with an antireflective coating.  The 
symmetries of the three lowest-frequency modes of these nanolines were determined through 
comparisons of data with calculations using FE methods and the general method of Farnell and 
Adler [4].  The lowest mode was found to be flexural (with displacements primarily parallel to 
the substrate and perpendicular to the long axis of the nanolines).  The second and third modes 
were found to be similar to the Rayleigh and lowest Sezawa modes of a blanket film. 

Proceeding from the work of Ref. 3, we present, in this report, measurements and 
modeling of imprinted nanolines of a well characterized polymer on a bare substrate.  FE and 
Farnell-Adler models are modified to enhance the accuracy and/or speed of calculations, an 
inversion algorithm is implemented for extracting elastic moduli and line dimensions using the 
Farnell-Adler method, and the accuracy of this inverse calculation is assessed. 

 

MEASUREMENTS 
 

A model specimen was fabricated by imprinting an array of parallel polymethyl 
methacrylate (PMMA) nanolines onto (100) silicon.  The length of the nanolines was 10 µm.  A 
residual PMMA layer between the nanolines was present after imprinting, and this was removed 
by a plasma etch.  Figure 1 shows an image of a section of the array obtained using field-
emission scanning electron microscopy (FESEM) with a beam energy of 500 V, which is low 
enough to avoid evaporation of the PMMA.  From critical-dimension small-angle x-ray 
scattering (CD-SAXS) measurements, the cross sections of the nanolines after etching were 
determined to have a height h (dimension perpendicular to the substrate) of 140 nm, a width w of 
65 nm, and a periodicity of 359 nm.  The CD-SAXS data also indicated that there was significant 
deviation from rectangular geometry, but the detailed shape was not determined.     

BLS measurements were performed in a backscattering configuration with the incident 
laser beam, axis of the collection lens, and long axis of the nanolines in a common plane.  The 
measurements were performed at a series of angles θ between the incident beam and the normal 
of the substrate, providing selective detection of acoustic wavelengths along the nanolines in the 
range of 270 nm to 464 nm.  Inelastically scattered light was passed without polarization filtering 
to a standard scanning (3+3)-pass tandem Fabry-Perot interferometer. 

A representative BLS spectrum with θ equal to 70º is shown in Fig. 2.  The incident angle 
corresponds to a wave number k (2π/wavelength) of 22.2 µm-1 for the detected acoustic modes, 
through the relation k = (4π/λ0)·sinθ, where λ0 is the laser wavelength, 532 nm.  The large central 
peak, which arises from light that is reflected from the specimen with no change in frequency, 
obscures a peak near 2.7 GHz that is more clearly seen when the spectrometer is configured to 
scan over a smaller range of frequencies.  The frequency shifts of the peaks were determined by 
fitting to Lorentzian functions.  The two highest-frequency peaks were assumed each to be 



superpositions of two closely spaced peaks (because of their asymmetrical shape) and were fit to 
a sum of two Lorentzians.  Dispersion curves obtained in this manner are shown in Fig. 3. 

To provide input parameters for numerical modeling of acoustic modes, BLS 
measurements of bulk longitudinal and shear waves were performed on a plate of PMMA with a 
thickness of approximately 17 µm.  The starting material for this plate was the same as that for 
the imprinted PMMA nanolines.  From the BLS measurements, the longitudinal velocity v1 and 
shear velocities v2 were determined to be 2784 m/s and 1354 m/s, respectively, assuming the 

1 mµ

 
 

Figure 1.  SEM image of a section of the array of PMMA nanolines. 
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Figure 2.  BLS spectrum with an angle of 70º between the substrate normal and the incident beam. 
Ordinates are the counts per unit time in one channel of the multichannel analyzer. 



index of refraction is 1.49 [5].  The density ρ of a larger piece of PMMA (from different starting 
material) was determined to be 1187 kg/m3 by Archimedes’ method.   These measured values for 
the velocities and density correspond to elastic moduli C11 = 9.20 GPa and C44 = 2.18 GPa.   
 
 
ANALYSIS AND DISCUSSION 
 
 FE calculations of the six lowest-frequency modes were performed with the QR 
algorithm (a standard eigensolver) using the elastic moduli and density measured on bulk 
PMMA (above) and the approximation of a rectangular cross section with h = 140 nm and w = 
65 nm (as estimated from CD-SAXS analysis).  These calculations were confined to the PMMA, 
with the PMMA/silicon interface approximated as completely rigid.  Initially, a three-
dimensional mesh extending over the full 10 µm length of the nanoline was employed.  
However, computation times were found to be impractical when mesh spacings were reduced 
towards the size necessary to achieve sufficient accuracy (as reflected in convergence of the 
calculated frequencies).  Therefore, the calculations were simplified by assuming sinusoidal 
variation of the displacements along the length of the nanoline (eliminating the need for a FE 
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Figure 3.  BLS measurements.  Farnell-Adler calculations and FE calculations with v1 = 2784 m/s, 
v2 = 1354 m/s,  ρ = 1187 kg/m3, h = 140 nm, and w = 65 nm. 



mesh along the length).  Figure 3 shows FE calculations of this type with a mesh of 16 x 32 
points over the cross section.   Corresponding displacement patterns (not shown) show that the 
lowest and second-lowest modes are flexural and Rayleigh-like, respectively, with forms similar 
to those that we presented in Ref. 3.  The third mode is a higher-order flexural mode, with 
greater vertical phase variation.  The fourth, fifth, and sixth modes are the lowest Sezawa-like, 
third flexural, and second Sezawa-like modes, respectively. 
 Through comparison with the FE calculations, the lowest-frequency measured dispersion 
curve in Fig. 3 is unambiguously identified with the lowest flexural mode.  The identification of 
the second-lowest experimental dispersion curve is less straightforward, since it lies between the 
FE calculations of the Rayleigh-like and second flexural modes.  Two factors suggest that this 
curve arises from the Rayleigh-like mode and that the second flexural mode is not detected in 
BLS: 1) the symmetry of displacements of Rayleigh modes typically leads to relatively strong 
BLS peaks, and 2) the second peak does not show, at any measured wave number, evidence for it 
being a superposition of two peaks.  The third measured dispersion curve clearly arises from the 
lowest Sezawa-like mode. 

The frequency of the lowest flexural mode previously was determined through Farnell-
Adler calculations to be approximated by that of the lowest-frequency antisymmetric Lamb 
(flexural) mode of an infinite plate with thickness w [3].  However, the closer correspondence of 
FE calculations to the measured frequencies in Ref. 3 suggests that significant inaccuracy in the 
Farnell-Adler calculations was introduced by the approximation of infinite nanoline height.  To 
make the Farnell-Adler calculations of this flexural mode more accurate, we have approximated 
the effect of finite height using the transverse-resonance approach of Lagasse et al. [6,7].  These 
calculations are shown in Fig. 3 (lowest dashed curve) with h = 140 nm, w = 65 nm, measured 
bulk velocities of the PMMA plate, and measured ρ of bulk PMMA.  Although the transverse-
wave approach brings the Farnell-Adler results closer to the FE results, significant discrepancy 
remains at the higher wave numbers. 

The second and third measured dispersion curves in Ref. 3 were approximated by 
Rayleigh and Sezawa waves of a blanket film on silicon, with the thickness of the film taken to 
be the nanoline height plus the antireflective-coating thickness.  In Fig. 3, the higher-frequency 
dashed curves are similar Farnell-Adler calculations.  However, since there is no complicating 
intermediate layer, the film thickness in these calculations is simply h (140 nm).  The input 
parameters also include published values for the density and elastic moduli of silicon [8].  The 
wave vectors were along the <011> direction of silicon.  

Inversion analyses of the BLS data were attempted using the Farnell-Adler method with 
the nanoline cross-sectional dimensions and elastic moduli as adjustable parameters.  A Monte-
Carlo technique first was used to locate the region of the global minimum of the difference 
between the calculations and the data, and, then, a quasi-Newton minimization algorithm was 
used to refine this.  The parameters determined from a fit to the lowest two dispersion curves 
(flexural and Rayleigh-like) were v1 = 2347 m/s, v2 = 1332 m/s, h = 120 nm, and w = 52 nm; and 
those determined from a fit to the lowest three curves (including the lowest Sezawa-like mode) 
were v1 = 2154 m/s, v2 = 1223 m/s, h = 106 nm, and w = 54 nm.  These values for h are much 
different from that determined from CD-SAXS analysis, and those for v1 are much different from 
that expected from BLS measurements on bulk PMMA.  The elastic moduli are not expected to 
differ significantly from bulk values when dimensions are in the range of this specimen [2].  The 
fact that the forward FE calculations in Fig. 3 more closely match the BLS data suggests that 
significant inaccuracy remains from neglecting the finite cross sectional dimensions in the 



Farnell-Adler calculations (for the Rayleigh-like and Sezawa-like modes) and that this is the 
reason for unrealistically low values obtained from the inversion analysis.  
 To explore the potential of the FE method for more accurate inversion analysis, 
systematic errors introduced by the sinusoidal and fixed-interface approximations in the FE 
calculations were estimated using FE calculations with and without sinusoidal approximations 
and Farnell-Adler calculations with and without rigid interfaces.  These suggest that systematic 
errors are not significant for the lowest three modes when wave numbers are above ~15 µm-1.  A 
complete description of these analyses will be presented elsewhere, along with results of inverse 
FE calculations. 
 
 
CONCLUSION 
 
 This report describes progress towards the goal of establishing methods for the 
determination of elastic moduli and geometry of imprinted nanolines from BLS measurements.  
It goes beyond the previously published work of Hartschuh et al. [3] by 1) considering imprinted 
nanolines on a bare substrate (rather than lithographically patterned photoresist with an 
antireflective coating), 2) incorporating estimates of the effect of finite cross sectional geometry 
in Farnell-Adler calculations of the flexural mode, 3) including elastic anisotropy of a single-
crystal substrate in the Farnell-Adler calculations, 4) increasing the accuracy and speed of FE 
calculations, 5) using measured bulk material parameters in the forward calculations, and 6) 
performing initial inversion analysis using Farnell-Adler models.  Some of the values obtained 
for moduli and dimensions in the inverse Farnell-Adler calculation are significantly lower than 
expected, and this is attributed to inaccuracy of the approximation of a blanket film in the models 
for the Rayleigh-like and Sezawa-like modes.  The FE method is now well positioned for 
implementation in a more accurate inversion algorithm, with greatly increased speed and 
evidence for the validity of approximations that are incorporated in the model. 
 
 This manuscript is a contribution of the National Institute of Standards and Technology 
and is not subject to copyright in the United States. 
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