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Abstract
Brillouin-light-scattering spectra previously have been shown to provide information on
acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element
methods for modeling such modes are presented here. These methods provide a theoretical
framework for determining elastic constants and dimensions of nanolines from measured
spectra in the low gigahertz range. To make the calculations feasible for future incorporation in
inversion algorithms, two approximations of the boundary conditions are employed in the
calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of
displacements along the nanoline length. The accuracy of these approximations is evaluated as
a function of wavenumber and frequency. The great advantage of finite-element methods over
other methods previously employed for nanolines is the ability to model any cross-sectional
geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl
methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or
semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar
for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes.

1. Introduction

Nanoimprint lithography is a candidate for fabricating
patterned polymers with length scales beyond the fundamental
limits of conventional photolithography. However, the
production of reliable high-quality patterns with nanoimprint
lithography faces a number of obstacles relating to the
mechanics of imprinting, cooling from the imprinting
temperature, and removal of the mold [1]. Successful
optimization of these processes requires knowledge of elastic
stiffnesses and viscosity, which are expected to deviate
significantly from bulk values as dimensions approach those
of the molecular chains (typically, tens of nanometers) [2, 3].
No experimental methods have been established for providing
quantitative information on these properties. In this report,
we formulate and evaluate finite-element (FE) methods for
modeling the vibrational modes of polymeric nanolines on
substrates and present calculations of modes in nanolines with
two different cross-sectional geometries. This work provides
a theoretical foundation for extracting elastic stiffnesses from
Brillouin-light-scattering measurements.

* This paper is a contribution of the National Institute of Standards and
Technology and is not subject to copyright in the United States.

Hartschuh et al [4] first demonstrated that vibrational
modes in polymeric nanolines can be detected in Brillouin
light scattering (BLS) and suggested that such measurements
could provide a means of determining the elastic constants.
In subsequent work [5], the form of the strain fields of
the three lowest-frequency modes of these specimens was
determined through comparison of the measured dispersion
curves with FE calculations and calculations based on the
methods of Farnell and Adler [6]. The lowest mode was
found to be similar to the lowest-order Lamb wave of a
nanoline of infinite height, having flexural displacements
primarily parallel to the substrate and perpendicular to the
long axis of the nanolines. The second and third modes
were found to be similar to the Rayleigh and lowest
Sezawa modes of an infinite film on a substrate (‘blanket’
film), which have displacements in the plane of the surface
normal and wavevector (for elastically isotropic materials)
that decrease with depth into the substrate [7]. In both
of the publications by Hartschuh et al, photolithographically
patterned, rather than imprinted, nanolines were used,
and interpretation of the data was complicated by the
presence of an antireflective coating with unknown elastic
properties.
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Inversion analysis of BLS spectra from imprinted
polymethyl methacrylate (PMMA) nanolines was pursued by
Johnson et al [8] using Farnell–Adler models, including an
approximate correction for the effect of finite nanoline height
on the flexural frequencies. The elastic constants and nanoline
dimensions determined from this analysis were found to be
physically unrealistic, presumably because of inaccuracies
arising from the approximation of a blanket film in the models
for the Rayleigh-like and Sezawa-like modes.

In neither the work of Hartschuh et al [5] nor that
of Johnson et al [8] were the employed FE or Farnell–
Adler methods described in any detail. The nonrectangular
geometry of the actual nanolines and the domain of validity
of approximations incorporated in the calculations were
not considered. The significant problem of impractical
computation times, with three-dimensional FE mesh spacings
that achieve sufficient accuracy, also was not addressed.

To place the present work in perspective, it also is useful
to note previous theoretical work on guided acoustic waves
in ridges on substrates, which was motivated by potential
application in acoustic circuit devices. Since exact calculation
of dispersion curves and displacement patterns of the modes
in such structures is intractable, various approximations have
been employed. Oliner [9] developed a method based on
microwave network theory for calculating acoustic modes
in rectangular waveguides on substrates. This method was
pursued in a number of subsequent publications, including
those of Oliner et al [10, 11], Li et al [12], and Yen and
Oliner [13]. Tu and Farnell [14] used a variational technique
with polynomial-series approximation functions to calculate
modes in rectangular waveguides on substrates.

The network theory and variational approaches have been
limited to rectangular waveguides. More complex geometries,
including trapezoidal and triangular cross sections, have been
modeled with FE methods by Burridge and Sabina [15],
Mason et al [16, 17], Lagasse et al [18–22], and others
using the approximation of a truncated substrate. These FE
studies focused on topological waveguides (surface ridges in
homogeneous material) with a principle focus on the lowest-
frequency flexural modes.

Interest in wave propagation in ridges declined rapidly
after the 1970s because of the high dispersion of flexural modes
and the difficulties of fabrication and transduction compared to
surface-acoustic-wave (SAW) devices. A review of work on
this subject through 1976 is presented by Oliner [11].

The flexibility of FE methods with respect to the cross-
sectional geometry has led to these methods being the primary
focus of the present report. However, to estimate the
range of validity of approximations in the FE calculations,
Farnell–Adler methods also are employed here, and these
are described in the following section. Section 3 describes
the basic variational approach of the FE method and, then,
considers approximations in the boundary conditions and the
convergence as a function of mesh size. The problem of great
computation time with full three-dimensional FE meshes is
addressed through the approximation of sinusoidal variation
of displacements along the length of a nanoline. In section 4,
results are presented for a nanoline with a rectangular cross
section and a nanoline with a semicircular top.

2. Farnell–Adler models

2.1. General method

Since the Farnell–Adler method for calculating elastic wave
propagation characteristics in layered materials has been well
described by Farnell and Adler [6], only a brief summary
of this method is presented here. For an anisotropic plate
or layer, the particle displacements are assumed to be linear
combinations of partial waves having the form

u j = α j exp(ikby) exp[i(kz − ωt)], (1)

where t is time, ẑ is parallel to the surface, ŷ is perpendicular
to the surface, the subscript j refers to the three Cartesian
coordinate axes, the α j are constants determining the relative
amplitudes of the components, and b is a complex quantity
determining the oscillations and decay with depth.

The three equations of motion,

ρ
∂2u j

∂ t2
= Ci jkl

∂2u j

∂xi∂xl
, (2)

must be satisfied, where ρ is density and the Ci jkl are
components of the elastic stiffness tensor. The boundary
conditions also must be satisfied. At a free surface, the three
components of traction stress must be zero. At an interface, the
particle displacements and traction stresses must be continuous
across the boundary. For a free plate, this results in six
boundary conditions, and, for a layer on an infinite substrate,
nine boundary conditions. These conditions, combined with
the equations of motion, lead to a set of simultaneous equations
that determines the normal modes. The determinant of the
matrix of coefficients can be solved numerically to determine
the eigenvalues (ω) and eigenvectors (displacements given by
the α j ) of each of the modes.

The determinant is 6 × 6 for a plate and 9 × 9 for a layer
on substrate. However, when the wave propagates along a
crystal axis, the surface-wave components are purely sagittal
(having no displacements perpendicular to the surface normal
and propagation direction), making the determinant 4 × 4 for
plates and 6 × 6 for a layer on a substrate.

2.2. Application to nanolines

Hartschuh et al [5] and Johnson et al [8] presented Farnell–
Adler calculations for Rayleigh-like and Sezawa-like modes
that neglect the finite widths of nanolines, approximating them
as blanket films with a thickness equal to the height of the
nanolines. Despite the crudeness of this approximation, the
frequencies from such calculations were found by these authors
to be fairly close to frequencies measured with BLS, at least
for the geometries considered, and the correspondence with
measurements provided insight into the general form of the
strain fields of the modes.

The reason for the relative success of the Farnell–Adler
calculations is that the dependence of strain on position over
the width of these nanolines is not great for the Rayleigh-
like and lowest-order Sezawa-like modes of nanolines. In
other words, the displacements are primarily in the vertical
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Figure 1. Schematic cross-sectional view of a nanoline on a
semi-infinite substrate, including definitions of coordinate axes and
dimensional parameters. The nanoline is assumed to be infinite in
length along ẑ.

plane defined by the substrate normal and the axis lying along
the length of the nanolines (as they are for true Rayleigh
and Sezawa modes), and this has been illustrated in FE
calculations [8]. In the present study, the approximation of a
blanket film is employed in Farnell–Adler calculations.

In contrast to this situation with Rayleigh-like and
Sezawa-like modes, the flexural modes have large transverse
components, so that the approximations employed in Farnell–
Adler calculations of these modes must be entirely different.
To predict the dispersion curves of these modes, Hartschuh
et al [5] employed the approximation of infinite nanoline
extent perpendicular to the substrate, which leads to the
dispersion curves of Lamb waves of a plate. Johnson
et al [8] introduced finite height into the flexural mode
calculations using a transverse resonance correction to the
Lamb-wave calculations. This method is employed here.
The flexural modes are approximated as Lamb waves in
plates with a thickness equal to the nanoline width (thickness
in the x̂ direction, as defined in figure 1), with the effect
of y-dependence of displacements included by adjusting
the wavenumbers in the dispersion curves according to the
transverse-wave approximation of Li et al [12]:

(k2
p − k2)

1
2 = k2

p

k2
s

(k2
p − k2

s )
1
2 cot[(k2

p − k2)
1
2 h]. (3)

In this equation, h is the height of the ridge and k, kp and ks are,
respectively, the wave numbers (2π /wavelength) of the guided
mode, the lowest Lamb plate mode, and the shear mode in the
bulk.

3. Finite-element models

3.1. Variational formulation

The starting point for the FE model is Hamilton’s principle for
the normal vibrational modes of an elastic medium:

0 = δ

∫ t

t0

dt
∫

V

[
1
2ρu̇ j u̇ j − U(Skl )

]
dV

+
∫ t

t0

dt
∫

S
Tkδuk dS, (4)

where V and S are the volume and surface occupied by and
bounding the solid, T is the specified surface traction, δ is the
variational operator, superscripts ‘.’ represent differentiation
with respect to time, subscripts j and k refer to the three
Cartesian coordinate axes, and U is the strain energy density.
This latter quantity simplifies for linear elastic solids to a
quadratic function of the infinitesimal strains Si j as

U = 1
2 Ci jkl Si j Skl . (5)

The weak form of the governing equations, as well as the
governing differential equations themselves, can be found by
applying the variational operator in equation (4) over a typical
element. Substituting equation (5) into (4) and performing
the required operations yield the final weak form, which
provides the basis for numerical approximation. It is possible
to integrate this expression by parts to give the three equations
of motion. For brevity, results of this step are not included here.

For a given nanoline geometry, approximate solutions for
the three displacement components are sought in the form of
finite linear combinations of unknown constants multiplying
predetermined approximation functions. In FE models, these
constants take the form of the nodal displacements, and the
approximation functions have the form

u(x, y, z, t) =
n∑

p=1

Up(t)�
u
p(x, y, z) (6a)

v(x, y, z, t) =
n∑

p=1

Vp(t)�
v
p(x, y, z) (6b)

w(x, y, z, t) =
n∑

p=1

Wp(t)�
w
p (x, y, z), (6c)

where the displacements u, v, and w are in the x̂ , ŷ, and ẑ
directions, respectively. The �p are typical three-dimensional
shape functions used for general solid elements. The variations
in the displacement variables are taken to be the approximation
functions applied sequentially over an element. These
functions can be chosen to have a variety of different forms
(see Zienkiewicz and Taylor [23], for example), depending on
the geometry and the order of approximation used for each
variable. In our study, eight-noded brick elements with full
integration are used for rectangular nanolines. We omit further
details of this approach.

The spatially independent functions Up(t), Vp(t), and
Wp(t) are associated with the individual subscript p and
correspond to independent shape functions, as denoted by
�u

p, �v
p, and �w

p , respectively. The superscripts on the
functions indicate that the approximation functions for each of
the variables need not be the same. Although solutions can
be determined for the general transient case, the focus in this
study is on the calculation for continuous periodic motion with
angular frequency ω. Hence, we assume

Up(t) = Up sin ωt (7a)

Vp(t) = Vp sin ωt (7b)

Wp(t) = Wp sin ωt . (7c)
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Substitution of equations (6) and (7) and collection of
terms enable the weak form from Hamilton’s principle to be
expressed in matrix form as

− ω2

[ [
M11

]
[0] [0]

[0]
[
M22

]
[0]

[0] [0]
[
M33

]
]{ {U}

{V }
{W }

}

+
[ [

K 11
] [

K 12
] [

K 13
]

[
K 21

] [
K 22

] [
K 23

]
[
K 31

] [
K 32

] [
K 33

]
]{ {U}

{V }
{W }

}

=
⎧⎨
⎩

{
F1

}
{

F2
}

{
F3

}
⎫⎬
⎭ . (8)

This expression is valid for every element in the mesh,
with the square of the frequency representing the eigenvalue.
When the element equations are assembled into the final
global matrix, the integrated tractions represented in the
right-hand-side vector will all vanish from inter-element
traction continuity, and the displacement vectors containing the
elements of U , V , and W represent the global eigenvectors
that correspond to the deformed shape of the mesh for a given
eigenvalue. In general, the procedure for solving equation (8)
implies fixing the geometry, boundary conditions, density, and
elastic constants of the object for which solutions are sought.
A standard eigensolver can then be employed to determine the
eigenvalues (ω) and corresponding eigenvectors (displacement
patterns).

3.2. Boundary conditions

Any formulation of an FE model for nanolines is confronted
with two significant obstacles associated with boundary
conditions and the size of the domain in which a solution
is sought. First, even though acoustic waves are expected
to be guided by the nanolines, the displacements of these
guided waves also are expected to have finite amplitudes in
the substrate, decreasing with depth in the same manner as
surface waves of thin films. A finite substrate can be included
in an FE calculation, but this will introduce resonant artifacts
that complicate interpretation of the results. The second size-
related obstacle arises from the fact that nanolines have cross-
sectional dimensions that are orders of magnitude smaller than
the length. In published BLS studies of nanolines [4, 5, 8],
cross-sectional dimensions were as small as 65 nm, and
lengths were ∼10 μm. The detected acoustic modes had
characteristic wavelengths on the order of 0.27–1.0 μm along
ẑ and tens of nanometers over the cross section. Even
for the lowest-frequency modes, a complete FE analysis of
such measurements requires a three-dimensional mesh with
spacings at least as small as a few nanometers over the cross
section and a few tens of nanometers along the length. With the
mesh extending over a length of 10 μm, the FE computation
time is impractical. To deal with the computational difficulty
of the problem, alternate approximate boundary conditions at
the nanoline/substrate interface and the ends of the nanolines
are considered in this section.

Figure 2. Farnell–Adler calculations of ωh/2π versus kh showing
the effect of introducing rigidity of the nanoline/substrate interface.
Solid lines: rigid interface. Dashed lines: nonrigid interface. The
Rayleigh mode is labeled R. The first, second, and third Sezawa
modes are labeled S1, S2, and S3. Higher unlabeled curves are also
Sezawa modes.

3.2.1. Nanoline/substrate interface. Since silicon is much
stiffer than polymers, one can consider approximating the
displacements of guided waves in polymeric nanolines as
zero at the interface, at least over a limited range of
wave numbers. To estimate the uncertainty introduced by
such an approximation into calculated nanoline guided-wave
frequencies for a typical polymer, Farnell–Adler calculations
were performed of Rayleigh and Sezawa modes of a blanket
film of PMMA both with and without a fixed interface. The
assumption in this analysis is that the corresponding modes
in nanolines have a similar dependence of the vibrational
amplitudes on y.

To provide input parameters for numerical modeling,
BLS measurements of bulk longitudinal and shear waves
were performed on a plate of PMMA with a thickness
of approximately 17 μm, and density measurements were
performed on a larger piece of PMMA. From these
measurements, the longitudinal and shear velocities were
determined to be 2778 and 1336 m s−1 (assuming a value of
1.493 [24] for the index of refraction) and the density was
determined to be 1187 kg m−3. These values correspond to
elastic moduli C11 = 9.161 GPa and C44 = 2.119 GPa. The
film thickness was chosen to be 140 nm, which is comparable
to the heights of nanolines studied with BLS.

Results of Farnell–Adler calculations with these parame-
ters are shown in figure 2 for the Rayleigh mode and several
Sezawa modes in the range of normalized wavenumbers kh
from 0.6 to 4.6, which spans the typical range of k in BLS
measurements with h in the range of 50–200 nm. Over the
plotted range, the Rayleigh mode (R) frequency is affected rel-
atively little by fixing the interface, the two calculations differ-
ing by less than 1.8% above kh = 1.0. For the first and third
Sezawa modes (S1 and S3), the rigid-interface approximation
has a more limited range of validity; agreement with the non-
rigid calculations is achieved within 1.8% above kh = 2.0 and
kh = 2.1, respectively. For the second Sezawa mode (S2), this
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level of agreement is achieved only above kh = 3.6. With re-
spect to application in inversion analysis of dispersion curves
measured with BLS, figure 2 shows that the interface can be
accurately approximated as rigid if the inversion is limited to
these respective ranges of kh for each curve.

The flexural modes are not included in figure 2, because
the introduction of rigidity of the interface in the Farnell–
Adler calculations for these modes is less straightforward. The
accuracy of the calculations for the lowest flexural mode is
briefly considered in section 4 when comparing Farnell–Adler
and FE results.

3.2.2. End surfaces. The surfaces at the ends of a nanoline
(perpendicular to ẑ) are traction-free. This leads to modal
displacement patterns at and near the ends that differ from
the typical character away from the ends. As the length of
the nanoline increases, these effects have less influence on the
frequencies of the modes, since the elastic and kinetic energies
away from the ends more strongly determine the frequency
and the variation along ẑ is more closely approximated as
spatially harmonic (the Fourier transform of the z dependence
is approximately a delta function).

To explore the influence of the traction-free ends, two
separate FE models were constructed. The first was fully three-
dimensional (3D), employing conventional shape functions
that can represent the displacements in a finite nanoline. In
the second model, the three displacement components were
approximated as varying with fixed harmonic dependence
in z, leading to a semi-analytic formulation in which the
z-dependence of the displacements is eliminated but the
wavenumber k along ẑ appears as an input parameter. This
model dramatically reduces computational time, but introduces
wavelength-dependent errors in the calculated dispersion
curves. It provides the full displacement pattern from an FE
calculation over a single cross-sectional plane for a given k
and, therefore, is referred to here as two-dimensional (2D).

In the 2D approximation, the shape functions assume the
form

u(x, y, z, t) =
n∑

p=1

U j(t)�
u
p(x, y) sin kz (9a)

v(x, y, z, t) =
n∑

p=1

Vj(t)�
v
p(x, y) sin kz (9b)

w(x, y, z, t) =
n∑

p=1

W j (t)�
w
p (x, y) cos kz. (9c)

The relative phases of the z-dependence of the three
displacement components are based on the facts that (1) the
components correspond to these harmonic functions in the case
of fully three-dimensional modeling, and (2) this is the required
dependence of these displacement components on z when they
are directly substituted into the three-dimensional differential
equations of motion.

The variations of the primary field variables are then taken
as

δu = �u
p(x, y) (10a)

Figure 3. Amplitudes of x-displacements of the three
lowest-frequency modes as a function of z at an upper corner of a
nanoline. The frequencies of the three modes are listed in the legend.
The nanoline length is 625 nm, d is 65 nm, and h is 140 nm.

δv = �v
p(x, y) (10b)

δw = �w
p (x, y). (10c)

The elements of the coefficient matrices in equation (8)
under the approximation of equation (9) are given in the
appendix. The corresponding matrix expressions for the 3D
model are not given here but can be found elsewhere [25].

To evaluate the accuracy of the approximation of
sinusoidal z dependence, 3D FE calculations of resonant
frequencies of finite nanolines were compared with 2D
FE calculations of dispersion curves (frequency versus
wavenumber). While k is a continuously adjustable input
parameter in the 2D formulation, it is determined entirely by
the resonant standing-wave patterns along the length in the 3D
formulation. Therefore, the 3D calculations yield only discrete
points on dispersion curves.

A representative rectangular PMMA nanoline was
considered with a width d of 65 nm and a height h of
140 nm. In order to keep computation times at a practical
level, the length was taken to be 625 nm, more than an order
of magnitude smaller than nanolines that have been studied
with BLS. The nanoline/substrate interface was fixed. In both
the 3D and 2D formulations, nanoline cross sections were
discretized into two volume elements (three grid points) in
the x̂ direction and four volume elements in the ŷ direction.
This cross-sectional mesh is a very coarse discretization of the
nanoline, and the frequencies will not match those of more
detailed representations; the goal of this analysis was only
to determine the level of accuracy of the 2D approximation
relative to the 3D calculation. Two different discretizations
along ẑ were employed: 60 elements and 120 elements.

Figure 3 shows, for the three lowest-frequency modes,
3D calculations of displacements in the x̂ direction as a
function of z at an upper corner of the nanoline with 120
mesh elements along ẑ. All of these modes are predominantly
flexural. Similar calculations with 60 elements along ẑ are
essentially indistinguishable, on the scale of figure 3, from
those shown, indicating that the number of elements in this
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Figure 4. Dispersion curve computed with the 2D model (solid line)
and discrete points computed with the 3D model for a nanoline with
a length of 625 nm, d = 65 nm, and h = 140 nm. Wave numbers for
the 3D calculation were determined by fitting the displacement
patterns (figure 3) to a sine function plus a constant, with points
within 100 nm (circles) or 50 nm (squares) of the ends excluded.

direction is sufficient to accurately represent the z-dependence.
The traction-free surfaces at z = 0 and 625 nm destroy
the otherwise approximately harmonic nature of the modal
displacement pattern over distances on the order of 100 nm
near the ends.

Figure 4 shows values of frequency versus approximate
wavenumber from the above calculation with 120 elements
along z. The values of wavenumber were obtained by least-
squares fitting of the displacement patterns of figure 3 to a
sine function plus a constant, excluding points within 100
or 50 nm of the ends of the nanoline. The solid curve was
obtained from the 2D model. With the exception of the lowest-
frequency 3D mode, the 3D and 2D calculations are in close
agreement; they differ by ∼1% for the highest mode with
points excluded within 100 nm of the ends. These results
indicate that the 2D model can provide accurate dispersion
curves of modes with wavelengths (away from the ends) that
are less than half the length of the nanoline. For the polymeric
nanolines in published experimental BLS studies, this certainly
was the case. The nanolines studied with BLS by Hartschuh
et al [5] and Johnson et al [8] were 10 μm in length, an
order of magnitude greater than the shortest wavelengths of the
measured acoustic modes and two orders of magnitude greater
than the length of the regions where end effects are seen to be
significant in figure 3.

3.3. Convergence

The analyses above indicate that the approximations of a
rigid nanoline/substrate interface and sinusoidal z dependence
introduce little error in the dispersion curves calculated with
the FE methods, at least for the modes and ranges of
wavenumbers discussed in section 3.2.1. Both of these
approximations are employed in the remainder of this report.

The accuracy of FE calculations also depends on the
selected mesh size, with the calculated frequencies converging

Figure 5. Calculated frequencies in the 2D model as a function of
the inverse of the number of mesh elements in the cross section.

to true values from above as the mesh is made finer. A
convergence study was performed to determine the level of
discretization necessary to obtain good results for at least the
lowest few modes with a typical wavenumber, 20 μm−1, in the
measurable BLS range and typical cross-sectional dimensions
of d = 65 nm and h = 140 nm. Conventional four-
noded isoparametric finite elements were used to represent the
rectangular domain of the nanoline cross section. The number
of divisions in the x̂ direction was used to quantify the level of
discretization of the mesh, with the number of elements in the
ŷ direction twice that in the x̂ direction. Four cross-sectional
discretizations were used: 2 × 4, 4 × 8, 8 × 16, 16 × 32, and
32 × 64.

The results are summarized in figure 5, with the
frequencies of the lowest five modes plotted against the inverse
of the number of elements in the x̂ direction. Hence, the mesh
is refined on moving to the left in the plot, with the intercept on
the vertical axis yielding a value closest to the exact frequency
(within the rigid-interface and 2D approximations that are
employed). The decrease in calculated frequency that results
from a refining of the mesh from 8 × 16 to 16 × 32, is 0.3%,
0.2%, 0.7%, and 0.1% for the first through fourth modes,
respectively. The fifth mode also converges rapidly but slightly
less so, with calculations for the 8 × 16 and 16 × 32 meshes
differing by 1.2%. This behavior is expected for calculations
employing Ritz-based finite-element models, with the weaker
spatial dependence of displacements of the lower modes being
easier to represent using a limited number of terms in the
approximation functions. The calculations in figure 5 indicate
that, if an accuracy for the frequencies on the order of 1% is
desired, this can be achieved for the plotted modes by using a
mesh of 8 × 16.

4. Results

In this section, FE calculations of representative displacement
patterns and dispersion curves are presented for PMMA
nanolines with two cross-sectional geometries: the rectangular
cross section discussed in the previous section and a rectangle
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fff fff

fff fff

fff fff

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

Figure 6. Calculated displacement patterns for the eight
lowest-frequency modes with k = 20 μm−1 in a rectangular nanoline
with cross-sectional dimensions of 65 nm × 140 nm. The frequencies
increase in the order of the mode labeling from (i) to (viii).

(This figure is in colour only in the electronic version)

region topped with a semicircular region. In both cases, d is
taken to be 65 nm and the total height h is taken to be 140 nm.
A mesh of 8 × 16 elements is used for the nanolines with a
rectangular cross section. For the nanolines with semicircular
tops, a 8 × 16 mesh is used for the rectangular region, and
an additional 32 elements (8 circumferential divisions and 4
radial divisions) are used to represent the semicircular region.
Since the total heights are the same for the two geometries, the
cross-sectional area with the semicircular top is 5% lower than
that with the rectangular geometry. Therefore, the semicircular
model has a corresponding reduction in mass and stiffness,
which affects the frequencies of the modes but not the general
form of the displacements, as discussed below.

4.1. Rectangular cross section

Figure 6 shows FE calculations of displacement patterns in
rectangular nanolines for modes below 12 GHz with k =
20 μm−1. The first, third, fifth, and eighth modes have a
flexural character, with displacements that are antisymmetric
with respect to the vertical midplane extending along the

Figure 7. Solid lines: FE calculations for a nanoline with a
rectangular cross section, h = 140 nm, and d = 65 nm. Dashed
lines: Farnell–Adler calculations for the same geometry with the
nanoline/substrate interface not rigid.

length (yz plane). The second, fourth, sixth, and seventh
modes have displacements that are symmetric with respect
to this midplane. For both types of modes, there is greater
vertical phase variation at higher frequencies. The second
and third modes have displacements similar to Rayleigh
and lowest Sezawa modes of a blanket film, as previously
reported [5, 8]. The higher-frequency symmetric modes have
displacements similar to higher-order Sezawa modes, but with
significant transverse (x̂) components of the displacements.
Note that these transverse components, which arise from
the dynamic Poisson effect, have a different symmetry from
flexural displacements, since they are symmetric with respect
to the vertical midplane.

Figure 7 presents frequencies calculated with the FE
model for modes below 13 GHz with wavenumbers in the
range of 10–24 μm−1. The lowest eight frequencies at
20 μm−1 correspond to the modes plotted in figure 6. Farnell–
Adler calculations of the dispersion curves (dashed lines)
also are presented in this figure. As described above, these
calculations employ the approximation of a blanket film for the
Rayleigh-like and Sezawa-like modes and employ a transverse
resonance correction to Lamb-wave frequencies for the lowest-
frequency flexural mode. Higher-order flexural modes are
not included in the Farnell–Adler calculations. The general
correspondence of the Farnell–Adler calculations with the FE
calculations up to mode S2 is consistent with the symmetries
of the displacements seen in the FE calculations of figure 6.
However, there are substantial differences in the magnitudes
of the frequencies obtained from the two models for the
Sezawa-like modes. Based on the analysis of the accuracy
of the FE model in section 3, almost all of these differences
(and those for the Rayleigh-like mode) can be attributed to
inaccuracies in the Farnell–Adler calculations. In other words,
the approximation of infinite width of the nanoline in the
Farnell–Adler calculations for the Rayleigh-like and Sezawa-
like modes leads to significant inaccuracies. On the other hand,
the close agreement of the FE and Farnell–Adler calculations

7
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Figure 8. FE calculations of frequency versus wavenumber in
nanolines with h = 140 nm and d = 65 nm. Dashed lines:
semicircular top. Solid lines: rectangular top (as in figure 7).

for the lowest flexural mode suggests that the approximations
involved in each of these approaches are quite accurate for this
mode.

4.2. Cross section with semicircular top

When polymeric nanolines are imprinted, a thin layer of the
polymer remains in the region between the nanolines. This
residual layer is removed by etching, which introduces a
rounding of the top surfaces of the nanolines. Therefore, for
practical characterization of vibrational modes of polymeric
nanolines, it is useful to include a rounded upper surface in
the model geometry.

Calculated displacement patterns (not shown) for the
nanoline with a semicircular upper surface are qualitatively
similar to those for the nanoline with a rectangular cross
section shown in figure 6. Results for the dispersion curves of
a nanoline with this geometry are shown in figure 8 along with
the results from figure 7 for the rectangular nanoline. Since
the geometry with a semicircular top has 5% less volume than
the rectangular geometry, the frequencies with the semicircular
top are shifted upwards. The specific amount of this shift for
each mode depends on the fraction of the acoustic energy that
is present near the upper corners of the nanolines. Therefore,
the relative spacings of the modes in figure 8 are affected by
rounding of the top surface. Note, in particular, that the lowest
flexural and Sezawa-like modes (the first and fourth curves
from the bottom) are affected only slightly by rounding of the
top, while the Rayleigh-like mode (second curve) is shifted
more significantly upwards.

5. Conclusions

The FE methods presented here provide a flexible basis
for modeling vibrational modes of polymeric nanolines on
substrates. The great advantage of these methods relative
to Farnell–Adler methods is that any finite cross-sectional
geometry can be easily incorporated in the model. This

capability is essential for accurate modeling of vibrational
modes in nanolines that are currently being fabricated,
since the etching step in nanoimprint lithography typically
leads to rounding of the tops and tapering of the sides of
nanolines. Even in the case of rectangular cross sections,
the approximation of a blanket film in the Farnell–Adler
calculations for the Rayleigh-like and Sezawa-like modes
is found here to introduce significant inaccuracies in the
frequencies.

To make the FE calculations more practical in terms
of computational time, the variations of displacements
along the length have been approximated as sinusoidal
with the wavenumber as an input parameter. Also, the
nanoline/substrate interface has been approximated as rigid to
simplify the analysis. These approximations have been found
to be valid for the lowest flexural, Rayleigh-like, and lowest
three Sezawa-like modes over limited ranges of wavenumbers.

Sample calculations on PMMA nanolines with rectangular
and semicircular tops have shown similar series of flexural,
Rayleigh-like, and Sezawa-like modes with differences in
relative spacings of the dispersion curves. In a separate
report [26], we will pursue the subject of inversion analysis
of BLS data on imprinted PMMA nanolines using the methods
that are presented here.
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Appendix. Elements of matrices

The elements of the coefficient matrices in equation (8) under
the approximation of equation (9) are given by

K 11
i j =

∫
V

(
C11

∂	u
i

∂x

∂	u
j

∂x
cos2 kz + C55	

u
i 	

u
j sin2 kz

+ C66
∂	u

i

∂y

∂	u
j

∂y
cos2 kz

)
dV (A.1)

K 12
i j =

∫
V

(
C12

∂	u
i

∂x

∂	v
j

∂y
+ C66

∂	u
i

∂y

∂	v
j

∂x

)
cos2 kz dV

= K 21
j i (A.2)

K 13
i j =

∫
V

(
C13

∂	u
i

∂x
	w

j k cos2 kz

− C55	
u
i

∂	w
j

∂x
k sin2 kz

)
dV = K 31

j i (A.3)

K 22
i j =

∫
V

(
C22

∂	v
i

∂y

∂	v
j

∂y
cos2 kz + C44	

v
i 	

v
j k

2 sin2 kz

+ C66
∂	ν

i

∂x

∂	ν
j

∂x
cos2 kz+

)
dV (A.4)

K 23
i j =

∫
V

(
C23

∂	v
i

∂y
	w

j k cos2 kz

− C44	
v
i

∂	w
j

∂y
k sin2 kz

)
dV = K 32

j i (A.5)
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K 33
i j =

∫
V

(
C33	

w
i 	w

j k2 cos2 kz + C44
∂	w

i

∂y

∂	w
j

∂y
sin2 kz

+ C55
∂	w

i

∂x

∂	w
j

∂x
sin2 kz

)
dV . (A.6)

M11
i j =

∫
V

ρ	u
i 	

u
j sin2 kz dV (A.7)

M22
i j =

∫
V

ρ	v
i 	

v
j sin2 kz dV (A.8)

M33
i j =

∫
V

ρ	w
i 	w

j cos2 kz dV . (A.9)
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