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Debye Fluid State Equation

V. Arp,! Y. H. Huang,>™* R. Radebaugh,® and G. B. Chen’

A new form of a fluid state equation, based on a conceptual extrapolation
from the Debye equation for the specific heat of solid materials is described.
The Debye characteristic temperature, ®, which is nominally a constant for
solids, becomes a function of the fluid density p. Further assuming @ =
c1p¥3(1+c2p+c3p%+--) yields the conventional fluid virial equation in the
high-T and low-p limits for a monatomic fluid. Additional terms must be
added to describe (a) the compressibility of the dense subcooled fiuid and
(b) properties in the near-critical range. Discussion of the Gruneisen param-
eter and other factors is included. This Debye fluid theory was used as a
state equation for 3He, continuous from 0.005K to above room temperature.
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1. INTRODUCTION

Fluid state equations have been developed as an accurate science through
a variety of publications, exemplified, for example, by NIST’s REF-
PROP computer code [1]. However, the wide range of 3He thermody-
namic data posses a unique problem, illustrated by the experimental
isochoric specific heat data in Fig. 1. This figure neglects the 3He
superfluid range below 0.0026 K, but does display significant and continuous
fluid properties above 0.005 K. For almost all other fluids, the lower limit
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Fig. 1. Experimental isochoric specific heat of 3He.

of the fluid state equation is roughly 1/4 to 1/27, limited by the forma-
tion of a solid at lower temperatures. For “He, the lower limit of the con-
ventional state equation is again about 1/27, limited in this case by the
transition to the unique superfluid state at lower temperatures. Dominant
Tc/T terms in the generally accepted Helmholtz potential for fluids can-
not be constrained to fit the 3He data below about 2K according to our
limited test.

Our recent publication of a state equation for 3He valid from 0.005 to
20K (and probably to above 300K, although 3He data are not available
to confirm this) [2,3] utilized a new Debye fluid state term in place of the
more conventional equations. That paper focused on a combination of this
Debye term with other terms describing nuclear spin alignment, the high-
density fluid, and the near-critical behavior to obtain a reasonably satisfac-
tory state equation. In this paper, we give a more comprehensive study of
the fluid Debye equation itself, including tests and potential applications

for other fluids,

2. CONCEPTUAL DEVELOPMENT

The Debye theory originated in the earliest days of quantum mechan-
ics [4], with the study of vibrational motions within an atomic lattice,
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It leads to relationships between energy and momentum of phonons in the
low-frequency limit. These same excitational relationships have also been
utilized in some studies of dynamics of atoms or molecules of a fluid, e.g.,
in neutron spectroscopy studies of liquid helium [5].

In the Debye theory, the specific heat at constant volume, c,, is given
by an integration over allowed excitation frequencies:

1/t ,4.x
3 x*e*dx

— —_ 1
Cy 9Rm§' /(; ("—1)2 ()

where Rp, is the molar gas constant, { = 1/xp, and xp is the Debye
frequency, which is commonly defined as ©/7. The parameter ® is
often spoken of as the “Debye characteristic temperature” or just “Debye
theta.” ®© is found to be approximately constant for many solids, e.g., 88 K
for Pb, 315K for Cu, and 1180K for diamond [6]. A constant density is
implicitly assumed.

In this work, it is convenient to use mathematical integrals of Eq. (1)
related to entropy and Helmholtz energy. We define

H2(§)=Cv/§' (2a)
¢

Hi(0)= /0 Hy0dt o Hy=d(H,(¢))/de (2b)
‘4

Ho(¢) = fo Hi(0)de or Hy=d(Ho())/de (20)

Hyo=¢H) — H. (2d)

Equations (2a)-(2d) cannot be evaluated in closed form; thus, table look-
ups and interpolation must be used for numerical calculations.

3. DEBYE FLUID STATE EQUATION

Our basic assumption (or approximation) is that ® is a unique func-
tion of only the density, ®@(p), for a given fluid. It is convenient to use the
notation:

®'=de/dp and ©"=d%0/dy. (3)
We define the Debye fluid state equation from the Helmholtz potential,

A(p, T)=—OHy(¢). (4a)
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It follows from standard thermodynamics that

Entropys = Hj(¢) (4b)
Specific heatc, = CHy(?) (4c)
Pressure p = p?H;@’ (4d)
©®p/0T), = p*¢ Hy(£)©//© (4e)

(Op/9p)1 = pl2H10~ p(§Hy (£)(€')%/© — Hy98")]. ()

All other commonly defined fluid state properties can be derived from

Eqgs. (4a)—(4f).

An additional identification is important. Equations (4c) and (4e)
can be combined to obtain an equation for the Gruneisen parameter T,
defined as

T'=(8p/3T),/(pcy) = (o/ T)(3T/3p),. )
with the result
I'=(p/®)d8/dp. ©)
A further useful expression is the identity
¢p/cv=y=1+al, where a=—(T/p)(a,o/8T)p @)

Discussions related to Eq. (6) are included later in this paper. (Note that
the Gruneisen parameter is often denoted as y in the literature of solid-
state properties. For fluid properties, we prefer to reserve the symbol y for
its customary definition(s) as (1) the ratio of specific heats, and/or (2) one
of four critical-point scaling indices.)

4. FUNCTIONAL FORM OF B(p)

The functional form for B(p) is conveniently obtained by considering
the high-temperature limit. As ¢ — oo,

Hy () > 3Rm/¢ or Cy—> 3Rm
Hi(§) > 3Ry log(¢)

Hy(¢) = 3Rm(¢ log(z) - 1)
H)0($) = 3Rpe,

®
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which agrees with the law of Dulong and Petit [7]. On the other hand,
cy for the ideal gas equals nRy,, where n=3/2 for a monatomic gas and
512 for a diatomic gas. Hence, the right-hand side of Eq. (4) should be
multiplied by a factor of n/3 to make units thermodynamically consistent.
Considering the ideal-gas equation p=pR,,T and Eq. (4d) for pressure at
this limit, we get

(n/3)0*(3Rm)¢(d®/dp) = pRy T. (9a)

Canceling the same variables on both sides, replacing ¢ with 7/®, and
then integrating, we have

®@=c;pI/M), (9b)

which is valid in the limit of low density. At higher density it is reasonable
to expect the following analytical form for helium isotopes:

@:C],o(z/s)(l+Cz,0+C3,02+---). (9¢)
Equation (4d) then becomes
p:pRmT(l+(3/2)czp+constant-03p2+---). (10)

The density exponent in Eq. (9) is equal to the value of I' in the ideal-
gas (zero-density) limit. Equation (10) is a virial state equation, with the
“first virial coefficient” = (3/2)c,, a constant, in contrast to the tempera-
ture-dependent B(T) for real fluids. Note that Eq. (10) is independent of
the parameter c;.

At less than high temperatures, the Debye equations are not analytic
in the limit p— 0, and Eq. (10) is not valid. For numerical work, it is con-
venient to define the second virial coefficient in the Debye approximation,
Bp, as

Bp(T)=(3%p/8p®)7/(nRmT/3) in the limit p— 0. (11

We have investigated Eq. (11) in comparison with accurate B(T) data for
both 3He and 4He [8]. For both of these fluids, B(T) reaches a broad
maximum at about 160-180K and then slowly drops to about one-half of
the peak value at 10,000K. A practical problem is that numerical values
from Eq. (11) become very sensitive to an accumulation of miscellaneous
roundoff errors as p — 0. Nevertheless, it is possible to find values of c
and c; that give satisfactory agreement between the reference B(T) and
calculated Bp(T) up to about 80K for both 3He and “He, as shown in
Fig. 2. The optimized ¢, values for Fig. 2 differ significantly from those
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Fig. 2. Reference B(T) and calculated Bp(T) up to about 80K
for both *He and 4He,

which could be estimated from Eq. (10). The low-temperature agreement
becomes unacceptable if we try to force greater accuracy in the higher-
temperature range, from 80 to 160K. More generally we find that the
calculated Bp(T) is always positive and thus inconsistent with observed
negative values of dB/dT for helium above 180K. We further note that
dB/dT is always positive at high T for other fluids in NIST’s REF-
PROP compilation. For computer coding of state properties, it is reason-
able to switch from a Debye equation to a virial equation at low density,
e.g., when p/p; <0.02.

5. CRITICAL POINT

It is most important to realize that the Debye equations do not
reference the critical point in any way. Thus, implementation of the
Debye fluid state equation over the full (0, T) range requires additional
terms to those of Eq. (5) in order to represent fluid properties in the vicinity
of the critical point. The additional terms must be defined so as to
have negligible effects in both the low- and high-temperature limits, where
Eq. (5) hopefully will be accurate, We choose to write these critical
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terms as functions of the “distance” d from the critical point, empirically
specified in the form,

Acrit([d) = Acrit (07 = 1)? +a(z* = 1)2)05 = const-exp(—rd%)  (12)

where j, K, a, and A are adjustable parameters, 8=p/pc, and t=T/T,.
This scheme was reasonably satisfactory in our 3He state equation [2]
and in unpublished 4He studies, but we recognize that other near-criti-
cal formulations could prove better in future work. A required mathemat-
ical constraint is that both (9p/8p)r =0 and (3%p/3p%) 7 =0 at the critical
point,

6. SUPERCRITICAL DENSITIES AND LOW T

In studies of both *He [2] and “He in the compressed superfluid [9],
we find that a temperature-independent term must be added to Eq. (12),
namely,

A, T)=—(n/3)®Ho(T/®) + Acrit(d) + Anp (o) (13)

where Ayp includes a factor that goes smoothly to zero when p < pec. This
term is fitted to compressibility data in the dense cold liquid without seri-
ous disturbance of the lower density fit. We have used

Anp = (210~ +a2108(p) +a3p +a4p?) F(p). (14)

The a;p" series provides the primary compressibility data fit and F is
either a Boltzman factor, (1 — exp(—p")), or a Fermi factor, 1/(1 +
exp(n(p — pc))), with n as an adjustable parameter. In practice, the Fermi
term seems to provide a better fit to data in the transition region where

P = pe.

7. GRUNEISEN PARAMETER, I

The assumption that © is independent of temperature is equivalent to
the assumption that I'(p), defined in Eq. (6), is also independent of tem-
perature. I' in fluids has rarely been recognized or studied [10], although it
is available as an output parameter in some computer programs for fluid
properties, for example, by Arp [11].

Figure 3 shows I'(p) along selected isotherms of “He, at tempera-
tures of 100K or less, calculated from the NIST-12 standard reference
code [12,13]. Differentials of pVT data provide the most support for the
state equation in this region, Keeping in mind that p. and T, for “He
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Fig. 3. TI'(o) calculated from the NIST-12 code along selected
isotherms of “He, with temperatures of 100K or less.

are, respectively, about 5.2K and 69 kgm™3, these curves show relatively
little influence of the critical point. If we make some allowance for pos-
sible systematic error in the calculation of I'(p) from pvT data, it would
be reasonable to conclude that T (p) for He or “He is approximately inde-
pendent of temperature below about 10K (down to about 3K where the
influence of superfluidity of “He at 2K begins to be felt).

Figure 4 shows I'(p) from the same NIST reference code [12,13], with
isotherms from 80 to 300K, Supporting data for the state equation in this
region are primarily from analysis of a single set of shock compression
experiments [14] leading to densities up to eight times the critica] density.
Looking at Fig. 4 alone, it would be reasonable to conclude that I'(p) is

significantly from each other at densities above (roughly) 0.5 times the crit-
ical density. This difference could derive from incorrect high-density refer-
ence data, and/or it could reflect a substantial temperature dependence of
I'(p) in the high-temperature region, roughly from 10 to 100K.

Dugdale and Franck [15] estimate "' ~2.4 in solid helium for both
3He and “He. We have calculated I'=2.86 for superfinid “He below 0.3K
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Fig. 4. T'(p) calculated from the NIST-12 reference code, with
isotherms from 80 to 300K.

(a region dominated by phonons) [9]. I'(p) curves from the standard equa-
tions of state for nitrogen and oxygen show significantly larger pertur-
bations near their critical points than shown in Fig. 3. Overall, evidence
for a temperature-independent I'(p), and hence a temperature-independent
®(p), receives less than convincing support from available data, but it
probably is not greatly in error (except possibly near the critical point).
However, even small residual errors from this assumption certainly will
detract from the overall accuracy of Debye fluid theory.

8. DEBYE FLUID EQUATIONS FOR “He

Reference data for *He used in this paper are calculated by the NIST-
12 computer code [12,13]. In developing the *He properties code, we have
developed an alternative Debye “He code for testing various math ele-
ments. Figure 5 shows the errors in the Debye calculated sound velocity
along selected isotherms from 98 to 423 K. NIST-12 agrees with the orig-
inal reference data [16] to better than 0.05%. The Debye equation, with
just four fitted parameters in this temperature region, is seen to be in
error by 1-2%. The conclusion from this figure applies to most of these
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Fig. 5. Errors in the Debye calculated sound speed along
selected isotherms from 98 to 423 K.

Debye tests: the Debye fluid equation does not compete with standard ref-
erence equations in absolute accuracy. The virtue of the Debye equation
is its ability to fit fluid data far below the critical temperature (~ 0.0017,)
without gross loss of accuracy at high temperatures.

9. MAXIMUM ISOCHORIC SPECIFIC HEAT

The Debye theory includes a calculated upper limit for the quantum-
mechanically allowed frequencies in the Fourier terms describing atomic
motions. The maximum specific heat occurs when all allowed quantum
states are occupied, each adsorbing £772 of energy spatial dimensions; the
corresponding maximum specific heat is ¢, = 3Nk T /2, independent of tem-
perature and density. Here k is Boltzmann’s constant, and N is Avoga-
dro’s number. Larger observed specific heats are evidence of excitations
not included in the Debye mathematics, perhaps related to optical fre-
quency excitations or density fluctuations near the critical point. We point
out that this limit appears to be exceeded by some published high-density
data. Values of c,/R up to 1.525 for 3He and 1.585 for “He have been
reported by Dugdale and Franck [15], and up to 1.59 by Glassford and
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Smith [17]. In both cases their ¢, data were derived from differentiation
of p¥'T data. High-density specific-heat data in Fig. 1 seem to extrapolate
to values a few percent above this theoretical limit at temperatures above
about 15K. The shock compression data discussed above are associated
with values of ¢, that rise from 20 to 100% above this Debye limit at den-
sities of eight times critical. While it is possible that some, or all, of these
higher-than-1.5 data are not accurate, collectively they form tentative evi-
dence for high-density excitations that are inconsistent with basic Debye
theory. This subject deserves further study.

10. THEORETICAL EXTENSIONS

In studies of the properties of solids, improved fits to experimental Co
data are obtained by allowing ® to be a weak function of temperature.
We have made some preliminary trials allowing ® =®(p, T), but a clear
idea of irreducible deviations from the combination of fluid Debye the-
ory with near-critical and supercritical density additions will be necessary
before any real progress in this direction seems possible.

The math functions Hp, H;, and H, are implicitly derived from the
vibrational (or translational) motion of an isotropic atom in the three
orthogonal dimensions of space. For a diatomic molecule, as an example,
energies of rotational motions around two orthogonal axes must be added.
Thus for the diatomic molecule, the factor of 3 in all of the above equa-
tions would be replaced by a factor of 5, e.g., ¢, =5/2Ry, and '=2/5in
the limit of zero density. Similar arguments can be made for other molec-
ular geometries. With this change, the Debye theory outlined here possibly
could be extended to a variety of higher molar mass compounds, although
the accuracy of such extensions would have to be tested.

11. CONCLUSIONS

Debye fluid theory, outlined here, is a framework for equations for
fluid properties that are asymptotically in agreement with known fluid
properties at both zero temperature and ideal-gas limits. Empirical addi-
tions are required in order to fit both near-critical data and fluid com-
pressibilities and those at high densities. With few adjustable constants,
the Debye equations are inherently less accurate than standard reference
fluid equations, but they may more easily bridge gaps in available refer-
ence data. The equations have been tested against “*He data, and used in
a He state equation that is valid from 0.005K to (probably) above room
temperature.
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