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Non-Oscillatory Splines
on Irregular Data∗

David E. Gilsinn†, Marjorie A. McClain‡, and
Christoph Witzgall§

1 Introduction

In computer aided design (CAD), design-defined objects are routinely represented
by surfaces that are C1 or even C2. Terrain representation, however, poses a dif-
ferent challenge: The location of ”crease lines” or ”break lines”, along which the
actual terrain surfaces are not differentiable, are usually not known ahead of time,
whereas in a CAD environment break lines tend to be specified as part of the design.
Unspecified break lines, on the other hand, along with actual verticalities, tend to
give rise to spurious oscillation and, what may be called, ”Gibbs phenomena” in
analogy to the phenomenon well known from the theory of Fourier series. Suscepti-
bility to spurious oscillations and Gibbs phenomena are one of the reasons why the
terrain modeling community has been slow to accept smooth surfaces. There has
thus been a long quest for ”non-oscillatory splines” which would obviate this pesky
conundrum.

In 1994, Lavery [4, 5] proposed successful paradigms for univariate as well
as bivariate non-oscillatory splines, which could be used for representing 2D or 3D
data sets, respectively. Lavery introduced the term ”L1 splines” for his brand of
nonoscillatory splines. The term L1 splines is, however, frequently misinterpreted
as minimizing an L1 measure-of-fit when approximating a point set by, say, classical
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splines. For this reason, we prefer the term ”Lavery splines”.
Classical splines are characterized by their minimizing energy functionals.

Lavery splines, on the other hand, minimize different functionals. In the bivariate
case, especially, the computational effort of minimizing these functionals, however,
exceeds the effort required by the classical approach by an order of magnitude. We
have, therefore, considered an approximation to the calculation of Lavery splines,
along with a prior modification of the functional proposed by Lavery for the univari-
ate case. This modified univariate functional is an extension of Lavery’s functional.
We will present preliminary results for the univariate nonoscillatory splines. In
Section 2 we discuss aspects of univariate Lavery splines in order to shed light
on related issues for bivariate splines. For the issues related to the bivariate case
see Witzgall et al. [9]. The algorithm proposed there for bivariate non-oscillatory
splines requires solving large sparse systems of linear equations.

2 Univariate Spline Interpolation

In the univariate case, cubic ”spline functions” are most commonly used and are
considered here. They form a linear space

F

of piecewise cubic C1 functions f(x) defined locally over intervals between ”knots”

x0 < x1 < ... < xn ,

that is, they consist of cubic polynomials

fi(x) , x ∈ [xi−1, xi], i = 1, ..., n .

Adjacent cubic polynomials are required to assume the same values yi at common
interior knots,

yi = fi(xi) = fi+1(xi) .

This ensures continuity of the complete spline function f(x) over the entire interval

I = [x0, xn] .

In addition, the polynomials are to assume the same slopes

mi = fi(xi) = fi+1(xi).

The spline functions f(x) are thus continuously differentiable, that is, they belong
to class C1. In what follows, the linear spaces

F , F

of first and second derivatives of spline functions are also considered, in spite of the
fact that, at common knots, the second derivatives of adjacent cubic polynomials
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may not agree, so that the spline functions f(x) ∈ F are generally not twice
differentiable at such knots. However, they are twice differentiable everywhere but
on this set of measure zero. For the purposes of integration below, it does not
matter that the function f”(x) may not be defined for those arguments.

Each of the constituent cubic polynomials fi(x) is uniquely determined by the
values yi−1, yi at the knots xi−1, xi and the slopes mi−1, mi at those locations
(Figure 1), in fact, the polynomial is linear in these parameters. The entire function
f (x) is thus uniquely determined by its values and slopes at the knots, and it, too,

Figure 1. Hermite cubic polynomial determined by coordinates and slopes
at end points.

depends linearly on these parameters, so that the space F is isomorphic to the
2(n+ 1)-dimensional vector space of values yi and slopes mi, i = 0, ..., n.

We now turn to the task of interpolation. Here the values yi at the knots xi
are fixed and specified. Given a particular specification of values yi, a corresponding
”interpolating spline function” depends only on the parameters mi:

f (x) = f (m0,m1, ...,mn;x).

Collectively, these functions define affine manifolds or flats,

S, S ,S”,

within the linear spaces F, F , F”, respectively. That is, if

mi =
m
(1)
i + m

(2)
i

2
, i = 0, 1, ..., n ,

then it follows that correspondingly

f (x) = f (m0,m1, ...,mn; x) =
f(m

(1)
0 ,m

(1)
1 , ...,m

(1)
n ; x) + f(m

(2)
0 ,m

(2)
1 , ...,m

(2)
n ;x)

2
.

The question then becomes, how to select slopes mi so as to achieve a ”satisfactory”
interpolation. That selection is generally made by minimizing a functional on the
affine space S defined by an integral. In this work, we reserve the term ”spline”
— as opposed to ”spline function”, for the results of such a minimization.
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2.1 Paradigms for Univariate Splines

”Classical splines” are uniquely defined as those interpolating cubic spline functions

which are (i) C2 , that is, twice differentiable, such that

fi”(xi) = fi+1”(xi), i = 1, ..., n − 1 (1)

holds at interior knots, and for which (ii) the second derivative vanishes

f”(x0) = f”(xn) = 0 (2)

at the two exterior knots. Holladay proved early on (see Ahlberg [1]) that classical
splines are also defined as the unique minimizers of the ”thin beam energy”

E(f) =
xn

x0

f”(x)2dx (3)

over the affine space S of all C1 interpolating spline functions.
Condition (2) is familiar to structural engineers as the vanishing of the sec-

ond derivative at the ”free end” of a beam. It is, however, remarkable that this
energy minimization enforces a higher level of compatibility across knots so that
the minimizing C1 spline functions are, in fact, in class C2 . On the other hand,
this stiffness contributes to the tendency of classical splines to produce spurious
oscillations, Gibbs phenomena and other undesirable inflections.

Several attempts have been made to avoid these problems. Taking a clue from
mechanics, Schweikert [6] and Cline [2, 3] have introduced ”tension splines”, where
the arclength of the spline function is made part of the defining minimization.
Reinsch (see Stoer and Bulirsch [7]) moved to ”exponential splines” by adding a
multiple of the square of first derivatives to the integrand in (3). In Figure 2 we
compare the exponential spline of Reinsch against the classic spline. Those efforts
were only partially successful. Drawbacks include the need to specify an additional

Figure 2. Exponential vs. classic spline.

parameter in order to balance conflicting minimization requirements, and the fact
that these techniques are not readily generalized to the bivariate case.
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Lavery splines, on the other hand, appear to avoid such shortcomings. In Fig-
ures 3 and 4 we compare Lavery splines against classic splines. We are particularly

Figure 3. Lavery spline vs. classic spline: Example 1.

Figure 4. Lavery spline vs. classic spline: Example 2.

impressed with the performance of Lavery splines in the examples in Figures 3 and
4 . Figures 5 and 6 in particular demonstrate the advantages of Lavery splines.
What is the secret of Lavery splines? How are they defined as opposed to classical
splines?

Lavery defines his nonoscillatory splines, in essence, as minimizing the integral
of the absolute value rather than the square of the second derivative of a spline
function:

e(f) =
xn

x0

|f”(x)|dx (4)

over the given affine space S of interpolating spline functions. As pointed out in the
beginning of Section 2.1, minimizing over S may be accomplished by minimizing
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Figure 5. Classic splines produce unnecessary variations in curvature.

Figure 6. Lavery spline has smooth curvature transitions.

over the slopes mi , i = 0, ..., n at the knots. This the requires expressing the
integral e(f) in terms of these slopes:

e(f) = e(m0,m1, ...,mn).

2.2 Expressing Holladay and Lavery Integrals

For the purposes of this paper, we will refer to the integrals (3) and (4) as the
”Holladay integral” and the ”Lavery integral”, respectively. The goal of this section
is to derive expressions for the values of these integrals in terms of the slopesmi , i =
1, ..., n, at the knots of the spline function f (x) under consideration. Both are the
sums of the corresponding integrals of the second derivatives of the individual cubic
polynomials fi(x), which constitute the spline function f (x).

As pointed out in Section 2.1, each such cubic polynomial is uniquely defined
by its end points (xi−1 , yi−1) , (xi , yi) and its end slopes mi−1, mi . The
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various formulas describing this polynomial are commonly referred to as ”Hermite”
formulas. For the versions used here, we introduce the quantities

∆i = xi − xi−1

and

Mi =
yi − yi−1
xi − xi−1

=
yi − yi−1

∆i
,

where Mi represents the slope of the straight line between end points. Instead
of referring to the variable x directly, the following formulas are in terms of the
weights

λi = λi(x) =
xi − x

xi − xi−1
=

xi − x

∆i
,

µi = µi(x) =
x − xi−1
xi − xi−1

=
x − xi−1

∆i
, (5)

where λi + µi = 1, and λi, µi ≥ 0, for x in the interval [xi−1, xi] . Such
weights are often referred to as ”barycentric coordinates”. With these conventions,
we find, for instance,

fi(x) = λiyi−1 + µiyi + λ2iµi(mi−1 − Mi)∆i − λiµ
2
i (mi − Mi)∆i . (6)

Furthermore, by definition (5),

dx = −∆idλi = +∆idµi , (7)

the chain rule yields, using (λi + µi)
2 = 1,

fi (x) = 6λiµiMi + (λ2i − 2λiµi)mi−1 + (µ2i − 2λiµi)mi .

An alternate expression for the first derivative is readily derived:

fi (x) = λimi−1 + µimi + λiµiDi . (8)

Here the quantity

Di = 6Mi − 3mi−1 − 3mi = 6 Mi − mi−1 + mi

2
, (9)

vanishes if and only if the polynomial f (x) : has degree less than three. Because

λiµi =
xi − x
∆i

x− xi−1
∆i

−Di is seen as the lead coefficient of fi(x) as expressed in x . Consequently
−13Di is the lead coefficient of fi(x). Di < 0 indicates that the function is concave
up to its inflection point and convex thereafter. Conversely, Di > 0 indicates
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that convexity precedes concavity in the direction of the x−axis. The quantity Di
will play a major role in what follows. The same is true for the quantities Ui , Vi
in the expression

fi”(x) =
2

∆i
(λiUi − µiVi), (10)

where

Ui = 3Mi − 2mi−1 − mi = −∆i
2
fi”(xi−1) (11)

Vi = 3Mi − mi−1 − 2mi = −∆i
2
fi”(xi) . (12)

The coefficients Ui , Vi thus relate to the two-sided second derivatives of fi(x)
at knots xi . The spline function f (x) is thus twice differentiable at an interior
knot xi , 0 < i < n , whenever

∆i−1Vi−1 = ∆iUi . (13)

Note that

Di = Ui + Vi

and also that, in view of (5),

xi

xi−1
λ2i dx =

∆i
3
,

xi

xi−1
λiµidx =

∆i
6
,

xi

xi−1
µ2i dx =

∆i
3
.

An expression for the thin beam energy of the individual polynomial fi(x) is now
readily derived:

E(fi) =
4

∆i
m2
i−1 + mi−1mi + m2

i − 3Mi(mi−1 + mi) + 3M2
i . (14)

The full Holladay integral is the inhomogeneous quadratic function of the variables
mi , arrived at by adding the energies E(fi) of all partial functions fi(x) .
Introducing the vector of slopes

m = (m0 , m1 , ... , mn)
T ,

we have in matrix notation

E(f ) =mTHm − 12MTm + 12c ,

where

H =

4
∆1

2
∆1

2
∆1

2
∆1
+ 2
∆2

2
∆2

2
∆2

2
∆2
+ 2
∆3

2
∆3

...
...

...
2

∆n−1
2

∆n−1
+ 2
∆n

2
∆n

2
∆n

4
∆n

, M =

M1

∆1
M2

∆2
+ M1

∆1
M3

∆3
+ M2

∆2

+
...

Mn

∆n
+

Mn−1
∆n−1
Mn

∆n

,



pagei i

i i

and

c = (
M1

∆1
)2 + (

M2

∆2
)2 +, ...,+ (

Mn

∆n
)2.

Minimizing this expression for the Holladay energy integral is to solve the
linear system of equations

2Hm = M (15)

or

2

∆1
m0 +

1

∆1
m1 =

3

∆1
M1

1

∆1
m0 +

2

∆1
+

2

∆2
m1 +

1

∆2
m2 =

3

∆1
M1 +

3

∆2
M2

1

∆2
m1 +

2

∆2
+

2

∆3
m2 +

1

∆3
m3 =

3

∆2
M2 +

3

∆3
M3

· · · = · · · (16)

1

∆n
mn−1 +

2

∆n
mn =

3

∆n
Mn

The first equation, in fact, may be restated as

2

∆1
U0 = f1”(x0) = 0 ,

that is, as the requirement (2) that second derivatives vanishes at the first knot. The
last equation reflects the corresponding requirement at the last knot. The second
equation is equivalent to

2

∆1
V1 +

2

∆2
U2

which is the condition (1) for second order differentiability at the interior knot x1 .
The remaining equations similarly enforce compatibility of the one-sided second
derivatives at the remaining interior knots. This confirms the result of Holladay.

The reader should note that the system (16) for classical splines differs from
the linear system mostly offered in the current literature. There the second order
differentiability of the classical splines is already assumed and the spline functions
are formulated in terms of those second order derivatives, ni = f”(xi), i = 0, · · · , n.
However, for weighted classical splines to be encountered in Section 2.4, second
order differentiability no longer holds, and a weighted version of the linear system
(16) needs to be considered.

Expressing the Lavery integral

As to the integral of the absolute value of the second derivative, it is readily available
in the case that the derivative does not change sign inside the subinterval:

e(fi) =
xi

xi−1
|fi”(x)|dx =

xi

xi−1
fi”(x)dx = |fi(xi)− fi(xi−1)| = |mi − mi−1| .
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This includes the case in which the polynomial is of lesser degree than cubic, and
thus has constant second derivatives. This case is signaled by the vanishing of the
quantity Di introduced earlier in (9).

The function fi”(x) , however, is a linear function in x and, unless constant,
changes sign at some location x̂ , which also marks the location of the inflection
point of fi(x) . Suppose this location falls into the interior of the subinterval:

xi−1 < x̂ < xi.

Then the integral has to be calculated as the sum of two integrals of linear functions:

e(fi) =
x̂

xi−1
fi”(x)dx +

xi

x̂

fi”(x)dx .

The integrals between the absolute value bars are of opposite signs, so that the total
integral can be written as the absolute value of a difference of integrals

e(fi) =
x̂

xi−1
fi”(x)dx −

xi

x̂

fi”(x)dx .

These integrals can be separately evaluated as differences of slopes. Let

m̂i = fi(x̂)

denote the inflection slope, then — in the case of an interior inflection —

e(fi) = |2m̂ − mi−1 − mi|. (17)

The quantities Ui , Vi depend linearly on the two slopes mi−1 , mi . Conversely,
those slopes can be expressed in terms of Ui , Vi .

mi−1 =Mi − 2

3
Ui +

1

3
Vi , mi = Mi +

1

3
Ui−1 − 2

3
Vi . (18)

The next step is to express the inflection slope in terms of Ui , Vi . To this end,
we express the inflection argument by its barycentric weights:

x̂ = λ̂ixi−1 + µ̂ixi , (19)

From the Hermite expression (10) for fi”(x) it follows that

λ̂i =
Vi
Di
, µ̂i =

Ui
Di
, (20)

where the denominator Di = Ui + Vi = 6Mi − 3mi−1 − 3mi has already
been encountered in (9) as a quantity that vanishes if and only if the polynomial in
question is parabolic or linear. Thus Di = 0 leads back to the previous case of
no sign changes by the second derivative.
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The weights λ̂i , µ̂i may now be inserted into the expression (8) for the
derivative fi(x) . This gives

m̂i =
Vi
Di
mi−1 +

Ui
Di
mi +

ViUi
Di

.

Substituting for mi−1 , mi according to (18) yields

m̂i =Mi +
U2i + V 2i − ViUi

3Di

as well as

e(fi) =
U2i + V 2i
3|Di| =

µ̂2i + λ̂2i
3

|Di| . (21)

in view of (20). In terms of the slopes mi−1 , mi :

e(fi) =
18M2

i − 18Mi(mi−1 + mi) + 5m2
i−1 + 8mi−1mi + 5m2

i

6Mi − 3mi−1 − 3mi
. (22)

The expressions (21) and (22) for e(fi) are also valid if the inflections occur at the
ends xi−1 , xi of the interval of definition, reducing to e(fi) = |mi − mi−1| , in
accordance with earlier results..

We are now ready to examine the full Lavery integral. At first blush, all that
remains to be done is to sum over the partial integrals e(fi) in their various forms.
We will show, however, that many terms of the expressions (17) cancel each other
out as these partial integrals are added together. To this end, we distinguish five
separate kinds of polynomials fi(x) depending on their behavior in the interior of
the interval between its knots, xi−1 < x < xi :

• ”Linear”; here fi”(x) = 0 throughout
and e(fi) = 0

• ”Convex”; here fi”(x) > 0 in the interior of the interval [xi−1 , xi]
and e(fi) = mi − mi−1

• ”Concave”; here fi”(x) < 0 in the interior of the interval [xi−1 , xi]
and e(fi) = mi−1 − mi

• ”Convex-concave”; here fi”(x) > 0 for x < x̂ fi”(x) < 0 for x > x̂
and e(fi) = +m̂ − mi−1 − mi , also Di > 0

• ”Concave-convex”; here fi”(x) < 0 for x < x̂ , fi”(x) > 0 for x > x̂
and e(fi) = −m̂ + mi−1 + mi , also Di < 0

The last two categories are the ones with an interior inflection point x̂ and inflection
slope m̂ .

The interior inflection points considered so far may not be the only inflection
points of the spline function f (x) . Inflections occur also at knots xi , 0 < i <
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n if a concave or convex-concave polynomial is followed by a convex or convex-
concave polynomial and, analogously, if a convex or concave-convex polynomial is
followed by a concave or concave-convex polynomial. We will refer to such knots
as ”inflection knots”. To make matters more complicated, however, inflection may
occur along an entire stretch of consecutive linear polynomials of equal slope, the
inflection slope in this case, provided there are adjacent nonlinear polynomials at
both ends of such a stretch exhibiting the same convexity/concavity pattern that
would cause an inflection at a knot. In this case, we choose an arbitrary knot,
say, the leftmost one in the linear stretch, as the inflection knot representing the
inflection.

Clearly, slopes at interior knots that are not inflections cancel out as the ex-
pressions (17) for the Lavery integrals e(fi) for the partial spline functions fi(x)
are added up. See Figure 7 for an example. This leads to

Figure 7. Lavery integral as expressed by inflection slopes and end slopes.

Observation A : (23)

The Lavery integral of a cubic spline function is the absolute value of an alternating
sum of the inflection slopes and of the end slopes m0 , mn . Let

m̂1 , m̂2 , m̂3 , ... , m̂L ,

be the sequence of all inflection points identified above, sorted from left to right by
their location. Then

e(f) = m0 + 2
L

l=1

(−1)lm̂l − (−1)Lmn .

(Note that the indices l of m̂l do not refer to the interval in which they are located).
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2.3 Properties of Lavery Splines

In this section, we gather some information about Lavery Splines, namely, interpo-
lating spline functions in the affine space S which minimize their respective Lavery
integrals. A first general observation concerns the convexity of the Lavery integral.

The Holladay and Lavery integrals (3) and (4) of a piecewise cubic spline
function,

f(x) = f (m0,m1, ...,mn; x)

are functions of the slope specifications mi :

E(f ) = E(m1,m2, ...,mn), e(f ) = e(m1,m2, ...,mn).

The quadratic function E(f) representing the Holladay integral can be shown to
be positive definite and, therefore, strictly convex. Its minimum is unique on the
affine manifold S interpolating spline functions. The restriction to S is, of course,
necessary as the value of E(f) would not change if the spline function f (x) were
modified by adding a linear function in x . Adding a non-zero linear function to
the function f(x) would not preserve its interpolation property.

Convexity and Uniqueness of Inflection Points

Next, we establish the convexity of the Lavery integral. It may be viewed as the
extension of the L1 vector norm to a norm on the linear space F ” of second
derivatives of spline functions:

e(f) = ||f”||1 .
The following generic seminorm properties are easily verified for the piecewise linear
functions in F” ,

||f”||1 = 0 <=> f” = 0

|α||f”||1 = |α|||f”||1
along with the triangle inequality,

||f (!)” + f (2)”||1 ≤ ||f (1)”||1 + ||f (2)”||1 . (24)

Suppose the two spline functions f (1), f (2) are actually two interpolating
spline functions and, therefore, in the affine space S . Then their mean is again in
S and, from the triangle inequality (24),

||f
(1)” + f (2)”

2
|| ≤ ||f

(1)”||+ ||f (2”||
2

.

In terms of Lavery integrals,

e
m
(1)
0 +m

(2)
0

2
, , ...,

m
(1)
n +m

(2)
n

2
≤ e(m

(1)
1 , ..., m

(1)
n ) + e(m

1(2)
1 , ..., m

(2)
n )

2
,



pagei i

i i

which establishes convexity. Contrary to the Holladay functional which is strictly
convex, the Lavery integral is not. As a result, uniqueness does not follow and, in
fact, does not hold, as an example in Section ?? will show. Such minima of a convex
function, however, must form a convex set. This leads immediately to

Observation B : (25)

Any positive linear combination of Lavery splines for the same interpolation prob-
lem, — in particular, their mean — ,is again a Lavery spline for this problem.

Note that, in general,

|f (1)”(x)| + |f (2)”(x)|
2

dx ≥ |f (1)”(x) + f (2)”(x)|
2

dx .

If both f (1) and f (2) are Lavery splines for the same interpolation problem, then
so is their mean, and all three functions

f (1)” , f (2)” ,
f (1)” + f (2)”

2

return the same optimal value for their Lavery integrals. Thus equality holds in the
above relation. This implies that both f1”(x) and f2”(x) have the same sign
pattern:

f (1)”(x) ≥ 0 if and only if f (2)”(x) ≥ 0 .

This can be rephrased as

Observation C : (26)

Two Lavery splines for the same optimization problem share essentially the same
inflections: if one of them has an inflection point at x = x̂ , then so has the other
unless it is linear at this point.

Free Ends of Lavery Splines

Here we will examine the free ends of Lavery splines, in particular, the cubic poly-
nomial f1(x) and the corresponding first summand e(f1) of the Lavery integral
e(f) . As the end slope m0 may vary freely, it must optimize e(f1) while keep-
ing the slope m1 fixed. This fact determines the behavior of Lavery splines at
free ends. As seen in the previous section, the first summand e(f1) is a convex
function in the variables m0 , m1 . If the slope m1 is held fixed, e(f1)(m0) is
convex as a function in m0 alone. If the fixed slope equals the straight-line slope,
then m0 = m1 = M1 obviously represents the optimal value for m0 , since
f1(x) in that case is a straight line with e(f1) = 0 . We suppose, therefore, that
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m1 = M1 , and we examine the case, that f1(x) has an inflection x̂ in the
interval between the first two knots, x0 ≤ x̂ ≤ x1 .

Consider the function

ẽ(f1)(m0) =
U21 + V 21

D1
,

where m̂ as well as U1 , V1 also depend on the variable m0 . Clearly, the absolute
value of ẽ(f1) is given by e(f1) . Note that

∂ê(f1)

∂m0
=

V 21 − U21 − 6V1U1
D21

= λ̂21 − µ̂21 − 6λ̂1µ̂1 = 6λ̂21 − 4λ̂1 − 1 ,(27)

in view of (20), and

∂U1
∂m0

= −2 , ∂V1
∂m0

= −1 ∂D1
∂m0

= −3 .

Solving the quadratic equation for λ̂ , and taking into account that 0 ≤ λ̂ ≤ 1 ,
yields

λ̂1 =
2 +
√
10

6
= 0.860378 , µ̂1 =

4−√10
6

= 0.139622 . (28)

The value of m0 for which this value for λ̂1 is realized can be inferred from the
general definition (20) of an inflection defining the barycentric coordinate λ̂1 in
terms of the slopes m0 , m1 , as follows:

λ̂1(6M1 − 3m0 − 3m1) = 3M1 − m0 − 2m1 , (29)

which — for the particular value (28) of λ̂1 — yields the corresponding end-slope

m0 =
10 −√10

5
M1 − 5 −√10

5
m1 . (30)

This value for m0 represents a locally unique stationary value of ẽ(f1)(m0) .
Now ẽ(f1)(m0) = 0 would imply e(f1)(m0) = 0 , and consequently

linearity, that is, m0 = m1 = M1 , which has been ruled out. By continuity,
ẽ(f1)(m0) is either always positive or always negative, — in other words, either

e(f1)(m0) = +ẽ(f1)(m0)

or

e(f1)(m0) = −ẽ(f1)(m0) .

This implies that the value (30) for m0 is also a locally unique stationary value
of e(f1)(m0) . In view of the convexity of this function, it is also its minimizer. At
the last end we differentiate

ê (fn) =
U2n + V

2
n

3Dn
(31)
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and find
∂ê (fn)

∂mn
=
U2n − V 2n − 6UnVn

D2n
= 6µ̂2n − 4µ̂n − 1. (32)

Symmetrically, we thus have

µ̂n = λ̂1, λ̂n = µ̂1. (33)

The equation

µ̂n (6Mn − 3mn−1 − 3mn) = 3Mn − 2mn−1 −mn (34)

thus yields a symmetric relationship to (30):

mn ==
10 −√10

5
Mn − 5 −√10

5
mn−1 . (35)

This establishes

Observation D : (36)

The free ends of Lavery splines are either linear functions or they contain an inflec-
tion in the interior of their interval of definition. The locations x̂1 , x̂n of these
inflections are universally given, respectively, by

x̂0 =
2 +
√
10

6
x0 +

4 −√10
6

x1 , x̂n =
4−√10

6
xn−1 +

2 +
√
10

6
xn .

Observation D enables us to determine universal values for partial Lavery
integrals at the end-intervals of Lavery splines. By (20), (22), (30), and again by
(33), which implies

µ̂21 + λ̂21 = λ̂2n + µ̂
2
n =

10 −√10
9

, (37)

we find

e (f1) =
10−√10

27
|D1| ; e (fn) = 10 −√10

27
|Dn| . (38)

Substituting for m0 and mn, respectively in D1 = 6M1 − 3m0 − 3m1 and Dn =
6Mn − 3mn−1 − 3mn, yields

D1 =
3
√
10

5
(M1 −m1) , Dn =

3
√
10

5
(Mn −mn−1) , (39)

giving rise to

Observation E : (40)

A necessary, but far from sufficient, condition for a spline function f to be a Lavery
spline is that

e (f1) =
2

9
(
√
10− 1) |M1 −m1| , e (fn) = 2

9
(
√
10 − 1) |Mn −mn−1| (41)
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Examples of Non-unique Lavery Splines

In this section, we present an example in which the Lavery splines are not unique.
Consider the three points (Figures 8, 9, 10):

P0 = (x0 , y0) = (−1,−1)
P1 = (x1 , y1) = ( 0, 0)
P2 = (x2 , y2) = (+1,−1)

(42)

The associated interpolating cubic spline functions f(x) are then defined by their
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     A Non−Unique Lavery Spline 

Figure 8. One of three Lavery splines for the same interpolation problem.
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Figure 9. Second of three Lavery splines for the same interpolation problem.

slopes

m0 , m1 , m2

at these points. There are two subintervals with cubic polynomials

f1(x), f2(x) ,



pagei i

i i

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

A Non−Unique Lavery Spline 

P
0
 P

2
 

P
1
 

Figure 10. Third of three Lavery splines for the same interpolation problem.

each of them a free end. This determines the coordinates x̂1 , x̂2 at inflections:

x̂1 = −2 +
√
10

6
, x̂n = +

2 +
√
10

6
.

Note that both partial Lavery integrals are end-integrals. For an interpolating spline
function f (x) to be a Lavery spline it will be necessary by Observation E that

e (f1) =
2

9
(
√
10− 1) |1−m1| , e (f2) =

√
10 − 1
9

|−1 −m1| (43)

so that

e(f) =
2

9
(
√
10 − 1) (|1−m1| + |−1−m1|) . (44)

Clearly
−1 ≤ m1 ≤ 1 (45)

implies

|1 −m1| + |−1−m1| = |(1 −m1) + (−1 −m1)| = 2 |m1| ≤ 2, (46)

whereas either m1 < −1 or m1 > 1 would imply

|1−m1| + |−1−m1| = 2 ≥ 2 |m1| . (47)

Thus condition (45) characterizes all Lavery splines for the example.
Consider now any slope m1 from −1 through +1 . For m1 = −1 , we

have by (30) and in view of M1 = 1 :

m0 =
+15 − 2√10

5
, m2 = −1 .

Symmetrically, we find for m1 = +1 that

m0 = +1 , m2 =
−15 + 2√10

5
.
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These slopes, respectively, determine the two extreme Lavery splines, because each
partial function is at a free end, and is optimized according to Observation D (36)
in the previous section. The two resulting Lavery splines are extreme in that each
has a straight line segment as a partial function.

Using Hermite’s formula (6) and substituting for x , we find for the choice
m1 = −1 ,

f1(x) = −2
√
10

5
x3 − 10 + 2

√
10

5
x2 − x

f2(x) = −x .
For m1 = +1 , the resulting Lavery spline is the symmetric image of the previous
one:

f1(x) = +x

f2(x) =
2
√
10

5
x3 − 10 + 2

√
10

5
x2 + x .

Both splines are shown in Figures 8, 9. The self-symmetric spline from the choice
m1 = 0 is shown in Figure 10. In the latter case,

m0 =
10−√10

5
= −m2 ,

and

f1(x) = −
√
10

5
x3 − 5 +

√
10

5
x2

f2(x) = +

√
10

5
x3 − 5 +

√
10

5
x2 .

This Lavery spline is the mean of the two splines with linear free ends. This is an
instance of observation B about positive linear combinations of Lavery splines in
Section 2.3.

2.4 Computing Univariate Lavery Splines

We now turn our attention to the computation of Lavery splines. The commonly
used approach (see Lavery [4, 5]) is to minimize the Lavery integral in discretized
form, say,

xn

x0

|f”(x)|dx =
i

∆i
ki

ki

k=1

|f”(xi−1 + k − 1
ki

∆i)| , (48)

where the integrand is sampled in each subinterval [xi−1, xi] at ki equidistant
points. Now

xi−1 +
k − 1
ki

∆i =
(ki − k + 1)xi−1 + (k − 1)xi

ki
= λi,kxi−1 + µi,kxi λi,k + µi,k = 1 .
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Thus

xn

x0

f”(x)dx =
i

∆i
ki

ki

k−1
|λi,kUi + µi,kVi|

=
i

∆i
ki

ki

k−1
|λi,k(3Mi − 2mi−1 −mi) + µi,k(3Mi −mi−1 − 2mi)| .

The Lavery integral is discretized as a sum of absolute values of the variables mi

of the minimization. Minimizing such an expression is a well-known Linear Pro-
gramming problem. Many satisfactory methods for solving it are available, such
as the Simplex Method or Interior Point Methods. The accuracy of the discretiza-
tion increases with the number of sample points, but computational effort increases
accordingly.

For that reason, and also to motivate an analogous approach in the bivariate
case, we are proposing to minimize a different approximation to the Lavery integral,
one that takes advantage of the ease of computation offered by energy minimization.

By the mean value theorem of integral calculus, there exist arguments ui
such that

xi

xi−1
fi”(x)

2dx = ∆i(fi”(ui)
2 , i = 1, , , , , n .

we then propose to approximate the Lavery integral by the following Riemann sum:

xn

x0

|f”(x)|dx ≈
i

∆i|fi”(ui)| . (49)

In contrast to the approximation (48) by discretization, this approximation does
not offer the option of further refinement, unless the interpolation problem itself is
changed by adding additional knots and ordinates. In a sense, it approximates the
Lavery paradigm itself rather than the Lavery integral. We still use, however, the
term ”approximate Lavery integral” for our proposed approximation (49).

An Iterative Algorithm for Approximate Lavery Splines

For the purpose of computation, we rewrite the non-zero terms in (49)

∆i fi”(ui)2 = ∆i
∆ifi”(ui)

2

∆ifi”(ui)2
=

√
∆i

xi
xi−1

f”i(x)2dx

xi

xi−1
f”i(x)

2dx .(50)

This expression suggests an iterative approach. Starting with the classic spline
f (0)(x) , a sequence of interpolating spline functions is generated in hopes to con-
verge towards the approximate Lavery integral (49),

f (0)(x) , f (1)(x) , ..., f (l)(x) , ...
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with associated partial Holladay integrals

Ef
(l)
i =

xi

xi−1
f
(l)
i ”(x)

2

dx , i = 1, ..., n .

At each step l = 0, 1, 2, ... , weights

w
(l)
i =

∆i

E(f
(l)
i )

, i = 1, ..., n , (51)

are introduced. Given the function f (l) , the subsequent function f (l+1) is deter-
mined as the solution to the following minimization problem:

min
i

w
(l)
i

xi

xi−1
f
(l+1)
i ”(x)

2

dx .

This approach raises the question what to do if E(f
(l)
i ) = 0 ?

Simply ignoring such terms may prematurely lock in straight line segments
between knots. What first comes to mind is to specify a limit > 0 and boost

lower values of E(f
(l)
i ) to this level. A more diligent procedure might be to start

with all weights at value 1 , — the weight setting that yields the initial classical
spline according to Holliday’s observation —, and then progressively increase the use
of the weights given by (51). Such strategies remain to be explored.

In general, adding up partial Holliday integrals, each with weight, say, wi
leads again to an expression of the energy of a physical structure: a collection of
thin beams of different thicknesses given by wi , respectively, and welded together
at knots. Minimizing this energy expression requires an adjustment to the linear
system (15).

The weighted energy of the partial spline functions fi(x) is just the product
of the straight Holliday integral and the respective weight:

EW (fi) = wiE(fi) .

The total weighted energy is thus given by

EW (f) =
i

Ew(fi) =
i

wiE(fi) .

This means that in the expression (14) for E(fi) , the factor
4
∆i

is affected as it
is multiplied by wi . In other words, 1the substitution,

1

∆i
→ wi

∆i
,

transforms the linear system (15) for minimizing E(f ) into the linear system for
minimizing EW (f ) :

2w1
∆1

m0 +
w1
∆1
m1 =

3w1
∆1

M1
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w1
∆1
m0 +

2w1
∆1

+
2w2
∆2

m1 +
w2
∆2
m2 =

3w1
∆1

M1 +
3w2
∆2

M2

w2
∆2
m1 +

2w2
∆2

+
2w3
∆3

m2 +
w3
∆3
m3 =

3w2
∆2

M2 +
3w3
∆3

M3

· · · = · · · (52)

wn
∆n
mn−1 +

2wn
∆n

mn =
3wn
∆n

Mn

Note that the weighted classic splines are, in general, not twice differentiable at the
knots. However, due to the fact that the first and the last equations have common
factors wo , wn , respectively, they are equivalent to the corresponding equations
in the Holladay system (15): free ends thus have zero second derivatives in the
weighted case, too. Again, this is to be expected from Physics.

Note also that some commonly used methods for determining classic splines
such as B-splines or linear systems formulated in terms of second derivatives at
knots do not carry over to the weighted case. However, the above linear system is
still ”banded”, and many excellent methods are known for its solution. To solve
this system we used the venerable Gauss-Seidel method, not just for ease of pro-
gramming, but also because it seems to work for bivariate weighted splines. Its
advantage lies in the fact that the matrix of the linear system need not be changed
and can be read, so to speak, in sequence. This is important for the very large
systems likely to arise in the bivariate case. In the univariate case, the convergence
behavior is well understood (See Varga [8]). Using an iterative method for solving
the class of linear systems above will result in a two-tiered iteration procedure: an
”outer” iteration, developing new sets of weights, and an ”inner” iteration, solving
the resulting linear system. Such procedures can be ”balanced”, that is, the inner
iteration may be terminated at a lower accuracy level during the early stages of
the outer iteration and may be carried to a higher level of accuracy as the outer
method approaches convergence. This is an added advantage of an iterative method
for solving the linear systems at hand.

Note finally, that the approximate Lavery method proposed here will defi-
nitely not converge to the optimal Lavery integral. This is because the approximate
solutions are based on weighted classic splines, and therefore have vanishing second
derivatives at the free ends. The second derivatives of Lavery splines, on the other
hand, assume their inflections in interiors of the end interval (See Observation D
(36)).

Observation F : (53)

Unless a free end function of an approximate Lavery spline is linear, it disagrees
with the corresponding end function of the true Lavery spline in that the latter has
an inflection in the interior of at least one end interval, whereas the former assumes
its inflection at the end knot.

The justification for introducing the approximate Lavery splines concept lies
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in its computational ease and the fact that it appears to retain the anti-oscillatory
dynamic of the original Lavery concept. In fact, the examples in Figures 3 and 4
were calculated using the approximate algorithm outlined in this section.

3 Conclusions
In this paper we have investigated some properties of non-oscillatory splines intro-
duced by John Lavery [4, 5]. These splines, called in this paper Lavery splines,
minimize what we have termed the Lavery integral (4). We have seen that the
minimizing spline for (4)does indeed model sharp edges and jumps in data with-
out introducing the ”Gibbs phenomenon” at the corners. We have shown that the
Lavery integral and the associated Lavery splines satisfy a number of properties.
First, we have shown that the Lavery integral of a cubic spline function is the ab-
solute value of an alternating sum of inflection slopes and of the end slopes. Next,
we showed that any positive linear combination of Lavery splines for the same in-
terpolation problem is again a Lavery spline for the same problem. Furthermore,
two Lavery splines for the same optimization problem share essentially the same
inflection points and that the free ends of Lavery splines are either linear functions
or they contain an inflection point in the interval of definition.

Two algorithms for estimating Lavery splines have also been considered. The
first algorithm introduced by John Lavery [4, 5] reduces to solving a least absolute
value minimization problem for which he used an interior point method for linear
programming to obtain the minimum spline coefficients. The absolute value min-
imization was based on a ”discretization” which leads to a very large number of
variables as sufficiently smaller discretizations were considered. The extension of
this method to bivariate Lavery splines also led to computationally intensive com-
pute times even for moderate data sizes. The authors have introduced a modified
approach based on an iterated weighted least squares algorithm. Although the min-
imizing spline this algorithm produces is not a Lavery spline it is an approximation
that also produces sharp edges without the ”Gibbs phenomenon.”
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