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ABSTRACT

This article describes the development of three-dimensional stability surfaces, or

maps, that combine the traditional dependence of allowable (chatter-free) chip

width on spindle speed with the inherent dependence on tool overhang length, due

to the corresponding changes in the system dynamics with overhang. The tool

point frequency response, which is required as input to existing stability lobe

calculations, is determined analytically using Receptance Coupling Substructure

Analysis (RCSA). In this method, a model of the tool, which includes overhang

length as a variable, is coupled to an experimental measurement of the holder/

spindle substructure through empirical connection parameters. The assembly

frequency response at the tool point can then be predicted for variations in tool

overhang length. Using the graphs developed in this study, the technique of tool

tuning, described previously in the literature, can then be carried out to select a

tool overhang length for maximized material removal rate. Experimental results

for both frequency response predictions and milling stability are presented.
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INTRODUCTION

Research in the area of milling stability has enjoyed a rich history. Taylor
recognized the process limitations imposed by chatter, as well as the complexity in
modeling its source, as early as 1906 when he stated that chatter is the ‘‘most obscure
and delicate of all problems facing the machinist’’ (Taylor, 1907). Later, work by
Arnold proposed the negative damping effect as the source of chatter, (Arnold, 1946)
while research by Tlusty and Tobias led to a fundamental understanding of
regeneration of waviness, or the overcutting of a machined surface by a vibrating
cutter, as a primary feedback mechanism for the growth of self-excited vibrations
(or chatter) due to the modulation of the instantaneous chip thickness, cutting
force variation, and subsequent tool vibration (Koenisberger and Tlusty, 1967;
Tlusty and Polocek, 1963; Tobias, 1965; Tobias and Fishwick, 1958a, 1958b).
Tlusty and Tobias also described the mode coupling effect as a second chatter
mechanism.

Efforts at modeling the process dynamics in order to select stable combinations
of chip width, or axial depth of cut in peripheral milling operations, and spindle
speed, can be loosely divided into (1) analytical; and (2) numerical techniques
(Altintas and Budak, 1995; Balachandran, 2001; Bayly et al., 2001, 2002; Budak
and Altintas, 1998; Corpus and Endres, year; Davies and Balachandran, 2000;
Fofana and Bukkapatnam, 2001; Grabec, 1988; Hanna and Tobias, 1974; Insperger
and Stépán, 2002; Jensen and Shin, 1999; Kalmar-Nagy et al., 1999; Kegg, 1965;
Merrit, 1965; Minis et al., 1990; Nayfeh et al., 1997; Pratt et al., 1999; Roa and Shin,
1999; Shridar et al., 1968; Smith and Tlusty, 1990, 1991; Stépán, 1989; Stépán and
Kalmar-Nagy, 1997; Tlusty, 1985; Tlusty et al., 1983). The most common output of
these simulations is the stability lobe diagram, (Koenisberger and Tlusty, 1967;
Merrit, 1965; Tobias, 1965), a graphical tool which identifies the boundary between
stable and unstable cutting zones in a two-dimensional map of the primary control
parameters: chip width, b, and spindle speed, �. Traditionally, spindle speed is
varied along the abscissa (horizontal axis) and chip width along the ordinate (vertical
axis). The peaks of the intersecting lobes occur approximately at spindle speeds
where the tooth passing frequency is equal to an integer fraction of the natural
frequency corresponding to the most flexible mode; these best spindle speeds can be
estimated using Eq. (1), where fn is the natural frequency in Hz, m is the number of
teeth on the cutter, j is an integer ( j¼ 1, 2, 3 . . .), and � is expressed in rev/min, or
rpm. It should also be noted that an analog to the stability lobe diagram, the peak-
to-peak or PTP diagram which identifies stability boundaries by abrupt disconti-
nuities in the predicted peak-to-peak tool vibration or cutting force values, can be
developed using time-domain numerical integration techniques (Smith and Tlusty,
1993).

� ¼
60fn

j �m
ð1Þ

AQ1
AQ2
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In general, stability lobe diagrams are developed by selecting the cutting
parameters, which include the process-dependent specific cutting energy coefficients,
radial immersion, and system dynamics (often selected as the tool point frequency
response, although the workpiece dynamics must also be considered in some
instances), then carrying out the selected simulation algorithm. In this case, the
system dynamics are considered to be fixed and a new set of stability calculations
must be completed if the system changes.

TOOL TUNING

Recent research by Davies et al. (1998), Smith et al. (1998), Tlusty et al. (1996)
has suggested that, rather than assuming fixed dynamics, the tool point frequency
response can be varied by adjusting the tool overhang length in a method referred to
as tool tuning. In this case, improved material removal rates can be obtained by
(1) shifting the natural frequency corresponding to the most flexible mode (often the
fundamental tool vibrational mode) and, therefore, the location of the peaks of the
stability lobes as shown in Eq. (1), e.g., adjusting the tool length to move a lobe peak
to the top available spindle speed; and/or (2) varying the tool length in order to
obtain an overlap between the fundamental tool natural frequency and one of the
spindle natural frequencies. This results in the dynamic absorber effect (Schmitz and
Donaldson, 2000) where the matched natural frequencies lead to a dynamically
stiffer system, similar to the result observed when adding the classic Frahm dynamic
absorber (Den Hartog, 1956) to a base structure in order to attenuate vibration at a
particular excitation frequency.

RECEPTANCE COUPLING SUBSTRUCTURE ANALYSIS

Method Description

In order to analytically determine the tool point frequency response as a
function of tool length and apply the method of tool tuning, the Receptance
Coupling Substructure Analysis (RCSA) method was developed (Schmitz, 2000;
Schmitz and Davies, 2001; Schmitz et al., 2001). In this technique, based on earlier
receptance coupling work by Bishop and Johnson (1960), Duncan (1947), and, later,
Ferreira and Ewins (1995), an experimental measurement of the holder/spindle
substructure, or component, is coupled to an analytical model of the tool through
two empirical complex stiffness vectors, which include linear and rotational stiffness
and viscous damping terms that characterize the nonrigid behavior of the connection
between the holder and tool (e.g., thermal shrink fit, collet, or elastic deformation
interference fit [http://www.schunk-usa.com/hmhs/home.html]). The primary benefit
of using receptance, rather than modal, coupling for this application is that no
restrictions are placed on the number of modes included in either the holder/spindle
experimental measurements or tool model and the holder/spindle frequency response
data can be used directly without requiring a modal fit. Since the desired output is
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the tool point frequency response, the most straightforward approach is to directly
couple component receptance terms and avoid the modal fitting step all together.

The model for the coupling between the holder/spindle and tool components

is shown in Fig. 1. There are three translational and three rotational assembly

coordinates identified, with spatial positions coincident with the coupling locations
(coordinates X2/�2 on the tool and X3/�3 on the holder/spindle component) and the

point of interest (coordinates X1/�1 at the free end of tool). The connection between

X2/�2 and X3/�3 is composed of a linear spring, kx, torsional spring, k�, linear
viscous damper, cx, and rotational viscous damper, c�. In order to determine the

assembly direct, or driving point, frequency response at the tool point,

G11(!)¼X1(!)/F1(!), which is used as input to the selected process stability
simulation, the following steps must be completed:

(a) Use impact testing to measure the holder/spindle component (i.e., no tool

inserted in holder) frequency response function (FRF), H33¼X3/F3, at the
free end in two orthogonal directions in the plane of the cut, i.e.,

perpendicular to the spindle centerline. Typically, the measurement

directions are selected to be coincident with the feed directions of the
machine tool. Here, we neglect potential contributions of the tool/holder/

spindle assembly axial frequency response to the occurrence of chatter,

although Altintas has suggested that the axial response can be considered in
a three-dimensional, or 3-D, chatter model (Altintas, 2001).

(b) Develop an analytic model of the free-free tool using the closed form

receptance terms, which capture both the rigid body and transverse
vibration behavior of the tool, developed by Bishop and Johnson (1960).

We have selected to treat the tool as an Euler-Bernoulli beam with a

constant cross-section, which requires that an effective diameter, deff, be
determined for calculation of the 2nd area moment of inertia, I ¼ �d4

eff=64.
The effective diameter is based on the tool overhang length, L, total length,

LT, tool material density, �, shank diameter, d, and tool mass, M. See Eq.
(2). Fundamentally, this equation calculates the diameter of a uniform

cross-section beam with (1) a mass equal to the difference between the total

tool mass and the mass of the tool shank inside the holder; and (2) a length
equal to the overhang length of the tool, given the tool material density.

deff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M � ��d2ðLT � LÞ

��L

s
ð2Þ

F1

Figure 1. RCSA holder/spindle/tool model including connection parameters.
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We have also added structural, or hysteretic, damping to the tool model
by replacing Young’s elastic modulus, E, for the tool material with
the complex modulus, E0 ¼ (1þ i�)E, where � is the structural damping
factor, a small dimensionless constant. This modifies the frequency-
dependent term � ¼ ð!2m=EIÞ1=4 from Bishop and Johnson (1960) to be
�0 ¼ ð!2m=½ð1þ i�ÞEI �Þ1=4 ¼ �=ð1þ i�Þ1=4 � �ð1� i ð�=4ÞÞ. To simplify
notation, we drop the primes from E0 and �0 in the expressions shown in
Eq. (3), which define the required free-free tool component receptance terms.
In these expressions, different designations have been applied to the four
receptance types found in our model, specifically, Hij¼ xi/fj, Lij¼ xi/mj,
Nij¼ �i/fj, and Pij¼ �i/mj.

x1

f1
ð!Þ ¼ H11 ¼

�ðcosL� � sinhL�� sinL� � coshL�Þ

�3EIðcosL� � coshL�� 1Þ
x2

f2
ð!Þ ¼ H22 ¼ H11 ð3Þ

x2

m2
ð!Þ ¼ L22 ¼

sinL� � sinhL�

�2EIðcosL� � coshL�� 1Þ

�2
f2
ð!Þ ¼ N22 ¼ L22

�2
m2

ð!Þ ¼ P22 ¼
cosL� � sinhL�þ sinL� � coshL�

�EIðcosL� � coshL�� 1Þ

x1

f2
ð!Þ ¼ H12 ¼

sinL�� sinhL�

�3EIðcosL� � coshL�� 1Þ

x2

f1
ð!Þ ¼ H21 ¼ H12

x1

m2
ð!Þ ¼ L12 ¼

cosL�� coshL�

�2EIðcosL� � coshL�� 1Þ

�2
f1
ð!Þ ¼ N21 ¼ L12

(c) Measure the tool point response for the assembly in one direction at a known
overhang. This data allows the determination of the connection parameters,
kx, k�, cx, and c�, by nonlinear least squares best fit. Clearly, an a priori
determination of these values without the requirement of an experimental
measurement and fit is the preferred solution and will be the subject of future
investigations. However, the empirical determination of these parameters
still allows the model shown in Fig. 1 to be developed and analytic prediction
of FRFs to be completed for variation in tool overhang length. In this work,
once a set of connection parameters {kx, k�, cx, and c�} was determined from
the fit to a single tool point measurement, the same values were used for all
subsequent predictions. This use of constant connection parameters is
shown to be sufficient for the range of tool lengths shown here.

Mathematical Derivation

If harmonic external excitations of force F(t)¼Fei!t and/or moment
M(t)¼Mei!t are applied to the assembly shown in Fig. 1, the resulting displacements
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and rotations can be written as X(t)¼Xei!t and �(t)¼�ei!t, respectively. In order to
determine an analytical expression for the tool point frequency response G11(!), we
apply the harmonic force F1(t) to coordinate X1 of the assembly. The resulting
forces/moments and displacements/rotations for the individual components,
represented in Fig. 2, can then be expressed as shown in Eq. (4). The equilibrium
conditions for this loading condition are shown in Eq. (5); the compatibility
conditions are provided in Eq. (6). The latter conditions serve two purposes: (1) they
define the relationship between the two component displacements/rotations and
forces/moments; and (2) they specify that the component coordinates are at the same
spatial locations as the assembly coordinates.

x1 ¼ H11f1 þH12f2 þ L12m2

�1 ¼ N11f1 þN12f2 þ P12m2

x2 ¼ H21f1 þH22f2 þ L22m2 ð4Þ

�2 ¼ N21f1 þN22f2 þ P22m2

x3 ¼ H33f3 þ L33m3

�3 ¼ N33f3 þ P33m3

f1 ¼ F1

f2 þ f3 ¼ 0 ð5Þ

m2 þm3 ¼ 0

kxðx3 � x2Þ þ cxð _xx3 � _xx2Þ ¼ f2 ¼ �f3

k�ð�3 � �2Þ þ c�ð _��3 � _��2Þ ¼ m2 ¼ �m3 ð6Þ

x1 ¼ X1, x2 ¼ X2, x3 ¼ X3

�1 ¼ �1, �2 ¼ �2, �3 ¼ �3

Because we have assumed harmonic motion (due to harmonic excitation), the
time derivative terms in Eq. (6) can be rewritten in the form _xxðtÞ ¼ i!Xei!t and
_��ðtÞ ¼ i!�ei!t. Substitution in Eq. (6) yields Eq. (7). To simplify notation, we now
define the complex, frequency dependent stiffness terms Kx¼ kxþ i!cx and
K�¼ k�þ i!c�.

kxðx3 � x2Þ þ cxð _xx3 � _xx2Þ ¼ ðkx þ i!cxÞðx3 � x2Þ ¼ Kxðx3 � x2Þ ¼ f2 ¼ �f3

k�ð�3 � �2Þ þ c�ð _��3 � _��2Þ ¼ ðk� þ i!c�Þð�3 � �2Þ ¼ K�ð�3 � �2Þ ¼ m2 ¼ �m3

ð7Þ

F2

Figure 2. Component forces and moments due to force F1(t).
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To determine G11(!), we first substitute the component displacements and
rotations defined in Eq. (4) into Eq. (7). This result is shown in Eq. (8). In Eq. (9),
this equation has been expressed in matrix form.

KxðH33 þH22Þf3 þ KxðL33 þ L22Þm3 � KxH21f1 ¼ �f3

K�ðN33 þN22Þf3 þ K�ðP33 þ P22Þm3 � K�N21f1 ¼ �m3

ð8Þ

KxðH33 þH22Þ þ 1 KxðL33 þ L22Þ

K�ðN33 þN22Þ K�ðP33 þ P22Þ þ 1

� �
f3

m3

� �
¼ A½ �

f3

m3

� �

¼
KxH21

K�N21

� �
f1

f1

� �
ð9Þ

We can now make the substitution f1¼F1 from the equilibrium conditions
and solve Eq. (9) for { f3m3}

T as shown in Eq. (10).

f3
m3

� �
¼ A½ �

�1 KxH21

K�N21

� �
F1

F1

� �
ð10Þ

The relationships between the tool component displacement and rotation at
coordinate 1, x1, and �1, and the component forces, f1 and f2, and moment, m2, were
expressed in Eq. (4). These can be rewritten in matrix form as shown in Eq. (11).
Substitution of x1¼X1, �1¼�1, f1¼F1, f2¼�f3, m2¼�m3, and the result from
Eq. (10) in Eq. (11) yields Eq. (12).

x1
�1

� �
¼

H11

N11

� �
f1
f1

� �
þ

H12 L12

N12 P12

� �
f2
m2

� �
ð11Þ

X1

�1

� �
¼

H11

N11

� �
F1

F1

� �
�

H12 L12

N12 P12

� �
A½ �

�1 KxH21

K�N21

� �
F1

F1

� �
ð12Þ

where

A½ �
�1

¼
1

detA

K�ðP33 þ P22Þ þ 1 �KxðL33 þ L22Þ

�K�ðN33 þN22Þ KxðH33 þH22Þ þ 1

� �

and

detA ¼ ðKxðH33 þH22Þ þ 1ÞðK�ðP33 þ P22Þ þ 1Þ � KxðL33 þ L22ÞK�ðN33 þN22Þ

The desired assembly receptance term G11(!) can now be determined from the
top row in Eq. (12). This result is shown in Eq. (13). The receptance G41(!)¼�1/F1 is
also available from the second row of Eq. (12). Although we are only interested in
determining the assembly direct displacement to force frequency response at the tool
point, the full receptance matrix (shown in Eq. (14)) can be populated using this
method.

G11ð!Þ ¼
X1

F1

¼ H11 �
H12

detA
KxH21ðK�ðP33 þ P22Þ þ 1Þ � K�N21KxðL33 þ L22Þ½ � ð13Þ

Tool Length-Dependent Stability Surfaces 7
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�
L12

detA
K�N21ðKxðH33 þH22Þ þ 1Þ � KxH21K�ðN33 þN22Þ½ �

X1

X2

X3

�1

�2

�3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

G11 G12 G13 G14 G15 G16

G21 G22 G23 G24 G25 G26

G31 G32 G33 G34 G35 G36

G41 G42 G43 G44 G45 G46

G51 G52 G53 G54 G55 G56

G61 G62 G63 G64 G65 G66

2
6666664

3
7777775

F1

F2

F3

M1

M2

M3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð14Þ

Equation 13 expresses the tool point frequency response as a function of the tool
analytic receptances identified in Eq. (3), the measured holder/spindle direct
FRFaH33, and the complex stiffnesses Kx and K�, all of which can be obtained by
following the three steps (a), (b), and (c) described in the ‘‘Method Description’’
section. However, this equation also contains the holder/spindle component
receptances L33¼ x3/m3, N33¼ �3/f3, and P33¼ �3/m3. Although it would be possible
to use a pair of linear transducers (e.g., accelerometers) located a known distance
apart to measure the rotation at the free end of the holder/spindle due to an impact
force and obtain N33, the remaining two terms are more problematic due to the
physical difficulty in applying an impulsive moment to the structure without adding
complexity to the measurement process; note that a primary goal of the RCSA
method is to minimize the number of measurements required to construct the
assembly model. Of course, if symmetry of the holder/spindle component receptance
matrix is assumed, L33 could be set equal to the N33 result. However, P33 must still be
obtained by yet another measurement.

In this work, we have assumed that L33, N33, and P33 are equal to zero in the
absence of reliable measurement techniques. Although this may appear to be an
unrealistic assumption, it can be shown that these terms play a small role in the
prediction of G11 for typical tool/holder/spindle assemblies, where the holder/spindle
frequency response has significantly higher dynamic stiffness than the tool response
(Schmitz and Burns, 2003). This assertion is supported by the good agreement
between the measured and predicted tool point FRFs shown in the ‘‘FRF Variation
with Overhang Changes’’ section.

3-D STABILITY SURFACE DEVELOPMENT

In this section, we describe the development of tool overhang length-dependent
stability surfaces that include the traditional two-dimensional map of spindle speed
vs. limiting chip width, as well as a third axis for variations in tool overhang length.
RCSA was applied to a given tool/holder/spindle system in order to develop the

aBecause there is some portion of the tool mass inside the holder, we actually perform

receptance coupling twice. First, the tool mass inside the holder is coupled to the holder/

spindle FRF assuming a rigid connection. Then, the modified holder/spindle result is coupled

to the analytic tool model using the empirical complex stiffness values.

8 Schmitz et al.
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model shown in Fig. 1. Using this model, the tool length was varied and the
corresponding changes in the tool point FRF predicted. This data was then used as
input to the stability analysis reported by Altintas and Budak (1995).

FRF Variation with Overhang Changes

A tool/holder/spindle model was constructed using a two flute helical endmill,
collet-type tool/holder connection, HSK-63A holder/spindle interface, and
20,000 rpm spindle. The carbide endmill was 152.4mm long with a 12.7mm
diameter shank and had a mass of 246.8 g. The flute length was 16mm, the shank
length was 65mm, and the neck was relieved to a diameter of 11.1mm. An allowable
overhang range of 112.5mm (8.9:1 length to diameter, or L:D, ratio) to 124.0mm
(9.8:1) was selected. The carbide density and modulus were taken to be 14.5� 103 kg/
m3 and 5.853� 1011N/m2, respectively (Trent and Wright, 2000). In all measure-
ments, the collet torque was set to the manufacturer-recommended value of 61N-m
(45 ft-lbf) using a torque wrench.

Following the algorithm described in the ‘‘Method description’’ section, the
holder was placed in the spindle and the direct FRF at the holder free end was
recorded using impact testing in the vertical ( y) and horizontal (x) directions for the
horizontal spindle axis (z) machine configuration. The x and y-direction results
are shown in Fig. 3; the reader may note the asymmetry between the two directions.
For the measurement bandwidth of 1600Hz (1Hz frequency resolution), three
x-direction modes are identified here: 532, 675, and 800Hz. Two modes at 550 and
725Hz are identified in the y-direction. For all FRF measurements completed in this
study, the instrumented hammer and low-mass accelerometer calibration constants
(i.e., sensitivities) were 806N/V and 1033m/s2/V, respectively. The excitation
bandwidth for the hammer was approximately 3 kHz and good coherence was
observed for all measurements.

Next, the tool receptances were calculated for a mid-range overhang length of
118.5mm using Eqs. (2) and (3). A structural damping factor of 0.001 was assumed
for the complex modulus calculation due to the difficulty in completing free-free
boundary condition FRF measurements on endmills. Finally, an x-direction tool
point FRF was recorded for the tool/holder/spindle assembly and fit using Eq. (13)
to determine the connection parameters and complete the RCSA model. The
nonlinear least squares fit connection parameters are provided in Table 1.

Predicted results using the fit parameters in Table 1 are shown in Figs. 4
(x-direction) and 5 ( y-direction). The overhang lengths are the minimum and
maximum values, 112.5 and 124.0mm, respectively, and a near mid-range value of
121.0mm. For the full range of measurements, good agreement is observed between
the measured and predicted data in both the x and y-directions.

Several observations can be made from these measurements. First, for the
112.5mm overhang length (first column in Figs. 4 and 5), both the x and y-direction
results exhibit two clear modes. For the x-direction measurement in Fig. 4, a more
flexible mode is seen at 750Hz and a stiffer mode at 817Hz. This is due to
interaction between the holder/spindle mode at 800Hz and the clamped
tool fundamental mode at 781.5Hz. This dynamic absorber effect causes the

F3
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Figure 3. (a) Holder/spindle x-direction frequency response and (b) Holder/spindle

y-direction frequency response.

Table 1. Nonlinear least squares fit connection parameters.

kx (N/m) k� (N-m/rad) cx (N-s/m) c� (N-m-s/rad)

6.8� 107 2.7� 106 3,816 406
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holder/spindle mode to be pushed to a higher natural frequency of 817Hz and moves
the tool mode down in frequency to 750Hz. In the Fig. 5 y-direction measurement,
a stiffer mode is observed to the left and a more flexible mode to the right. In this
case, the holder/spindle mode is located at 725Hz (below the clamped tool natural

Figure 5. Assembley tool point FRF measurements and predictions for y-direction.

Figure 4. Assembley tool point FRF measurements and predictions for x-direction.
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frequency), so it is shifted down to 702Hz, while the tool mode is up-shifted to

809Hz. Figure 6 shows a comparison of the same tool connected to ground (i.e., a

rigid spindle) using the connection coefficients from Table 1, the tool rigidly

connected to ground (i.e., infinite connection stiffness, no damping), and the

experimental results from Figs. 4 and 5 (only the real parts of the FRFs are shown).

A logarithmic scale in the y-axis was required to effectively capture the dramatic

differences in amplitude. The cantilever response obtained from the rigid connection

to ground yields the most flexible result with the highest natural frequency. When the

connection stiffness and damping terms from Table 1 are used to connect the tool to

ground, the natural frequency is lowered and the amplitude is decreased. However, a

dynamically stiffer assembly is produced when connecting the tool to the flexible

spindle due to the interaction between the tool and holder/spindle modes. These

results support the conclusions of Smith et al. (1999), where the authors showed

experimentally that increasing the drawbar force in high-speed spindles can reduce

the system stability because, although the holder/spindle interface stiffness increases,

the damping may decrease at a higher rate.
For the 121.0mm overhang length (second column in Figs. 4 and 5), it is seen

that the y-direction result is more flexible than the x-direction. In this case, the tool

clamped mode falls directly between the y-direction holder/spindle modes at 550 and

725Hz, so very little interaction occurs. In fact, it is clearly seen that the two modes

bracket the more flexible tool mode in Fig. 5. For the x-direction result, however,

there is an interaction between the tool mode and the 675Hz holder/spindle mode.

Similar results are observed for the 124.0mm overhang tool, except the tool mode

has now been shifted slightly to the left.

F6

Figure 6. Comparision between cantilever tool, tool connected to ground using empirical

connection parameters, and experimental results for 112.5mm overhang length.
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A comparison between the experimental and predicted results is provided in
Fig. 7. Here, the maximum value of the FRF magnitude within the frequency range
of interest has been plotted as a function of overhang length. The predicted results
are shown as a solid line and the measurement results are identified by asterisks.

F7

Figure 7. Maximum magnitude comparision for RCSA predictions (solid line) and

measurements (asterisks). The top figure gives the x-direction results; the y-direction results

are shown in the bottom figure.
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Good agreement is observed, although the model under-predicts the amplitude for
the higher overhang values in the y-direction.

Rather than plotting single overhang length FRF results, it is also possible to
develop 3-D FRF graphs using the RCSA tool/holder/spindle model. Results for
variation in overhang length from 112.5 to 124.0mm in 0.1mm increments for the
y-direction predictions are shown in Fig. 8, which displays the real part of the
multiple predicted FRFs. This figure shows the strong interaction between the tool
mode and spindle mode at the minimum overhang length and large decrease in
dynamic stiffness for the maximum overhang length.

Stability Analysis

We have applied the stability analysis developed by Altintas and Budak (1995).
This method transforms the time-dependent dynamic milling equations into a time
invariant, but radial immersion-dependent system. The time varying coefficients of
the dynamic milling equations, which depend on the angular orientation of the cutter
as it rotates through the cut, are expanded into a Fourier series and then truncated to
include only the average component. The analytic stability equations provided in
reference (Altintas and Budak, 1995) have been slightly rearranged here to recast the
eigenvalue problem into the form expected by MATLAB, the computing language
used in this study. The eig.m MATLAB function expects a problem statement in
the form det (A� �I)¼ 0, while Altintas and Budak pose the problem as det

F8

Figure 8. 3-D real part plot for 12.7mm diameter tool from RCSA predictions.
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(Iþ�A)¼ 0, where � and � are the system complex eigenvalues for the two
formulations, respectively, and A is defined in Eq. (19). The terms �xx, �xy, �yx, and
�yy, derived in reference (Altintas and Budak, 1995), depend on the selected starting
and exit angles for the cut and the radial direction specific cutting energy coefficient,
Kr. The resulting stability relationships are shown in Eqs. (20)–(22), where Gx and Gy

are the system FRFs in the x and y-directions, respectively, Kt is the tangential
direction specific cutting energy coefficient, fc is the chatter frequency (in Hz) should
it occur, N is the lobe number, and m is the number of cutter teeth.

A ¼
�xxGx �xyGy

�xyGx �yyGy

� �
ð19Þ

blim ¼
2�Reð�Þ

mKtðReð�Þ2 þ Imð�Þ2Þ
1þ

Imð�Þ

Reð�Þ

� �2
 !

ð20Þ

� ¼
2�fc
m

60

ð� þ 2�NÞ
ð21Þ

� ¼ �� 2 tan�1 Imð�Þ

Reð�Þ

� �
ð22Þ

This method provides a vector of blim (i.e., the limiting axial depth of cut) values
which corresponds to a different spindle speed vector for each N value included in
the simulation. For example, if the first five lobes are to be plotted, there will be a
different spindle speed vector for each N value, N¼ 0, 1, 2, 3, and 4. Although the
output provided from the stability analysis allows a visual examination to determine
best spindle speeds and corresponding blim values, in our case we require the
organization of the stability information included in the multiple parameterized
overlapping lobes (that make up the analytic stability lobe diagram) into a single pair
of vectors that describe the continuous relationship between spindle speed and
allowable chip width. In other words, we require a numerical representation of the
lower boundary imposed by the convolution of the individual stability lobes
(Schmitz, 2002).

The main difficulty in determining the continuous stability boundary beneath
the lobes is that, although the chatter frequencies are equally spaced, the mapping of
these frequencies to corresponding spindle speeds produces nonuniformly spaced
data. Therefore, it is not possible to simply compare the blim values on overlapping
lobes at each spindle speed to determine the minimum value. To overcome this
difficulty, the individual lobes were linearly interpolated over a preselected range of
equally spaced spindle speeds, e.g., 5000 rpm to 30,000 rpm. Each lobe covered only
a portion of the total spindle speed range, so blim was set to an arbitrarily high value
for those spindle speeds not spanned by that particular lobe. Once all lobes were
mapped onto the uniformly spaced spindle speed vector, the minimum blim value
from the set of interpolated lobes was selected at each spindle speed to give the final

AQ3
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stability boundary. In this research, we used the MATLAB interp1.m function to
carry out the linear interpolation step.

3-D Stability Surfaces

The 3-D stability surface developed for the 12.7mm diameter, two flute, carbide
endmill using the Altintas and Budak formulation is shown in Fig. 9. The workpiece
material was 6061-T6 aluminum (Kt¼ 700N/mm2 and Kr¼ 0.3) and x-direction
slotting, or 100% radial immersion, conditions were selected. It is seen that
increasing the tool length decreases the limiting axial depth; the maximum allowable
depth of cut is 0.95mm at 23,190 rpm for a 112.5mm overhang and 0.78mm at
19,310 rpm for a 124.0mm overhang. The associated MRR contour plot (a feed per
tooth of 0.1mm was selected) is shown in Fig. 10. Again, the maximum MRR tends
to decrease with increasing overhang length. However, for a top spindle speed of
20,000 rpm, the selected overhang should be near 122mm, rather than the minimum
possible overhang length for maximized MRR. This occurs because a lobe peak has
shifted to 20,000 rpm at this overhang.

To verify the utility of applying RCSA frequency response predictions to
stability lobe calculation and cutting parameter selection, an overhang length of
121.0mm (near the optimum overhang for a 20,000 rpm spindle speed from Fig. 10)
was selected in simulation and stability lobes produced using the Altintas and Budak
analysis. Slot machining tests were then carried out at 9 different spindle speeds from
10,000 rpm to 20,000 rpm (using a constant chip load of 0.1mm/tooth). Chatter was
identified by an evaluation of the cut surface as well as by monitoring the audio
cutting signal. These results are shown in Fig. 11. Good agreement is observed.

F9

F10

F11

Figure 9. Altintas and Budak formulation 3-D stability surface for 12.7mm diameter tool

(two flutes, 100% radial immersion with x-direction feed kt¼ 700N/mm2, kr¼ 0.3).
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Figure 10. Altintas and Budak formulation MRP contour plot for 12.7mm diameter tool

(two flutes, 100% radial immersion with x-direction feed, kt¼ 700Nc/mm2, kr¼ 0.3, feed per

tooth¼ 0.1mm). Gray-scale units are mm3/min.

Figure 11. Altinas and Budak formulation 2-D stability lobes and experimental data for

12.7mm diameter tool with 121.0mm overhang (two flutes, 100% radial immersion with

x-direction feed, kt¼ 700N/mm2, kr¼ 0.3).
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CONCLUSIONS

In this work, we have demonstrated 3-D stability surfaces which provide the
allowable chip width (or axial depth of cut in peripheral milling) as a function of
both spindle speed and tool overhang length. Variations in the tool point frequency
response as a function of tool overhang length were determined using Receptance
Coupling Substructure Analysis (RCSA), an analytic method that couples a model
of the tool to a measurement of the holder/spindle through empirically-determined
connection parameters. Stability diagrams using the Altintas and Budak formulation
were calculated using the RCSA predictions and a contour map was presented to
show the variation in achievable material removal rates with overhang length and
spindle speed. Milling experiments were also completed to compare stability
predictions, using the RCSA frequency response predictions as input, to actual
stability limits for the modeled system.
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