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Studies of Fingerprint Matching Using the NIST 
Verification Test Bed (VTB) 

Charles L. Wilson*, Craig I. Watson*, Michael D. Garris*, & Austin Hicklin†

Abstract 

A series of fingerprint matching studies have been conducted on an experimental laboratory 
system called the Verification Test Bed (VTB).  The VTB is a collection of commercial off the 
shelf (COTS) computer hardware, an open-source operating system, and a suite of public domain 
application software.  Results are presented that compare various sources of fingerprints, assess 
the image quality of fingerprints by analyzing the matcher scores for inked and live-scan 
impressions, and study the trade-offs of matching rolled fingerprints with plain impressions.  
Database size in these studies range from 216 to ~600,000 people.  Performance statistics are 
primarily reported for single-finger matching; however, results from two different approaches to 
two-finger fusion matching are also presented.  At a false accept rate (FAR) of 1%, the best two-
finger true accept rate (TAR) is 99% while the worst single-finger TAR is 71%.  This report 
illustrates the wide range of image types and quality that exist in government fingerprint 
databases and the effect this variability has on the accuracy of matching using a single algorithm. 

An appendix compares the VTB matcher to two commercial fingerprint systems and concludes 
that the performance of the VTB is very similar to commercial verification systems currently on 
the market. This further confirms that data quality uniformity is of paramount importance in the 
evaluation of fingerprint biometrics. 

Keywords: fingerprint, identification, matching, system evaluation, verification 

1. INTRODUCTION 

This report documents a series of fingerprint matching studies conducted on an experimental 
laboratory system called the Verification Test Bed or VTB.  These studies span approximately 
eight months of research (from September 2002 to April 2003) in the Information Access 
Division’s Image Group at the National Institute of Standards and Technology (NIST).  The 
VTB is a collection of commercial off the shelf (COTS) computer hardware, an open-source 
operating system, and a suite of public domain application software, unlike most fingerprint 
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matchers, which are expensive to obtain, and require specialized hardware.  The VTB was 
developed to be a reference matcher that can provide a performance baseline for future analyses 
of fingerprint matchers, as well as comparative analysis of different sets of fingerprint data.  As 
will be discussed in this report, this “open” system has proven critical to our mission. 

1.1 Brief History of Biometrics at NIST 

NIST has a long history of involvement in biometric research and biometric standards 
development.  For over 30 years, NIST has collaborated with the Federal Bureau of Investigation 
(FBI) in the area of automated fingerprint recognition.  Researchers at NIST (then the National 
Bureau of Standards (NBS)) began work on the first version of the FBI's Automated Fingerprint 
Identification System (AFIS) system back in the late 1960’s.  Over the years, NIST has 
conducted fingerprint research, developed fingerprint identification technology and data 
exchange standards, developed methods for measuring the quality and performance of fingerprint 
scanners and imaging systems, and produced databases containing fingerprint images for public 
distribution [1]-[30]. 

The Image Group sponsored one of the most influential biometric standards in the law 
enforcement community.  This is the ANSI/NIST-ITL 1-2000 "Data Format for the Interchange 
of Fingerprint, Facial, Scar Mark & Tattoo (SMT) Information" standard [30].  This standard 
(referred to as ANSI/NIST 2000) defines a common file format, available to law enforcement 
agencies in the U.S. since 1986 [9], for the electronic exchange of fingerprint images and related 
data.  Today, it supports other types of images as well, including palmprints, mugshots, scars, 
and tattoos.  This standard has been adopted by all major law enforcement agencies in the U.S., 
including the FBI, and has strong support and use internationally. 

More recently, the Image Group has run a series of large scale face recognition system tests 
called FRVT2000 [31] and FRVT2002 [32].  Conducting these technology evaluations requires 
collection and publication of large volumes of data as well as development of scoring technology 
for the computation of performance statistics.  As a result, NIST has significant experience and 
expertise in managing and analyzing large repositories of biometric data, and it has developed a 
testing framework and protocol called the HumanID Evaluation Framework (HEF) [33] for 
evaluating the performance of biometric systems. 

It is accurate to say that NIST has a long history in biometrics with emphasis on law enforcement 
fingerprint applications and standards.  Based on this experience, it was not too surprising that 
Congress included NIST in its legislative response to the terrorist attacks on September 11, 2001 
(9-11). 

1.2 Change in Focus as of 9-11 

Since 9-11, the phrase, “Everything has changed,” has been frequently stated.  This is no less 
true for the Image Group at NIST.  Within a couple of months, new initiatives were started that 
redirected work focused on law enforcement to new work focused on border control. 

On the heels of 9-11 came several pieces of congressional legislation which directly cited 
participation and contribution from NIST in the area of biometric standards development.  These 
include the USA PATRIOT Act and the Enhanced Border Security and Visa Entry Reform Act.  
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Both of these acts specify requirements for interoperable biometric systems that are being 
developed by the Department of Homeland Security (DHS) and the Department of State (DOS).  
Specifically the requirements are: 

1.2.1 USA PATRIOT Act Requirements 

The USA PATRIOT Act, in section 403(c)(1), as amended by the Enhanced Border Security and 
Visa Entry Reform Act, directs that the Attorney General and the Secretary of State jointly, 
through NIST “shall [ ] develop and certify a technology standard, including appropriate 
biometric identifier standards, that can be used to verify the identity of persons applying for a 
United States visa or such persons seeking to enter the United States pursuant to a visa for the 
purposes of conducting background checks, confirming identity, and ensuring that a person has 
not received a visa under a different name.” 

1.2.2 Border Security Act Requirements 

The Enhanced Border Security and Visa Entry Reform Act states in section 202(a)(3) that  “In 
the development and implementation of the data system under this subsection, the President shall 
consult with the Director of the National Institute of Standards and Technology (NIST) and any 
such other agency as may be deemed appropriate.” 

In addition section 202(a)(4)( A) states that “The data system developed and implemented under 
this subsection, and the databases referred to in paragraph (2), shall utilize the technology 
standard established pursuant to section 403(c) of the USA PATRIOT Act …”  

These standards apply to visas documents issued by the US government. A visa waiver country 
is required by section 303(c)(1) “to issue to its nationals machine-readable passports that are 
tamper-resistant and incorporate biometric and document authentication identifiers that comply 
with applicable biometric and document identifying standards established by the International 
Civil Aviation Organization.” 

1.2.3 303A Report 

Previously, the report titled “Use of Technology Standards and Interoperable Databases With 
Machine-Readable, Tamper-Resistant Travel Documents” was submitted to the Congress jointly 
by the Attorney General, Secretary of State, and NIST [34]. (This report is informally referred to 
as the 303A Report.)  It discusses measurements of the accuracy of both face and fingerprints as 
they relate to U.S. border entry and exit. The detailed face recognition results are documented in 
the FRVT 2002 report [32].  The fingerprint results in the report were calculated using the data 
and evaluation methods discussed in this report. 

The report submitted to Congress concluded that: 

NIST has determined that face and fingerprints are the only biometrics available with large 
enough operational databases for testing at this time.  Both technologies are mature.  To properly 
certify any biometric, extensive tests must be performed using databases containing at least 
100,000 subjects.   Such databases have been acquired from NIST, FBI, DHS, DOS, and the 
Texas Department of Public Safety (DPS) to perform the required testing. 
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Results from fingerprint testing based on a Mitretek study, and NIST testing using SD24, and a 
sampling of DHS data have been analyzed. To perform background identifications, ten plain 
image impressions should be used for enrollment and retention.  As described in the “FBI IAFIS 
Accuracy” section of the 303A Report, Mitretek recommends a minimum of four plain finger 
impressions for background searches.  With the live-scan fingerprint scanners currently available, 
the additional time required to capture the additional six fingers will be insignificant. 

Results show fingerprint matching to be accurate.  Verification can be performed on single 
fingers with 90% accuracy at a false accept rate of 1%.‡  Single finger identification can provide 
95% accuracy for a gallery size of 500. The identification rate drops to 90% for a gallery size of 
10,000 and to 86% for a gallery size of 100,000§.  This test illustrates the difficult nature of 
accurate database searches using a single fingerprint.  High accuracy searching of a database of 1 
million subjects or greater will require more than one finger whether the FBI’s IAFIS is used or 
not. 

Results indicate that single fingerprints provide approximately the same verification accuracy as 
face.  For facial recognition, the best packages available (based on FRVT 2002) provide a 90% 
probability of true verification with a 1% probability of false verification.  This makes face 
recognition an excellent choice as an alternative to fingerprints for verification and for situations 
where fingerprints are not available and where high quality face images with good illumination 
control similar to those taken using the DOS visa protocol are available. 

Under less constrained outdoor conditions face recognition accuracy for the best system falls to 
47%.  For identification the best available face recognition technology identification can provide 
90% accuracy for a gallery size of 100.  The identification rate drops to 83% for a gallery size of 
1,000 and to 77% for a gallery size of 10,000.  These numbers demonstrate that for identification, 
fingerprints are the preferred technology.  However, not all subjects can be easily fingerprinted 
with existing technology resulting in a 2% failure to acquire rate. 

Furthermore, within the intelligence community, facial data is often the only biometric data that 
has been and is currently being captured.  Based on these considerations, our measurements 
indicate that a dual biometric system including two fingerprint images and a face image may be 
needed to meet projected system requirements for verification.  Each fingerprint and the facial 
image should require 10 kilobytes or less of storage apiece.  Therefore, a card capable of storing 
two fingerprints and one face image will require a 32K-byte chip to fulfill these requirements. 

The body of this VTB report explains in more detail the fingerprint accuracy measurements used 
to draw these conclusions. 

1.3 Need for the VTB 

Given the severity and significance of the events of 9-11, agencies responsible for securing our 
country’s borders are more intent than ever before to improve and integrate their biometric 
systems.  As a result, there has been an unprecedented level of cooperation between these 

                                                 
‡ These results are shown in this report using the DHS2 results in Figu . re 12

§ Similar results are shown in this report using the DHS2 results in . Figure 19
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agencies and NIST.  This has resulted in the delivery of prototype production systems and, even 
more significantly, the exchange of large working repositories of biometric data. 

To carry out the legislated requirements of Congress, and to begin processing and analyzing 
these large repositories of data, NIST required a versatile open system for conducting applied 
research.  The VTB was designed for the following purposes: 

•  To develop fingerprint evaluation methods and protocols and for evaluating baseline 
technology. 

•  To provide a large computation capacity for conducting fingerprint matches. 

•  To segment four-finger plain impressions so that rolled vs. plain studies can be 
conducted. 

•  To build large databases and conduct automated data quality checks to create repositories 
for use in future evaluations and on prototype production systems. 

The VTB is being compared against other matchers in ongoing studies: its role here is to serve a 
minimum standard baseline for fingerprint matcher performance, and to allow comparative 
analysis of different types of fingerprint data. 

1.4 Report Organization 

The remainder of this report is devoted to documenting the VTB and a series of experiments 
conducted on it.  Section 2 provides an overview of the VTB including hardware and software 
descriptions.   Section 3 documents the various repositories of fingerprints that have been 
analyzed on the VTB.  Section 4 presents an evaluation framework and defines key terminology 
used by NIST in its performance evaluations.  Section 5 presents a lengthy series of studies and 
results.  Section 6 examines the use of metadata.  Finally, Section 7 draws conclusions. 

2. VTB DESCRIPTION 

The VTB is a system comprised of a collection of COTS hardware, an open-source operating 
system, and public domain software.  A general description of what constitutes the VTB is 
presented in this section. 

2.1 Hardware Description 

The VTB is currently comprised of 16 dual-processor personal computers.  All nodes are equally 
equipped with the following hardware: 

•  Dual 1.8Mhz Intel Xeon Processors with 512K Cache 

•  400 MHz system bus 

•  1 GB PC800 memory 400MHz ECC 
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•  64bit Gigabit Network card 

•  64bit SCSI adapter card 

•  External IDE RAID with SCSI interface  

o 700GB capacity 

o 8-120GB ATA100, 7200RPM drives 

o Raid level 5 with 1 hot spare 

2.2 Software Description 

In addition to the Linux operating system (Red Hat Linux 7.2**), a suite of NIST application 
software was installed on each VTB node. 

2.2.1 NIST Fingerprint Image Software 

The NIST Fingerprint Image Software (NFIS) [35] provides many of the fingerprint capabilities 
required by the VTB.  NFIS is a public domain source code distribution organized into four 
major packages:   

1. PCASYS (Pattern Classification Automation SYStem) is a neural network based 
fingerprint pattern classification system; 

2. MINDTCT (MINutiae DeTeCTor) is a fingerprint minutiae detector;   

3. AN2K (ANSI/NIST 2000) is a reference implementation of the ANSI/NIST 2000 
standard; and   

4. IMGTOOLS (IMaGe TOOLS) is a collection of image utilities, including encoders 
and decoders for Baseline and Lossless JPEG and the FBI’s Wavelet Scalar 
Quantization (WSQ) specification. 

NFIS is essential to the VTB.  Fingerprint image files on the VTB are formatted according to 
ANSI/NIST 2000 and are compressed using WSQ.  Minutiae are extracted from fingerprint 
images using MINDTCT.  Note that PCASYS is not currently used in the VTB. 

2.2.2 Four-Finger Plain Segmenter 

A key issue to be addressed when considering next generation border control systems is the 
effect (if any) on searching legacy repositories of rolled impressions with plain impressions 

                                                 
** Specific hardware and software products identified in this report were used in order to adequately support the 
development of technology to conduct the performance evaluations described in this document.  In no case does 
such identification imply recommendation or endorsement by the National Institute of Standards and Technology, 
nor does it imply that the products and equipment identified are necessarily the best available for the purpose. 
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captured with live-scan devices.  To begin to explore this issue, NIST required a very specific 
type of fingerprint repository; one that not only contained rolled fingerprints, but also included 
pairs of plain impressions mated (belonging to the same person) to rolled impressions.  No 
operational data of this type was available, so NIST needed to quickly and efficiently develop 
such a repository. 

A strategy was developed based on the fact that a standard tenprint card contains both a complete 
set of ten rolled finger impressions and also a corresponding set of plain impressions.  Figure 1 
shows a blank tenprint card (the FBI’s FD-249).  Boxes numbered 1–10 are designed to hold 
rolled impressions, while the bottom row of four boxes is designed to hold plain impressions.  
(Note there are many forms of fingerprint cards, but all contain fingerprint impressions in 
generally the same locations on the form.) 
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Figure 1.  FBI’s FD-249 tenprint card for criminal cases 

Figure 2 shows a slightly different FBI FD-249 filled in with fingerprints.  There are several 
interesting and important things to notice in this figure.  First, the top portion of the card has 
been cropped, making the remaining fingerprint images anonymous.  Now compare the rolled 
impressions in boxes 1–10 with the plain impressions in the bottom row of four boxes.  The left-
most box and right-most box at the bottom of the form each contain an impression of 4 fingers 
(index, middle, ring, and little) captured simultaneously, while the two middle boxes contain 
single plain impressions of the person’s thumbs.  From this example, one can see that a tenprint 
card contains two full sets of fingers, one rolled and one plain. 

 

Figure 2.  Cropped tenprint card filled with fingerprints 

 

If one were to extract both sets of fingerprints from a tenprint card, then plain versus rolled 
studies could be conducted.  The greatest challenge with this is that two groups (left and right 
hand) of four fingers (index, middle, ring, and little) are imprinted in a single box on the card.  
As seen in Figure 2, there is one box for the four fingers from the right hand (bottom right), and a 
second box for the four fingers from the left hand (bottom left). 

A segmenter was designed to automatically extract plain impressions from an image of a four-
finger plain impression box.  Commercial segmenters are available, but there were unique 
requirements that made it necessary for NIST to develop its own technology.  Commercial 
products have been designed specifically to process live-scan images, and they have difficulty 
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handling artifacts in the image such as handwriting, which is common on scanned images of 
tenprint cards.  Commercial products are designed primarily to maximize yield with little 
feedback to automatically reject questionable segmentations.  The NIST segmenter is carefully 
designed to find a compromise between maximum yield and accurate automatic results.  It was 
anticipated that as many as one million card images would be processed, so complete automation 
with no manual interaction or verification was critical. 

The NIST segmenter uses a down-sampled binary version of the four-finger plain image.  A 
search is made, which includes rotation, for the best fit of four black ridges (fingers) and three 
white valleys (space between fingers) and if a sufficient fit cannot be found the plains are 
rejected and not used.  After finding all four fingers, the fingertips are isolated by a window, 
sized just large enough to enclose the fingertip.  If any errors occur while trying to isolate the 
fingertips, or if the final windows do not meet minimum size requirements, the plains are 
rejected.  Finally, each fingerprint is copied from the original four-finger image, without 
removing rotation, into a new image with white background.  Therefore, any pixels not filled by 
the copy are set to white. 

If plain impressions are rejected for any reason, then the entire card is removed from the 
resulting repository.  Using this approach with the NIST segmenter, about 50% of all cards 
processed are rejected.  The high rejection rate is offset by the fact that the remaining results are 
highly accurate, and no human interaction is required to build the repository. 

2.2.3 Bozorth98 Fingerprint Minutiae Matcher 

The VTB detects and reports minutiae in a fingerprint image using MINDTCT distributed in 
NFIS [35].  Minutiae are points in a finger's friction skin where ridges end (called a ridge 
ending) or split (called a ridge bifurcation).  These features are represented in their most 
fundamental form as an ordered triple (x, y, θ); where (x, y) is a minutia’s Cartesian coordinate 
location, and θ designates the orientation of local ridge flow.  Once minutiae are extracted, two 
different finger image impressions can be compared to each other by matching their 
corresponding sets of (x, y, θ) values. 

The VTB uses a matcher algorithm referred to as the Bozorth98 matcher, which was chosen as 
the best available fingerprint matcher for which the algorithm and source code were readily 
available.  The Bozorth98 matcher was developed and implemented by Alan Bozorth of the FBI.  
The algorithm, developed in 1993-95, was designed to match two sets of (x, y, θ) values in such 
a way as to be rotationally invariant.  This capability enables the algorithm to match two 
fingerprints without the need to first compensate for the fact that the fingerprints may have been 
captured at different orientations. 

To accomplish this, the algorithm transforms each fingerprint’s set of (x, y, θ) values into a 
specialized rotationally invariant graph.  To compute a match score between two fingerprints, the 
algorithm iteratively searches between both fingers’ graphs for subsets (or subgraphs) that are 
compatible, i.e. coordinate locations and orientations of the minutiae represented within the 
subgraphs are similar enough to each other based on heuristically defined tolerances.  The more 
nodes contained within a compatible subgraph, the higher the accumulated match score.  The 
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more subgraphs that are compatible between the two fingerpirnts, the higher the accumulated 
match score. 

The algorithm is the primary (currently the only) matcher used on the VTB.  All results reported 
in this report were generated using the Bozorth98 matcher. The Bozorth98 matcher is currently 
being tested and will be compared against current commercial AFIS algorithms in a future 
report. 

2.2.4 Scoring Software 

Fingerprint technology evaluations not only require the types of system software components 
described previously (image decoders, minutiae detectors and matchers, etc.), but they also 
require a significant investment in the development of scoring and analysis tools.  Fortunately, 
the NIST Image Group has a long history of work in biometric evaluations to draw upon (e.g. 
[31]). 

The scoring software on the VTB is based on a framework of terminology and methods defined 
in the NIST Human-ID Evaluation Framework (HEF) [33].  HEF was designed to be a general 
framework used to evaluate any biometric, or combination of biometrics.  Recently, a suite of 
analysis tools based on HEF were developed and used to support the Face Recognition 
Verification Test (FRVT) 2002 [32].  These same tools have been applied to fingerprints on the 
VTB. 

Using this framework and these tools, three general performance analyses are computed on the 
VTB.  Each of these is described in greater detail in Section 4.  They include a simple Receiver 
Operator Characteristic (ROC) curve described in Section 4.2; a more sophisticated Multi-Trial 
ROC curve described in Section 5.6; and a Correct Identification vs. Gallery Size analysis 
described in Section 4.2 and Section 5.10. 

3. VTB DATA REPOSITORIES 

Fingerprint technology evaluations require a vast amount of data, and typically, the more the 
better.  This section documents the different repositories of fingerprints currently being used in 
experiments on the VTB at NIST.  Some of these repositories are available to the public and 
some are not. 

These repositories represent a collection of different types and sources of fingerprints.  There are 
rolled and plain fingerprints from inked tenprint cards.  There are also rolled and plain 
fingerprints captured from live-scan devices.  Given this variety, interesting experiments can be 
conducted to study the effect of searching heterogeneous types of fingerprints, such as searching 
a repository of rolled fingerprints with live-scanned fingerprints. 

It should be noted that repositories labeled “DHS” came from operational data within the former 
Immigration and Naturalization Service (INS). 
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3.1 NIST Special Database 14 (SD14) 

 

NIST Special Database 14 (SD14) 

Description 

FBI Criminal file – a natural distribution of pattern classes 

Number of Subjects 

2700 

Instances per Subject 

2 fingerprint cards per person 

Impression Type 

Majority Inked 

Rolled 

Finger Positions Captured 

10 finger positions segmented 
from rolled impressions on 10-print 
card 

Capture Device(s) 

Unknown camera 

Availability 

Public 

Data Preparation 

Segmentation of rolled impressions from the 10-print card was 
predetermined prior to receipt by NIST 
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3.2 NIST Special Database 24 (SD24) 

 

NIST Special Database 24 (SD24) 

Description 

Contains MPEG-2 (Moving Picture Experts Group) compressed digital 
video of live-scan fingerprint data 

Number of Subjects 

20 

Instances per Subject 

One 10-second video sequence 
per finger 

Impression Type 

Live-scan 

Plain 

Finger Positions Captured 

All ten finger positions used in 
study 

Capture Device(s) 

DFR-90 

Availability 

Public (Note: only five fingers per 
person on CD) 

Data Preparation 

4 frames from live-scan video sequences of 4 different finger orientations 
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3.3 NIST Special Database 29 (SD29) 

 

NIST Special Database 29 (SD29) 

Description 

FBI Deceased Criminal File 

Number of Subjects 

216 

Instances per Subject 

2 fingerprint cards per person 

Impression Type 

Inked 

Rolled & Plain 

Finger Positions Captured 

10 finger positions segmented 
from rolled impressions on 10-print 
card, and 10 additional finger 
positions segmented from four-
finger plain impressions on same 
10-print card 

Capture Device(s) 

UMAX PowerLook III flatbed 
scanner 

Availability 

Public 

Data Preparation 

Segmentation failures of the four-finger plain impressions were manually 
inspected and corrected to enable maximum yield 
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3.4 Immigration and Naturalization Service Recidivist Database 

•  Fingerprints from the DHS IDENT (Automatic Biometric Fingerprint Identification) 
System 

 

3.4.1 DHS 2-Finger Images (DHS2) 

 

DHS 2-Finger Images (DHS2) 

Description 

DHS recidivist cases, the majority of which are border crossing cases with 
Mexico 

Environment: border patrol field operations 

Number of Subjects 

~600,000 (of ~632,000) 

Instances per Subject 

Minimum of 2 cases per person, 
where each case contains one 
right index impression and one left 
index impression. 

Impression Type 

Live-scan 

Plain 

Finger Positions Captured 

Right and left index fingers 

Capture Device(s) 

DFR-90 

Availability 

Government use only 

Data Preparation 

Include clean up steps – e.g. mate validation and mismatch detection.  (See 
Section 3.4.1.1) 
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3.4.1.1 Matcher-Based Quality Control 

The following steps were taken to check for clerical errors in the fingerprint sets.  This includes 
cases where the left index finger is swapped with the right index finger and cases where the same 
finger was captured twice. 

•  Given all (right, left) pairs of fingerprints for a person 

•  Remove finger substitutions from 2-pair cases 

o If and only if 2 (right, left) index finger pairs 

 Match first pair’s right finger to both left fingers 

 Match second pair’s right finger to both left fingers 

•  Look for high-scoring matches 

o Remove likely finger substitutions 

•  Remove right finger substitutions 

o Find sufficiently “good” left finger image 

 Match all left finger images to each other and select 
image with sufficiently high score 

o Match all right finger images with “good” left image 

 Look for high-scoring matches 

•  Remove likely finger substitutions 

•  Remove left finger substitutions 

o Find sufficiently “good” right finger image 

 Match all right finger images to each other and 
select image with sufficiently high score 

o Match all left finger images with “good” right image 

 Look for high-scoring matches 

•  Remove likely finger substitutions 
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3.4.2 DHS 10-Finger Images (DHS10) 

 

DHS 10-Finger Images (DHS10) 

Description 

DHS Criminal database 

Number of Subjects 

~52,000 (of 100,000) 

46,000 Background (rolled 
impressions where four-finger plain 
segmentation failed) 

Instances per Subject 

One 10-print card per person 

Impression Type 

Live-scan printed into 10-print card 

Rolled & Plain 

Finger Positions Captured 

10 finger positions segmented 
from rolled impressions on 10-print 
card, and 10 additional finger 
positions segmented from four-
finger plain impressions on same 
10-print card 

Capture Device(s) 

Unknown 

Availability 

Government use only 

Data Preparation 

Segmentation of rolled impressions from the 10-print card was 
predetermined prior to receipt by NIST  

For plain impressions, only successful automatic segmentation results were 
used.  No manual correction of segmentation results was performed, so a 
very small number of missegmented results may be included.  Automatic 
segmentation resulted in approximately a 50% yield across all available 10-
print cards. 

All cards used in VTB studies were first consolidated.  Consolidations were 
conducted by inter-matching all cards and applying thresholds.  (See 
Section 5.5.1) 
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3.4.3 DHS Consolidation Set of 10-Finger Images (DHS10-C) 

 

DHS Consolidation Set of 10-Finger Images (DHS10-C) 

Description 

Consolidation set derived from the DHS Criminal database 

Number of Subjects 

1021 

Instances per Subject 

2 fingerprint cards per person 

Impression Type 

Live-scan printed into 10-print card 

Rolled & Plain 

Finger Positions Captured 

10 finger positions segmented 
from rolled impressions on 10-print 
card, and 10 additional finger 
positions segmented from four-
finger plain impressions on same 
10-print card 

Capture Device(s) 

Unknown 

Availability 

Government use only 

Data Preparation 

This set of paired 10-print cards is the byproduct of conducting 
consolidations on the DHS10 repository.  Those cards determined to be 
consolidations (different instances of the same person’s fingers) were 
removed from DHS10 and set aside for independent study. 
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3.5 Department of State Mexican Visa Database (DOS) 

 

Department of State Mexican Visa Database (DOS) 

Description 

DOS Mexican Visa cases 

Environment: Mexican Consulates offices 

Number of Subjects 

~274,000 (of 288,000) 

~6 million Background 

Instances per Subject 

Minimum of 2 cases per person, 
where each case contains one 
right index impression and one left 
index impression. 

Impression Type 

Live-scan 

Plain 

Finger Positions Captured 

Right and left index fingers 

Capture Device(s) 

DFR-90 

Availability 

Government use only 

Data Preparation 

Include clean up steps – e.g. mate validation and mismatch detection.  (See 
Section 3.4.1.1) 
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3.6 Texas Department of Public Safety Database (TXDPS) 

 

Texas Department of Public Safety Database (TXDPS) 

Description 

Texas DPS records 

Number of Subjects 

~225,000 (of 550,000) 

~225,000 Background (rolled 
impressions where four-finger plain 
segmentation failed) 

Instances per Subject 

1 fingerprint card per person 

Impression Type 

Majority Inked 

Rolled & Plain 

Finger Positions Captured 

10 finger positions segmented 
from rolled impressions on 10-print 
card, and 10 additional finger 
positions segmented from four-
finger plain impressions on same 
10-print card 

Capture Device(s) 

DBA Image Clear, Model # 
5011031 

Availability 

Government use only 

Data Preparation 

Segmentation of rolled impressions from the 10-print card was 
predetermined prior to receipt by NIST  

For plain impressions, only successful automatic segmentation results were 
used.  No manual correction of segmentation results was performed, so a 
very small number of missegmented results may be included.  Automatic 
segmentation resulted in approximately a 50% yield across all available 10-
print cards. 

All cards used in VTB studies were first consolidated.  Consolidations were 
conducted by inter-matching all cards and applying thresholds. 
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4. EVALUATION FRAMEWORK 

The experiments conducted on the VTB are based on the NIST Human-ID Evaluation 
Framework (HEF) [33], and the results reported in this section follow a protocol similar to that 
used in Face Recognition Vendor Test (FRVT) 2002 [32].  The elemental requirement of this 
framework is that a fingerprint system reports a similarity score when two fingerprint 
impressions are matched to each other.  In general, the higher the score, the more likely the two 
impressions come from the same finger.  Experiments are structured around sets of fingerprint 
images, and for the VTB, sets of minutiae extracted from these images. 

4.1 Terminology and Definitions 

An experiment is typically comprised of two general sets of fingerprints.  There is the query set, 
a collection of fingerprints whose identities are unknown at the time of testing, and there is the 
target set, a collection of fingerprints whose identities are known.  In more common fingerprint 
terminology, the query set is the search set to be searched with, and the target set is the file set to 
be searched on.  Various applications can be represented by matching unknown fingerprints from 
the query set to known fingerprints in the target set.  As comparisons are computed, matcher 
scores are stored in a similarity matrix where the ij-th element in the matrix corresponds to the 
similarity between the i-th fingerprint of the target set compared to the j-th fingerprint of the 
query set. 

Once a similarity matrix is populated with matcher scores, performance statistics are computed.  
If subsets of the query and target fingerprints are known to share a common trait, then 
performance statistics may be computed on just these subsets in order to isolate and study the 
effect of these traits.  The subset used from the query set is referred to as the probe set, and the 
subset used from the target set is referred to as the gallery set. 

The scores in the similarity matrix fall into two general categories.  A score computed between a 
probe and gallery belonging to the same person is referred to as a match, while a score computed 
between a probe and gallery belonging to different persons is referred to as a non-match.  (Note 
that the terms, match and non-match, are being used here to characterize whether the probe and 
gallery fingerprints are from the same person, and not whether the matcher actually achieved a 
correct identification, which is also often referred to as a correct match or hit.)  Significant 
insights into the performance of a fingerprint system may be gained by analyzing and comparing 
the distribution of match scores to the distribution of non-match scores. 

4.2 Verification vs. Identification 

To understand what is involved to develop biometric standards and to conduct biometric 
technology evaluations, it is helpful to know that biometric applications are typically categorized 
into two general types: verification and identification. 

The term verification is used to describe the process of confirming that a person is who he/she 
claims to be by matching their biometric record against that of their claimed identity.  It is a one-
to-one comparison.  Identification is a term used to describe the process of matching a biometric 
record from a single unknown person against an entire repository of similar biometric records in 
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order to determine the identity of the owner of the biometric record.  It is a one-to-many 
comparison. 

The purpose of a verification system is to simultaneously perform two tasks.  The first is to 
correctly verify the identity of a person when the claim is legitimate.  The second is to reject 
people who are not who they claim to be.  Unfortunately, there is a trade-off between these two 
tasks, and one cannot simultaneously maximize the performance of both tasks. 

The performance statistic for verifying the identity is the probability of correct verification or 
true accept rate (TAR).  This is the probability that a system will verify the identity of a 
legitimate claim.  The performance statistic for rejecting false claims is referred to as the false 
accept rate (FAR).  This is the probability that that a false claim will be accepted as being true; 
i.e., someone fools the system and an unauthorized person is granted access. 

A Receiver Operator Characteristic (ROC) analysis measures the trade-off between the true 
accept rate and the false accept rate. The result is a curve which serves as a primary measurement 
of verification performance.  For the purposes of discussion and comparison, two points of 
interest are cited from the ROC curves presented in this paper.  The first is the true accept rate 
achieved at a false accept rate of 1%.  The second is the false accept rate achieved at a true 
accept rate of 98%.  (These numbers, although somewhat arbitrary, are representative of an 
acceptable operating range for many applications.) 

Identification performance is measured by determining the ability of a biometric system to 
identify an individual in a large database, given a single unknown biometric record.  In the 
process used in FRVT, the probability of correct identification at rank one (the system’s top 
choice) is computed.  As the size of the database used for identification increases, the probability 
of an incorrect match having higher score than the correct match increases, and the rate of 
correct matches at rank-1 decreases.  Therefore a curve is generated, depicting the effect of 
database size on the probability of correct identification.  This serves as a useful measurement of 
identification performance. 

The FRVT nomenclature defines a watch list as an application in which probes are detected and 
identified using a combination of score and rank-based operating thresholds.  It should be noted 
that, to date, no fingerprint-based watch list applications have been studied on the VTB. 

5. STUDIES AND RESULTS 

5.1 Overview of Studies 

5.1.1 Small-Scale Studies 

Section 5.2, Inked, Rolled Impression Verification Study with SD14, reports on the results of 
early studies measuring the verification results of a small set of rolled fingerprints. These results 
are intended to serve as a best-case baseline to be used in comparisons with other studies. 

Section 5.3, Live-Scan, Plain Impression Verification Study with SD24, reports the verification 
results of live-scan plain fingerprints from a small data set. 
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Section 5.4, Inked, Rolled vs. Plain Impression Verification Study with SD29, reports the 
verification results of a small set of fingerprints from inked cards in which rolled-to-rolled, 
rolled-to-plain (four-finger segmented), and plain-to-plain comparisons were made for all 
fingers. These results provide an important baseline for performance of rolled and plain 
fingerprints, and for finger-by-finger comparisons. 

Section 5.5, Live-Scan, Rolled vs. Plain Impression Verification Study with DHS10-C, reports 
the verification results of a larger set of fingerprints from cards printed with live-scanned 
fingerprints in which rolled-to-rolled, rolled-to-plain (four-finger segmented), and plain-to-plain 
comparisons were made for right thumbs and right index fingers. 

5.1.2 Large Scale Studies 

Section 5.6, Large Scale Live-Scan Verification Study with DHS2, reports the verification 
results of a large set of low-quality operational live-scan fingerprints from the DHS. These 
results are used to demonstrate the statistical effect of sample size when measuring matcher 
performance. 

Section 5.7, Large Scale Live-Scan Verification Study with DOS, reports the verification results 
of a large set of operational live-scan fingerprints from the Department of State. 

Section 5.8, Large Scale Inked Verification Study with DHS10, reports the verification results of 
plain-to-rolled matching of right thumbs and right index fingers, taken from a large set of inked 
fingerprint cards from the DHS. 

Section 5.9, Large Scale Inked Verification Study with TXDPS, reports the verification results of 
plain-to-rolled matching of right thumbs and right index fingers, taken from a large set of inked 
fingerprint cards from the Texas Department of Public Safety. 

Section 5.10, Large Scale Identification Study with DHS2, reports the identification results from 
the DHS2 live-scan data, measuring performance in terms of correct identifications at rank-1. 
These results also show the effect of gallery size on rank-based identification. 

Section 5.11, Large Scale Identification Study with DOS, reports the identification results from 
the DOS live-scan data, measuring performance in terms of correct identifications at rank-1. 
These results also show the effect of gallery size on rank-based identification. 

5.1.3 Other Studies 

Section 5.12.1, Score-Based Fusion Using SD29, explores how the index finger and thumb 
results from the SD29 study can be fused at the score level to improve matcher performance. 

Section 5.12.2, Score-Based Fusion Using DHS10-C, explores how the index finger and thumb 
results from the SD29 study can be fused at the score level to improve matcher performance. 

Section 5.12.3, Rank and Score-Based Fusion Using DHS2, explores how the index finger 
results from the SD29 study can be fused at the rank level to improve matcher performance. 
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Section 5.13, Person Variation Study with DHS2, explores whether some people’s fingerprints 
are intrinsically more difficult to match than others. 

5.2 Inked, Rolled Impression Verification Study with SD14 

Early experiments on the VTB were designed to derive a baseline of performance on traditional 
rolled fingerprints from FBI tenprint cards.  This served to validate the software running on the 
VTB, while at the same time it provided a level of performance against which subsequent studies 
involving plain and rolled impressions could be compared. 

A verification study was constructed with images of inked, rolled fingerprints from NIST Special 
Database 14 (SD14).  SD14 contains 2700 mated pairs of FBI tenprint cards from 2700 different 
people.  Using the rolled impressions from these cards, probe fingerprints were selected from the 
search (query set) cards in the repository, while gallery fingerprints were selected from the file 
(target set) cards in the repository. 

A verification study was conducted whereby performance of left and right thumb and index 
fingers were compared.   plots ROC curves resulting from four different 2700×2700 
similarity matrices.  Note that in general, index fingers performed better than thumbs, and that 
right fingers performed better than left. 

Figure 3
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Figure 3.  SD14 Verification Study – Comparison of right and left thumbs and index 
fingers 

 

SD14 

FAR @ 1% & TAR @ 98% 

Right Thumb 
(1%, 89%) (51%, 98%) 

Right Index 
(1%, 94%) (23%, 98%) 

Left Thumb 
(1%, 88%) (55%, 98%) 

Left Index 
(1%, 92%) (38%, 98%) 

Table 1.  SD14 Results 
 

5.3 Live-Scan, Plain Impression Verification Study with SD24 

A technical issue facing next generation border control systems is what level of performance can 
be expected when searching legacy data comprised of inked, rolled impressions with new plain 
impressions captured with a live-scan device.  To begin exploring these issues, NIST collected 
and published a sample of live-scan fingerprint impressions called NIST Special Database 24 
(SD24). 

A verification study was constructed with live-scan, plain fingerprints from SD24.  SD24 
contains 20 people, each contributing a 10 second video sequence per finger. This study 
compared the performance between all five fingers: thumbs, index, middle, ring, and little 
fingers.  Four frames of video were selected per finger, and left and right corresponding finger 
positions were combined.  In all, five similarity matrices were computed, each of size 160×160.  
These dimensions are the result of (160 fingerprints = 20 people × 4 impressions × 2 left & right 
hands).  Due to the limited size of SD24, the same 160 impressions were used for both the probe 
set and the gallery set (ignoring the comparisons of each image to itself).  Note that standard 
ROC protocol calls for a separate set of impressions to be used between the probe and gallery 
sets. 

Figure 4 plots ROC curves resulting from the five different fingers.  In general, thumbs 
performed best; next, index and middle fingers performed comparably to each other; then ring 
fingers; followed lastly by little fingers. 
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Figure 4.  SD24 Verification Study – Comparison of thumb, index, middle, ring, and little 
fingers 

SD24 

FAR @ 1% & TAR @ 98% 

Thumb 
(1%, 99%) (0.4%, 98%) 

Index 
(1%, 94%) (10%, 98%) 

Middle 
(1%, 92%) (8%, 98%) 

Ring 
(1%, 80%) (51%, 98%) 

Little 
(1%, 70%) (48%, 98%) 

Table 2.  SD24 Results 
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5.4 Inked, Rolled vs. Plain Impression Verification Study with SD29 

NIST Special Database 29 (SD29) is a small collection of mated pairs of FBI tenprint cards.  
There are 216 people in this repository, each contributing two complete cards.  Although small, 
SD29 is significant as it contains all impressions on the card, including plain impressions.  
(SD14 has many more people, but only contains rolled impressions.) 

As seen in Figure 2, two boxes are provided on a standard tenprint card in which plain 
impressions of a person’s index, middle, ring, and little fingers are entered together from their 
right and left hands.  As mentioned in Section 2.2.2, a four-finger plain segmenter was developed 
and run on the VTB to separate the four in each box into individual images.  As a result, two 
complete sets of fingerprints were extracted from each card in the repository, a rolled set of ten 
fingers and a corresponding plain set. 

A series of verification studies were conducted on the rolled and plain impressions from SD29.  
Probe and gallery sets were selected so as to compare performance between three different 
modes: rolled impressions searched against rolled impressions, plain impressions searched 
against plain impressions, and plain impressions searched against rolled impressions.  These 
three modes were evaluated for all five fingers: thumb, index, middle, ring, and little fingers. 

For each mode, a similarity matrix of size 432×432 was computed.  These dimensions are the 
result of 216 people with left and right corresponding finger positions (×2) combined in the 
matrix.  The 432 probe fingerprints were selected from card set ‘a’ in SD29, while the 432 
gallery fingerprints were selected from card set ‘b’. 

The results of these experiments are shown in the five following figures.  For example,  
plots three ROC curves (one for each search mode) derived from thumb impressions.  The top 
curve in the figure corresponds to the performance of searching rolled impressions against rolled 
impressions; the middle curve corresponds to the performance of searching plain impressions 
against plain impressions; and the bottom curve corresponds to the performance of searching 
plain impressions against rolled impressions. 

Figure 5

In general, thumbs performed best; next, middle fingers, then index fingers; then ring fingers; 
followed lastly by little fingers.  It should also be noted that rolled-to-rolled searches performed 
consistently and significantly better, while plain-to-plain and plain-to-rolled were closer together 
with plain-to-plain performing frequently better. 
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Figure 5.  SD29 Thumb Verification Study – Comparison of rolled-to-rolled, plain-to-plain, 
and plain-to-rolled 
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Figure 6.  SD29 Index Finger Verification Study – Comparison of rolled-to-rolled, plain-to-
plain, and plain-to-rolled 
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Figure 7.  SD29 Middle Finger Verification Study – Comparison of rolled-to-rolled, plain-
to-plain, and plain-to-rolled 
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Figure 8.  SD29 Ring Finger Verification Study – Comparison of rolled-to-rolled, plain-to-
plain, and plain-to-rolled 
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Figure 9.  SD29 Little Finger Verification Study – Comparison of rolled-to-rolled, plain-to-
plain, and plain-to-rolled 

 

SD29 

FAR @ 1% & TAR @ 98% 

 Rolled-to-Rolled Plain-to-Plain Plain-to-Rolled 

Thumb (1%, 98%) (1%, 98%) (1%, 95%) (19%, 98%) (1%, 93%) (28%, 98%) 

Index (1%, 96%) (18%, 98%) (1%, 88%) (43%, 98%) (1%, 90%) (64%, 98%) 

Middle (1%, 98%) (1%, 98%) (1%, 91%) (48%, 98%) (1%, 90%) (30%, 98%) 

Ring (1%, 95%) (40%, 98%) (1%, 91%) (62%, 98%) (1%, 86%) (50%, 98%) 

Little (1%, 88%) (70%, 98%) (1%, 70%) (90%, 98%) (1%, 66%) (93%, 98%) 

Table 3.  SD29 Results 
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5.5 Live-Scan, Rolled vs. Plain Impression Verification Study with DHS10-C 

Repositories containing mated pairs of cards, such as SD29, are rare to come by.  AFIS systems 
typically archive only one card per person.  Search cards are submitted for search, but they are 
not permanently stored.  While somewhat rare, repositories with mated pairs of cards are very 
useful for technology evaluations.  They provide the ability to compare three fundamental modes 
of searching that current border entry systems must consider and manage: rolled-to-rolled, plain-
to-plain, and plain-to-rolled.  This section describes a study conducted on a larger collection of 
mated card pairs, referred to as DHS10-C. 

5.5.1 DHS10 Consolidation 

As described in Section 3.4.2, NIST has acquired a collection of tenprint card images from DHS.  
The cards are individual records from the agency’s criminal database.  Unknown to NIST was 
whether each fingerprint card in the collection uniquely represented one person, or did multiple 
cards belonging to the same person exist?  This is what is known as consolidation. 

Consolidation is an important topic to biometric system performance, both operationally and in 
the laboratory.  Unknowingly having redundant records in a repository can cause unexpected 
confusions, overhead, and skewed performance statistics. 

Simply put, imagine an experiment where a file repository is seeded with (has added to it) a set 
of fingerprint card images belonging to a certain person.  Images of a second set of impressions 
from the same person are then used to search the seeded repository.  If the system determines the 
search impressions sufficiently match the person’s file impressions, then the system has 
performed a successful identification.  But what if the repository, prior to seeding, unknowingly 
contains another set of impressions belonging to the person?  Now, when the seeded system is 
searched, there will be confusion, and if the system determines the unknown file card (rather 
than the seeded card) to be the rank-1 match, then it may be incorrectly concluded that the 
system failed to make the proper identification.  (Note that this example is based on simple rank-
1 performance, and that AFIS systems typically operate on more robust measurements.) 

An automated process was developed to detect and remove consolidation cases from the DHS10 
repository.  Originally, 100K tenprint card cases were provided by DHS; of these, ~54K were 
automatically segmented into separate plain impressions.  To detect consolidation cases, the 
rolled impressions from the set of ~54K were fully searched against themselves, and thresholds 
were applied to determine consolidations.  Of the ~54K, approximately 2K cases were removed. 

The consolidation cases that were removed inherently represent a collection of mated cards.  As 
a result, 1021 people were determined to have card mates, and these card images were gathered 
into their own repository, called DHS10-C. 

5.5.2 DHS10-C Results 

A study, similar to the one conducted with SD29, was conducted using the somewhat larger set 
of mated rolled and plain impressions of DHS10-C.  Probe and gallery sets were selected to 
compare the performance of rolled-to-rolled, plain-to-plain, and plain-to-rolled searches.  These 
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three modes were evaluated using both thumbs and index fingers.  The results reported here are 
for right fingers.  Left finger results were also computed and produced similar results. 

A similarity matrix of size 1021×1021 was computed for each of the three search modes.  Images 
from the first card mate were used as the gallery set, while images from the second card mate 
were used as the probe set. 

Figure 10 plots three ROC curves (one for each search mode) derived from right thumb 
impressions.  The top curve in the figure corresponds to the performance of searching plain 
impressions against plain impressions.  Just below is the rolled-to-rolled curve.  This is quite 
different from the results achieved on thumbs with SD29 results in Figure 5.  The lowest 
performing mode is plain-to-rolled. 

 

Figure 10.  DHS10-C Right Thumb Verification Study – Comparison of rolled-to-rolled, 
plain-to-plain, and plain-to-rolled 

 

Figure 11 shows the ROC results from DHS10-C right index fingers.  Notice that overall 
performance is much lower with index fingers than with thumbs.  Also, the rolled-to-rolled mode 
performs significantly higher than the other two modes (which is more consistent with SD29 
results), and there is significant separation between plain-to-plain and plain-to-rolled modes. 
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Figure 11.  DHS10-C Right Index Finger Verification Study – Comparison of rolled-to-
rolled, plain-to-plain, and plain-to-rolled 

 

DHS10-C 

FAR @ 1% & TAR @ 98% 

 Rolled-to-Rolled Plain-to-Plain Plain-to-Rolled 

Right 
Thumb (1%, 91%) (56%, 98%) (1%, 91%) (40%, 98%) (1%, 83%) (62%, 98%) 

Right 
Index (1%, 89%) (51%, 98%) (1%, 80%) (75%, 98%) (1%, 71%) (87%, 98%) 

Table 4.  DHS10-C Results 
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5.6 Large Scale Live-Scan Verification Study with DHS2 

Up to this point, the VTB experiments documented in this report have been quite constrained by 
the size of the repositories used.  The DHS2 repository contains nearly 600K people and 
provides the opportunity to conduct significantly larger experiments.  In fact, when processing 
repositories of this size, the major constraint shifts from the amount of data to the number of 
cycles available to compute on the VTB. 

An important question to explore is, “What amount of data is needed to get statistically reliable 
results from performance evaluations?”  The most significant factor to be considered is the 
characteristic quality of the fingerprints in the repository.  If one computes performance statistics 
on an overly small sample of fingerprints, results will be quite unreliable.  This instability is 
observed as significant variation in performance metrics when subsequent independent samples 
of the same size are computed and compared.  As the size of the sample increases, the variation 
observed between independent trials will become more stable. 

A verification study using DHS2 was designed to explore this issue more closely.  Pairs of mated 
right index finger impressions were compared.  The first impression in the pair was used as the 
probe image, and the second was used as the gallery image.  To study the amount of variation in 
computed performance, a random set of 60K people were selected from the repository.  This list 
was then subdivided into ten independent sets of 6K people, and the corresponding probe and 
gallery images were compared and resulting matcher scores were compiled into ten 6K×6K 
similarity matrices. 

To look at the variation in performance, one could simply plot and visually compare the ten ROC 
curves, each corresponding to one of the ten similarity matrices.  Figure 12 plots a more 
sophisticated and useful analysis, called a Multi-Trial ROC.  The blue curve in the graph plots 
the mean of the ten ROC curves.  The small clusters of gray points along the curve contain 
synchronized values extracted from each of the ten ROC curves.  The spread of the points within 
these clusters represent the variation in performance between each of the ten random trials.  The 
red ellipse overlaying each cluster represents a statistically standardized amount of variance 
across the trials.  The radius of each ellipse is (2×Standard Error), measured from the points in 
the cluster along both the x-axis and the y-axis. 
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Figure 12.  DHS2 Plain-to-Plain Right Index Finger Large Scale Verification –Multi-Trial 
ROC 

Figure 12

 

DHS2 

FAR @ 1% & TAR @ 98% 

Right Index 
(1%, 90%) (50%, 98%) 

Table 5.  DHS2 Results 

 

As one can see in , only a moderate amount of fluctuation is observed among the ten 
ROC curves.  An interesting question is, “What might the variation be if the size of the similarity 
matrices were cut in half?” 

This is relatively easy to explore using the ten 6K×6K similarity matrices which have already 
been computed.  There are two complete 3K×3K similarity matrices within each of the 6K×6K 
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matrices.  For example, there is one in the top-left quadrant and the other in the lower-right 
quadrant.  For reasons discussed in Section 6.1, these simple quadrants were not studied here, but 
rather a random selection of people was used between the first and second 3K×3K sets. 

ROC curves were computed from each of the ten 3K×3K similarity matrices in the first set, and a 
Multi-Trial ROC analysis was conducted.  The same analysis was conducted on the ROC curves 
computed from the ten 3K×3K similarity matrices in the second set.  If a sample size of 3K×3K 
is sufficient, then one would expect a similar amount of variation between the ROC curves 
computed from the 3K×3K similarity matrices and the 6K×6K similarity matrices.  If quality 
were consistent across people in DHS2, then one would expect similar mean results between the 
3K×3K similarity matrices and the 6K×6K similarity matrices. 

There are three Multi-Trial ROC curves plotted in Figure 13.  The ROC belonging to the 
“parent” ten 6K×6K similarity matrices is plotted in gray and is obscured by the other two curves 
belonging to the 3K×3K submatrix results.  As can be seen, the two 3K×3K curves significantly 
overlap with each other and the 6K×6K results.  The most notable difference is the ellipses 
associated with the blue curve (First 3000), which are typically larger than those associated with 
the other two.  From these curves, it is concluded that the 3K×3K submatrix sets reasonably 
represent the parent 6K×6K set except with slightly greater variance. 

 

Figure 13.  DHS2 Right Index Finger Large Scale Verification –Submatrix variation of 
Multi-Trial ROC 
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5.7 Large Scale Live-Scan Verification Study with DOS 

NIST has acquired a collection of live-scanned index fingerprints from DOS.  This repository 
has many similarities to that of DHS2; however, the DOS fingerprints were collected by different 
personnel, at different locales, and under different conditions.  It is very interesting to explore 
how the quality of the DHS2 and DOS repositories may differ. 

A verification study using DOS was conducted to assess the quality of this repository.  Pairs of 
mated index finger impressions were compared.  To study the amount of variation in computed 
performances, a Multi-Trial ROC analysis was conducted similar to the DHS2 study in the 
previous section. 

A random set of 30K people were selected from the DOS repository.  This list was then 
subdivided into ten independent sets of 3K people.  For each person, a pair of right index fingers 
and a pair of left index fingers were selected and fully compared to all other fingerprints.  The 
first impression in the pair was used as the gallery image, and the second was used as the probe 
image.  The matcher scores were compiled into ten 6K×6K similarity matrices. 

Figure 14

Figure 14.  DOS Index Finger Large Scale Verification –Multi-Trial ROC 

 plots the resulting Multi-Trial ROC curve.  Comparing this graph with Figure 12, DOS 
performs slightly better at lower false accept rates than DHS2, but their statistical ellipses 
significantly overlap. 
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DOS 

FAR @ 1% & TAR @ 98% 

Right & Left Index 
(1%, 90%) (47%, 98%) 

Table 6.  DOS Results 

 

Two sets of 3K×3K similarity matrices were extracted from the ten 6K×6K matrices, the first set 
from the upper-left quadrant of scores, and second set from the lower-right quadrant of scores.  
Each quadrant contains right and left index finger comparisons from 1500 people, resulting in a 
3K×3K submatrix.  A Multi-Trial ROC was computed from both sets of submatrices.  The 
resulting curves are overlaid in Figure 15. 

Looking at the three mean ROC curves in the graph, the two 3K×3K curves (First 1500 & 
Second 1500) are very similar to the 6K×6K curve (All 3000).  The most notable difference is 
the ellipses associated with the green curve (Second 1500) are significantly larger than those 
associated with the other two.  Based on these results, it is concluded that the 3K×3K subsets are 
reasonably representative of the parent 6K×6K set. 
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Figure 15.  DOS Index Finger Large Scale Verification – Submatrix variation of Multi-
Trial ROC 

5.8 Large Scale Inked Verification Study with DHS10 

NIST acquired a collection of tenprint card images from DHS in addition to the live-scanned 
index fingerprints in DHS2.  The fingerprint card repository, DHS10, contains two complete sets 
of finger impressions per card, one set of ten rolled impressions, and one set of ten plain 
impressions.  Each card was provided to NIST as a sequence of 14 images, corresponding to the 
isolated fingerprint boxes on the card.  The NIST four-finger plain segmenter was used to create 
images of individual plain impressions. 

A verification study was designed to evaluate the performance of matching the plain impressions 
of index fingers in DHS10 to their corresponding rolled impressions.  A Multi-Trial ROC 
analysis was conducted to study the quality in this repository and the variation within results. 

A list of 51,440 people (nearly the entire DHS10 repository) was selected.  This list was then 
subdivided into ten independent random sets of 5144 people.  For each person, a pair of right 
thumbs was selected and fully compared to all other thumbs in the set.  The rolled impression in 
each pair was used as a gallery image, and the plain impression was used as a probe image.  The 
matcher scores were compiled into ten 5144×5144 similarity matrices.  The same process was 
then repeated by selecting pairs of (rolled, plain) right index finger impressions. 
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Figure 16 plots the resulting Multi-Trial ROC curves, one for right thumbs, and the other for 
right index fingers.  Notice that DHS10 performance is lower than the plain-to-plain comparisons 
of DHS2 right index fingers in Figure 12, and performance is lower than the plain-to-rolled 
comparisons of SD29 in Figure 5 and Figure 6.  This is a clear indication that the data in DHS10 
is more difficult to match than the data in these other repositories. 

 

Figure 16.  DHS10 Right Thumb vs. Right Index Finger Large Scale Verification –Multi-
Trial ROC (Plain-to-Rolled) 

 

DHS10 

FAR @ 1% & TAR @ 98% 

Right Thumb 
(1%, 92%) (47%, 98%) 

Right Index 
(1%, 85%) (75%, 98%) 

Table 7.  DHS10 Right Thumb vs. Right Index Results 
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A study was conducted whereby the two sets of ten 5144×5144 similarity matrices were divided 
into upper-left and lower-right quadrants, and a Multi-Trial ROC analysis was separately 
performed on each set of submatrices.  The results were similar to the analysis conducted on the 
DOS repository and plotted in Figure 15.  The submatrix curves overlapped closely with the full 
matrix curve with slightly larger variance ellipses. 

5.9 Large Scale Inked Verification Study with TXDPS 

A large number of fingerprints from tenprint cards were acquired from the Texas Department of 
Public Safety.  A repository of rolled impressions and segmented plain impressions was created 
using the same process used to create the DHS10 repository. 

A verification study was designed to evaluate the performance of matching the plain impressions 
of thumbs and index fingers in TXDPS to their corresponding rolled impressions.  A Multi-Trial 
ROC analysis was conducted to study the quality in this repository and the variation in results. 

A random set of 30K people were selected from TXDPS.  This list was then subdivided into ten 
independent sets of 3K people.  For each person, a (rolled, plain) pair of right thumb impressions 
and a (rolled, plain) pair of left thumb impressions were selected.  The rolled right and left thumb 
impressions were combined into one set of gallery images.  The plain impressions were used as 
probe images, and they were matched fully with the combined gallery set, whether left or right.  
The matcher scores were compiled into ten 6K×6K similarity matrices.  The same process was 
then repeated by selecting (rolled, plain) pairs of right and left index fingers. 

Figure 17 plots the resulting Multi-Trial ROC curves, one for thumbs, and the other for index 
fingers.  Notice that TXDPS performance is significantly higher than the plain-to-rolled 
comparisons of DHS10 in Figure 16; however, the variance ellipses for TXDPS are much larger. 

Notice the apparently convex shape of the ellipses in Figure 17.  This is due to the size of the 
ellipses being plotted on a log scale along the x-axis (a semilog graph).  For TXDPS data, the 
variance is high enough so that this experiment is “large signal” (visibly non-linear).  In the 
previous curves the ellipses were small enough so that they retained their elliptical shape under a 
logarithmic transformation due to the small changes in test results meeting a “small signal” 
criterion.  (A sufficiently small change in the independent variable along a continuous function 
can be approximated using a linear function; therefore, the confidence ellipses for small changes 
in TAR and FAR appear as ellipses both on a linear and a semilog graph.) 
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Figure 17.  TXDPS Thumb vs. Index Finger Large Scale Verification –Multi-Trial ROC 

 

TXDPS 

FAR @ 1% & TAR @ 98% 

Right & Left Thumb 
(1%, 95%) (24%, 98%) 

Right & Left Index 
(1%, 92%) (40%, 98%) 

Table 8.  TXDPS Thumb vs. Index Results 
 

A study was conducted whereby the two sets of ten 6K×6K similarity matrices were divided into 
upper-left and lower-right quadrants, and a Multi-Trial ROC analysis was separately performed 
on each set of submatrices.  The results were similar to the analysis conducted on the DOS 
repository and plotted in Figure 15.  The submatrix curves closely overlapped with the full 
matrix curve. 
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5.10 Large Scale Identification Study with DHS2 

The experiments documented in this report to this point have been verification studies in which 
the application is simulated of determining if a person is who he claims to be.  A single 
fingerprint is presented (a probe image) and determined to match a single enrolled fingerprint (a 
gallery image).  This is a key part of a biometrically enabled border control system and perhaps 
represents the vast volume of processing that takes place in such a system. 

It is also important to be able to accurately identify a person from an existing large repository of 
fingerprints.  This is particularly important for enrollment where a person is not to be issued 
more than one travel document or card.  In this case, a person’s fingerprint(s) must be searched 
against a potentially very large repository in order to determine if this person is already enrolled, 
or perhaps to determine if this person has a criminal history.  In practice, identification will likely 
involve searching not just one large repository, but rather several. 

An identification study was designed using DHS2.  Pairs of right and left index fingers were 
selected from the ~600K people in the repository.  For the purposes of this study, the right index 
fingers were matched separately from the left index fingers.  The second fingerprint impression 
from each pair of right index fingers was added to one large gallery of ~600K people, while the 
second fingerprint impression from each pair of left index fingers was added to a second large 
gallery corresponding to the same ~600K people. 

The list of the ~600K people was randomly shuffled and was used to determine the order in 
which probe images were to be selected and matched against an entire gallery.  Probe images 
were processed in blocks of 100 people.  The results from ten blocks of random probes (a total of 
1000 people) were matched and rank-1 statistics tabulated. 

For identification, one of the most common methods of analyzing performance is the percentage 
of correct identification achieved at rank-1.  In other words, when probes are matched to every 
fingerprint in the gallery, how often is the highest scoring match produced by that probe 
fingerprint and a gallery fingerprint belonging to the same person? 

Figure 18 plots this statistic for ten random blocks of people from DHS2.  For each block, a 
percentage is reported for right index finger results, and a second percentage is reported for left 
index finger results.  Note the variation between blocks of people, and the variation at times 
between right and left index fingers within the same block. 
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Figure 18.  DHS2 Right & Left Index Finger Identification - % Correct by blocks of 100 
people 

 

There are 1000 random people represented in the figure above, and while these results are 
interesting, a more aggregate analysis of performance is desired.  For example, if the size of the 
gallery changes, what effect might there be on system performance?  A representation of rank-
based performance in terms of gallery size is depicted in Figure 19. 

In this figure, increasing gallery size is represented in log scale along the x-axis, while the 
percentage of correct identifications at a specific size of gallery is plotted on the y-axis.  As can 
bee seen, correct identification steadily decreases as the size of the gallery grows.  The right-
most point on each curve reports the identification rate achieved when the gallery contains all the 
people in the DHS2 repository.  Also note that right index fingers consistently perform only 
slightly better than do left index fingers.  With a nearly 600K gallery, an identification rate of 
76% is achieved with right index fingers, while 75% is achieved with left index fingers. 
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Figure 19.  DHS2 Large Scale Identification – Comparison of right and left index fingers 

 

5.11 Large Scale Identification Study with DOS 

The same identification study in the previous section was conducted on the DOS repository.  
274K pairs of right and left index fingers were selected from the repository, and right index 
fingers were matched and analyzed separately from left index fingers.  The first impression from 
each pair of index fingers was added to its corresponding right or left index finger gallery set. 

The list of 274K people was randomly shuffled and was used to determine the order in which 
probe images were to be selected and matched against an entire gallery.  Probe images were 
processed in blocks of 100 people.  The results from ten blocks of random probes (at total of 
1000 people) were matched and rank-1 statistics tabulated. 

Figure 20 plots the percentage of correct identifications achieved at rank-1 for each of the ten 
blocks of 100 probe images.  For each block, two percentages are reported.  The red curve is 
from right index fingers, while the green curve is from left index fingers.  Note right index 
fingers consistently perform better than or equal to left index fingers. 
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The average identification rate across 1000 random DOS people is 82% for right index fingers 
and 72% for left index fingers.  This contrasts with the DHS2 results, where average 
performance was 76% and 75% for 1000 random people and a comparably sized gallery set.  
Interestingly, the right index fingers from DOS perform better than those from DHS2, while left 
index fingers from DOS perform worse that those from DHS2. 

 

Figure 20.  DOS Right & Left Index Finger Identification - % Correct by blocks of 100 
people 

 

An aggregate analysis depicting the effect increasing gallery size has on identification 
performance is plotted in Figure 21.  The top, red curve is from right index fingers, and the 
bottom, green curve is from left index fingers.  Notice that there is a significant separation 
between the right and left index finger results. 

Comparing the identification results on DOS fingerprints in Figure 21 with results from DHS2 
fingerprints in Figure 19, once again shows that DOS right index fingers perform better, but 
DOS left index fingers perform worse. 
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Figure 21.  DOS Large Scale Identification – Comparison of right and left index fingers 

 

5.12 Fusion of Results from Multiple Fingerprints 

5.12.1 Score-Based Fusion Using SD29 

A very interesting question to explore is, “What effect does combining matcher scores from 
multiple fingers have on performance?”  A simple analysis was conducted to look at what effect 
there might be if matcher scores from thumbs were combined with those from index fingers.  
This is depicted by the scatter plot shown in Figure 22. 

In this figure, plain matched to plain scores from SD29 thumbs are plotted along the x-axis, and 
plain matched to plain scores from corresponding (comparison from the same probe person and 
gallery person) index finger are plotted along the y-axis.  The red ‘+’ points represent match 
scores, where the probe and gallery are from the same person.  These points (~400) are labeled 
“Mate Scores” to avoid the ambiguity of the word “match.”  The green ‘×’ points represent non-
match scores, where the probe and gallery are from different persons.  These (~90k) points are 
labeled “Non-Mate Scores” in the plot.  As expected, the match scores are generally higher than 
the non-match scores.  Note that the majority of green, non-match, points is clustered tightly at 
the origin. 
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First, examine the potential of utilizing only thumb scores.  To accomplish this, one must decide 
a scalar threshold along the x-axis, at which point a vertical line is drawn along the graph and 
those points to the right of the threshold line are automatically assigned to the match class, while 
all points to the left of the threshold line are automatically assigned to the non-match class.  The 
vertical dashed line labeled “Thumb Thresh” in the graph is a reasonable threshold on thumb 
scores, as nearly all the green cluster of points lies to the left of this threshold.  In this case, 
notice the few green points to the right of this threshold.  These green points represent potentially 
incorrect system identifications.  Notice the large number of red points to the left of this 
threshold.  These red points represent missed identifications. 

Second, examine the potential of utilizing only index finger scores.  For index fingers, a 
horizontal threshold line must be determined.  The horizontal dashed line labeled “Index Thresh” 
in the graph is a reasonable threshold on index finger scores, as nearly all the green cluster of 
points lies below this threshold.  Once again, there are a few green points above this threshold, 
representing potentially incorrect system identifications.  Notice that there are more red points 
below the index finger threshold than there are red points to the left of the thumb threshold.  
Index finger scores will cause a greater number of identifications to be missed when the uniform 
threshold value in this illustration is applied to both axes. 

Now look at the diagonal dashed line labeled “Combined Thresh” in the graph.  This represents a 
simple linear threshold based on combining both the thumb score and the index finger score.  
Notice the tight fit of this threshold along the edge of the green cluster of points.  The majority of 
the red points that were missed by the previous one-finger thresholds are now accurately 
separated (up and to the right) from the green cluster.  There are some red points that still overlap 
with the green cluster, and these are cases that may be separated by combining scores from 
additional fingers. 
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Figure 22.  SD29 Combined Thumb & Index Finger Scores 

Figure 22

Given the observations from the scatter plot above, a 2-finger ROC analysis was conducted.  A 
linear threshold was used with slope = -1, in which case the combined matcher score is simply 
calculated as Sc = St + Si; where Sc is the combined score, St is the matcher score for the thumb 
and Si is the matcher score for the index finger.  This threshold was incrementally applied across 
the range of 2-finger points of (thumb, index) matcher scores.  At each increment of linear 
threshold, true accepts were accumulated from those match distribution points (red ‘+’s) 
remaining above the threshold line while false accepts were accumulated from those non-match 
distribution points (green ‘×’s) remaining above the threshold line.  The illustration in  
shows the linear threshold (labeled “Combined Thresh”) at an x and y intercept of 50. 

By sweeping this simple linear threshold across the range of points, the top ROC curve in 
 was computed.  The middle green curve in the figure is the plain matched to plain results for 

SD29 thumbs from Figure 5.  The lower blue curve in the figure is the plain matched to plain 
results for SD29 index fingers from Figure 6.  The fused red curve shows a substantial 
improvement in performance. 

Figure 
23

Figure 23As can be seen in , at a false accept rate of 1%, the true accept rate from thumbs 
improved by 80% (95% to 99%) by adding index finger scores to the decision.  The combined 
results are quite remarkable, especially in light of the fact that the true accept rate of the index 
fingers was only 90% at the same false accept rate of 1%. 
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Figure 23.  SD29 Combined Thumb & Index Finger Verification 

 

SD29 Thumb w/ Index 

FAR @ 1% & TAR @ 98% 

Thumb & Index Combined 
(1%, 99%) (0.2%, 98%) 

Thumb Alone 
(1%, 95%) (19%, 98%) 

Index Alone 
(1%, 90%) (43%, 98%) 

Table 9.  SD29 Score-Based Thumb and Index Finger Fusion Results 

 

The theoretical limits of score-based fusion can be easily calculated.  If the scores to be fused are 
statistically not independent, then the fused performance may be better than either of the original 
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scores, but will not achieve the ideal case.  If the scores to be fused are statistically independent, 
then for each subject, the probability that neither finger will match is equal to the product of the 
individual probabilities of not matching (the ideal case).†† 

In practice, this means that the ideal performance of fused scores can be predicted, assuming that 
the scores to be fused are statistically independent.  Comparing the actual fused results to the 
predicted ideal performance can provide a measure of the statistical independence of the 
constituent scores. 

For this purpose, TAR (True Accept Rate) should be stated as FRR (False Reject Rate) = 1 – 
TAR.  If the index and thumb scores are statistically independent, for a given FAR, FRRfused = 
FRRindex * FRRthumb, 

The following table shows that the ROC for the combined index fingers and thumbs is very close 
to the prediction, and therefore the constituent scores are very close to being statistically 
independent. 

FAR Index 
TAR 

Thumb 
TAR 

Actual 
Index*Thumb 

TAR 

Ideal 
Fused 
TAR 

0.0001 76.0% 89.5% 95.7% 97.5% 
0.001 82.5% 92.5% 97.6% 98.7% 
0.01 88.8% 95.6% 98.6% 99.5% 
0.1 94.7% 97.2% 99.3% 99.9% 

Table 10.  Actual and Ideal Score-Based Fusion for Index Fingers and Thumbs 

While the effect of combining thumb and index fingers together is dramatic, there remains a 
more practical question regarding the effect if right and left right index fingers are combined.  
Current border control and visa systems are capturing index fingers, not thumbs.  A study was 
conducted to examine the effect of combining right and left index fingers. 

Due to the small size of SD29 (216 people, of whom only 207 had complete pairs of index 
fingers), the results reported above on index fingers included match scores among both right and 
left index fingers.  To study the effect of combining the match scores from a person’s right and 
left index fingers, the right matched to right index finger scores were separated from left matched 
to left index finger scores.  This resulted in two similarity matrices each of size 207×207, one for 
right index fingers and one for the left. 

Figure 24 contains a scatter plot with plain matched to plain scores from SD29 right index 
fingers plotted along the x-axis, and plain matched to plain scores from corresponding 
(comparison from the same probe person and gallery person) left index finger are plotted along 
the y-axis.  The red ‘+’ points represent match scores, where the probe and gallery are from the 
same person.  These points (207) are labeled “Mate Scores.”  The green ‘×’ points represent non-

                                                 
†† Mitretek Systems, Image Quality Study, Dec. 2000, pg. 6-20. 
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match scores, where the probe and gallery are from different persons.  These (~43k) points are 
labeled “Non-Mate Scores” in the plot.  These results are strikingly similar to those for thumbs 
combined with index fingers in . The match scores are generally higher than the non-
match scores with the majority of green, non-match, points clustered tightly at the origin. 

Figure 22

 

Figure 24.  SD29 Combined Right & Left Index Finger Scores 

 

The top ROC curve in  was computed by applying a linear threshold with slope = -1 (in 
which case the combined matcher score is simply calculated as Sc = Sr + Sl; where Sc is the 
combined score, Sr is the matcher score for the right finger and Sl is the matcher score for the left 
finger) across the range of scores in the scatter plot above.  The lower green curve belongs to the 
results of individually matching each index finger (right and left) to all other index fingers (right 
and left).  This is the same curve labeled “Index Alone” in Figure 23. It was the matcher scores 
that comprise this composite curve that were separated into right index finger and left index 
finger similarity matrices and then combined to produce the upper curve labeled “Right Index 
and Left Index” in Figure 25. 

Figure 25

At a FAR of 1%, the combined index fingers performed (98%) 1% lower than the combined 
thumb and index finger (99%). 
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Figure 25.  SD29 Combined Right & Left Index Finger Verification 

 

SD29 Index w/ Index 

FAR @ 1% & TAR @ 98% 

Right & Left Index Combined 
(1%, 98%) (1%, 98%) 

Index Alone 
(1%, 90%) (64%, 98%) 

Table 11.  SD29 Score-Based Right and Left Index Finger Fusion Results 
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Using the same method of predicting ideal fusion performance as in the index-thumb fusion case, 
the results again show that the constituent scores are very close to being statistically independent. 

FAR 
Separate 

Index 
TAR 

Fused 
Index 
TAR 

Ideal 
Fused 
TAR 

0.0001 76.0% 88.9% 94.2%
0.001 82.5% 94.2% 96.9%
0.01 88.8% 97.6% 98.7%
0.1 94.7% 99.0% 99.7%

Table 12.  Actual and Ideal Score-Based Fusion for Index Fingers 

At very high FAR levels (such as 1%), near perfect verification results can be achieved by score-
based fusion of two fingers. For a large scale system that uses score-based thresholds (such as an 
AFIS), the fusion of multiple fingers is fundamental to performance accuracy. This is why at 
extremely low FAR levels (such as below 10-8), more than two fingers must be used to achieve 
reasonable TAR levels. 

5.12.2 Score-Based Fusion Using DHS10-C 

The same method of score-based fusion used in Section 5.12.1 was conducted on the 1021 
people in DHS10-C.  The top red ROC curve in Figure 26 shows the results of combining the 
matcher scores of a person’s right thumb and index finger.  The middle green curve plots the 
results of using the right thumb alone, while the bottom blue curve plots the results of using right 
index fingers alone.  As was the case with SD29, significant improvement with DHS10-C is 
achieved when thumb and index finger are combined; however, at a FAR of 1%, the fused 
performance with DHS10-C is 4% lower (95% vs. 99%) than with SD29. 
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Figure 26.  DHS10-C Combined Right Thumb & Right Index Finger Verification 

 

DHS10-C Right Thumb w/ Index

FAR @ 1% & TAR @ 98% 

Right Thumb & Index Combined 
(1%, 95%) (13%, 98%) 

Right Thumb Alone 
(1%, 91%) (39%, 98%) 

Right Index Alone 
(1%, 80%) (80%, 98%) 

Table 13.  DHS10-C Score-Based Right Thumb and Right Index Finger Fusion Results 
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Figure 27 shows the fusion results with DHS10-C when combining matcher scores of right and 
left index fingers.  Again, the fused performance is dramatically higher than either of the index 
finger results alone.  At a FAR of 1%, the combined index fingers performed (92%) 3% lower 
than the combined right thumb and right index finger (95%). 

 

Figure 27.  DHS10-C Combined Right & Left Index Finger Verification 
 

DHS10-C Index w/ Index 

FAR @ 1% & TAR @ 98% 

Right & Left Index Combined 
(1%, 92%) (49%, 98%) 

Right Index Alone 
(1%, 80%) (80%, 98%) 

Left Index Alone 
(1%, 80%) (80%, 98%) 

Table 14.  DHS10-C Score-Based Right and Left Index Finger Fusion Results 
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5.12.3 Rank and Score-Based Fusion Using DHS2 

As discussed in Section 5.12.1, a significant improvement in score-based performance may be 
obtained by combining matcher scores from two different fingerprints of the same person.  A 
simple algorithm was designed and tested to determine the effect adding a second finger has on 
rank-based identification performance.  The following algorithm was proposed and 
implemented: 

•  Given a probe person to be identified from a gallery of people … 

o Match the probe person’s right index fingerprint to all fingerprints in the right 
index finger gallery. 

o Compile a list of gallery people associated with the top-100 highest right index 
finger matcher scores. 

o For each gallery person in the top-100 list 

 Match probe person’s left index fingerprint with the gallery person’s left 
index fingerprint. 

 Add the right index finger score and the left index finger score from 
matching the probe person to the current gallery person 

o All other combined scores belonging to gallery persons not in the top-100 list are 
set to zero. 

o The highest combined score is deemed the rank-1 selection for the probe 

 

The decision to only combine the left index finger scores with the top-100 right index fingers 
scores is computationally strategic.  The bulk of the time is spent matching the probe person’s 
right index fingerprint to large number of gallery fingerprints.  Combining the second finger only 
costs an additional sort and 100 additional matches.  Thus the second finger is added with little 
computational overhead. 

This algorithm was tested using the same 1000 random people used in the previous DHS2 
identification study.  Figure 28 illustrates the effect of combining right and left index finger 
scores.  Identification rates are reported for ten random blocks of 100 people.  The lower curve is 
the result of using right index finger scores alone.  The upper curve is the result of adding the left 
index finger scores according to the algorithm. 
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Figure 28.  DHS2 Combining Right and Left Index Finger Identification – Comparing 
combined results with right index finger alone 

 

The decision to use a threshold of the top-100 was made empirically by looking at histograms of 
right index finger scores.  If the matcher score between the probe person’s right index fingerprint 
and its mate in the gallery is not sufficiently high to make it in the list of top 100 scores, then it is 
impossible for the algorithm to improve identification.  An upper bound for the algorithm is 
determined by accumulating correct identifications within the top-100 right index finger scores 
alone.  (This is referred to as a cumulative match score at rank-100.) 

The aggregate identification rate across 1000 random people searched against ~600K DHS2 
gallery increased from 76% to 85% when the left index finger score was combined with the right 
index finger score in the identification decision, whereas the cumulative match score at rank-100 
for the right index finger scores alone was 86%.  Based on the above results, the algorithm 
improved identification by 9% and nearly met its potential in that the difference between the 
realized identification rate and the upper bound was only 1%. 

An in-depth analysis was conducted to study how the algorithm performed at several key stages.  
This is represented by a series of pie charts that follow.  Figure 29 illustrates two sets of scores 
from matching the probe person’s right index fingerprint to its mate in the gallery.  From 1000 
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probe persons, those scores in blue on the left (76%) labeled “Rank-1” are matches at rank-1, 
resulting in the highest score across the entire gallery.  These represent correct identifications 
when using right index finger scores alone.  Those scores in burgundy on the right (24%) labeled 
“Not Rank-1” are matches to gallery mates not resulting in the top score.  These represent missed 
identifications when using right index finger scores alone. 

Right Index Rank-1 Results

Not
Rank-1
(240)

Rank-1
(760)

 

Figure 29.  Identification Using Right Index Finger Alone 

As mentioned before, if the right index finger score is not within the top-100 of all gallery 
scores, then the algorithm has no chance of correcting the missed identification.  This is 
represented in Figure 30, where the burgundy set in the previous chart is now subdivided into 
two categories.  Right index finger scores ranking within the top-100 scores across the entire 
gallery (10.7%) remain in the top burgundy set labeled “Top-100”, while those not making it in 
the top-100 (13.3%) are in the bottom ivory set labeled “Not In Top-100” and represent 
identifications that cannot be aided by the algorithm. 

Right Index Top-100 Results

 Top-100
(107)

Rank-1 
(760)

Not In
Top-100 

(133)

 

Figure 30.  Right Index Fingers Scoring in Top-100 
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Those cases represented in the burgundy set in the previous figure have the potential of being 
moved to rank-1 when the left index finger score is added with their right index finger score.  In 

, the burgundy set labeled “Move To Rank-1” represents those cases where 
identification, missed based on the right index finger score alone, is now correctly made at rank-
1 when left and right index finger matcher scores are combined.  The orange set labeled “Stay 
Not Rank-1” represents those cases that remain missed identifications.  Of the 107 cases 
possible, 89 move to rank-1 while only 18 remain missed identifications for a yield of 83%. 

Figure 31

Figure 31.  Identification Combining Left with Right Index Finger Scores 

Figure 31

The algorithm also adds left index finger scores to the 760 cases (blue set in the previous chart) 
that achieve correct identification with the right index fingers alone.  In a situation where the 
resulting matcher score of the probe person’s left finger to its mate in the gallery is particularly 
bad, it is possible for the combined score to sufficiently decrease relative to other combined 
scores so that the identification moves from correct to being missed.  Fortunately, this only 
happened to 2 of the 760 cases and is represented by the light blue wedge labeled “Move To Not 
Rank-1” in Figure 31. 

Right & Left Index Combined 
Results

Stay
Not In

Top-100
(133)

Stay Not
 Rank-1

(18)

Move To 
Rank-1

(89)

Move To 
Not

Rank-1
(2)

Stay 
Rank-1 
(758)

 

In summary, a simple algorithm was designed and tested to study the effect of adding a second 
finger to the identification decision.  By adding left index finger scores to just the top-100 right 
index finger scores, no significant time in computation was added and missed identifications 
were reduced by more than 37% (9 / 24).  Note that an even greater yield could be achieved if 
the threshold in the algorithm were to be increased from top-100.  This would result in a smaller 
ivory set labeled “Stay Not In Top-100” in , but at a greater computational cost. 

5.13 Person Variation Study with DHS2 

The study reported in this section explores whether some people’s fingerprints are intrinsically 
more difficult to match than others.  Obviously, some fingerprints are more difficult to match 
than others, but this section explores the extent to which quality may be inherent in the person’s 
finger itself, rather than in a specific instance of a fingerprint image. 
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The DHS2 repository contains a minimum of two pairs of fingerprints per person, but in a 
number of cases people have many more impressions of their index fingers.  Having this data 
permits the analysis of the variation of matcher performance between fingerprints from the same 
person (referred to as intra-person variation) as well as variation of matcher performance 
between fingerprints from different people (referred to as inter-person variation).  A verification 
experiment was designed in order to look at these types of person-level variations and to look for 
ways to identify people whose fingerprints are more difficult to match than others, and reasons 
then as to why could be explored. 

One hundred people were selected from DHS2, each having at least 30 right index finger 
impressions in the repository.  Selecting the first 30 impressions from each person resulted in a 
list of 3000 fingerprints, and using these same 3000 fingerprints as a probe list and a gallery list, 
a 3K×3K similarity matrix of matcher scores was computed as illustrated in Figure 32. 

 

Person 100 
vs. 

Person 100 

30 

30 

Person 1 
vs. 

Person 2 

Person 2 
vs. 

Person 1 

 
Person 1 

vs. 
Person 1 

Person 2 
vs. 

Person 2 

Person 100 
vs. 

Person 1 

3000 = 100 People × 30 Fingerprints / Person 

3000 

Intra-Person Scores - along main diagonal 

Inter-Person Scores - off main diagonal 

Person 100 
vs. 

Person 2 

Person 1 
vs. 

Person 100

Person 2 
vs. 

Person 100

 

Figure 32.  Composition of Similarity Matrix for Person Variation Study 
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Looking at the illustration, the similarity matrix was organized by person.  Probe fingerprints 
were represented along the horizontal dimension while gallery fingerprints were represented 
along the vertical dimension.  Along the horizontal dimension, the 30 right index fingerprints 
belonging to the first person were followed by the 30 right index fingerprints of the second 
person, and so forth.  The same order was used down the vertical dimension in such a way so as 
to subdivide the similarity matrix into a grid of person-compared-to-person blocks of fingerprint 
scores. 

The 30×30 blocks running down the main diagonal, colored with a blue border in the illustration, 
represent intra-person matcher scores, where the 30 fingerprints belonging to the same person 
were fully matched among themselves.  The black bordered 30×30 blocks off the main diagonal 
represent inter-person matcher scores, where the 30 fingerprints from one person were fully 
matched to the 30 fingerprints of a different person.  In this way, trends as to the difficulty of a 
particular person as well as a particular fingerprint could be studied. 

Once the similarity matrix was computed, analysis began by examining the intra-person results 
within the blocks down the main diagonal.  An example of the fingerprints belonging to one 
particular person (Person 9) is shown in .  These would be characteristic of good 
quality fingerprints in DHS2.  The images have reasonably good contrast, with good definition 
between friction skin ridges and valleys, which supports reliable minutiae extraction and 
matching. 

Figure 33

The block of matcher scores for this good quality example are listed in Figure 34.  Using the 
Bozorth98 matcher, scores will range from 0 to 499, and sometimes higher.  Scores over 40 
typically represent a match, meaning the two fingerprints were from the same finger from the 
same person.  Notice that the scores down the main diagonal of the block are significantly 
higher.  These are the result of matching an impression with itself, and should be treated 
separately from those scores off the main diagonal.  The mean of the off-diagonal scores for this 
good quality example is 98. 
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Figure 33.  Good Quality Fingerprints from DHS2 Person 9 
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 499.0 131.0 102.0  48.0  99.0  64.0 114.0 106.0  77.0  76.0  65.0  39.0  67.0  68.0  54.0  83.0  93.0  87.0  21.0  37.0  68.0  72.0  93.0  98.0 137.0 103.0 136.0  83.0  68.0  86.0 

 130.0 476.0 133.0  85.0 190.0  73.0 122.0 110.0 114.0  92.0  81.0  52.0  93.0 136.0  74.0 130.0  93.0 115.0  33.0  75.0  87.0  86.0 105.0  87.0 152.0 158.0 101.0  94.0 127.0 122.0 

 102.0 135.0 499.0 117.0 210.0 137.0 149.0  81.0 121.0 108.0 134.0  64.0 112.0 161.0  83.0  80.0  83.0 102.0  44.0 123.0 186.0 117.0 135.0 144.0 152.0 179.0 125.0 129.0 124.0 129.0 

  48.0  86.0 117.0 499.0 115.0  96.0 104.0  77.0  67.0  46.0  95.0  35.0  56.0  59.0  43.0  84.0  94.0  98.0  71.0  95.0  71.0  56.0  76.0  83.0 105.0  85.0  67.0  71.0 101.0  68.0 

 107.0 196.0 206.0 129.0 499.0  84.0 179.0 152.0 182.0 160.0 123.0  96.0 195.0 246.0 123.0 126.0 150.0 215.0  56.0  87.0 114.0 176.0 165.0 166.0 129.0 172.0 154.0 159.0 179.0 179.0 

  63.0  69.0 137.0 105.0  88.0 499.0 119.0  65.0  85.0  52.0  66.0  37.0  34.0  53.0  34.0  78.0 101.0  61.0  39.0  76.0 123.0  50.0  64.0  59.0 114.0  90.0  55.0  81.0  74.0  62.0 

 114.0 131.0 151.0 102.0 180.0 119.0 499.0 149.0 159.0 116.0  98.0  75.0  98.0 126.0  66.0 110.0 116.0 128.0  39.0  68.0 135.0 135.0 154.0 169.0 196.0 185.0 142.0 167.0 107.0 128.0 

 106.0 109.0  81.0  69.0 134.0  65.0 137.0 473.0 111.0  98.0  69.0  63.0 118.0  97.0  94.0  88.0  83.0 144.0  49.0  51.0  75.0 121.0 123.0 123.0  88.0 115.0 119.0  81.0 103.0 106.0 

  78.0 116.0 121.0  69.0 182.0  85.0 159.0 112.0 499.0 138.0 101.0  77.0 116.0 134.0 109.0 107.0 129.0 115.0  48.0  78.0  92.0 105.0 143.0 132.0 101.0 108.0 137.0 144.0 100.0 130.0 

  76.0  93.0 109.0  47.0 160.0  52.0 115.0  98.0 136.0 499.0  72.0  70.0  89.0 103.0  97.0  72.0  85.0  82.0  52.0  51.0  92.0  75.0 105.0  92.0  98.0  97.0 113.0 121.0  61.0  90.0 

  65.0  82.0 134.0  95.0 122.0  68.0  99.0  67.0 102.0  68.0 499.0  50.0  84.0  88.0  76.0  88.0  87.0 113.0  49.0  67.0  73.0  81.0 112.0 111.0 101.0 108.0 126.0  95.0 104.0  82.0 

  39.0  55.0  64.0  38.0  98.0  36.0  75.0  65.0  77.0  73.0  51.0 499.0  76.0  92.0  84.0  49.0  58.0  61.0  15.0  46.0  73.0  70.0  95.0  84.0  39.0  92.0  62.0  76.0  47.0  84.0 

  67.0  93.0 111.0  55.0 195.0  34.0  98.0 118.0 115.0  89.0  82.0  75.0 353.0 172.0  83.0  77.0  72.0 123.0  32.0  60.0  84.0 140.0 125.0 112.0  81.0 109.0  91.0  79.0 105.0 146.0 

  73.0 143.0 160.0  59.0 232.0  53.0 127.0  97.0 132.0 103.0  80.0  98.0 171.0 480.0  94.0  77.0  81.0 129.0  31.0  66.0 124.0 162.0 134.0 142.0 105.0 149.0  88.0 110.0 116.0 138.0 

  54.0  74.0  83.0  43.0 124.0  34.0  65.0  94.0 110.0  97.0  76.0  84.0  86.0  91.0 453.0  65.0  58.0  89.0  22.0  58.0  68.0  87.0 102.0  97.0  68.0  75.0  92.0  87.0  66.0  83.0 

  88.0 129.0  80.0  85.0 127.0  77.0 110.0  88.0 107.0  71.0  89.0  51.0  77.0  79.0  65.0 499.0 109.0  98.0  48.0  52.0  63.0  65.0  93.0  92.0  82.0  99.0  85.0  74.0 101.0  79.0 

  93.0  93.0  82.0  92.0 150.0 108.0 117.0  85.0 130.0  82.0  72.0  58.0  72.0  81.0  58.0 124.0 499.0 142.0  46.0  74.0  74.0  92.0  98.0  87.0 128.0  92.0  87.0  80.0 128.0 121.0 

  90.0 113.0  96.0  97.0 209.0  60.0 124.0 155.0 107.0  86.0 112.0  61.0 126.0 117.0  87.0 101.0 148.0 413.0  49.0  66.0  77.0 130.0 133.0  87.0 119.0 132.0 105.0  90.0 144.0 138.0 

  21.0  33.0  44.0  71.0  56.0  39.0  39.0  49.0  48.0  52.0  49.0  17.0  33.0  31.0  22.0  48.0  46.0  49.0 519.0  48.0  29.0  30.0  51.0  37.0  27.0  38.0  28.0  37.0  53.0  40.0 

  39.0  75.0 123.0  95.0  87.0  75.0  69.0  51.0  79.0  54.0  70.0  45.0  60.0  66.0  58.0  52.0  75.0  66.0  48.0 499.0  73.0  57.0  64.0  50.0  88.0  85.0  77.0  69.0  78.0  55.0 

  75.0  87.0 185.0  73.0 117.0 123.0 134.0  77.0  89.0  92.0  73.0  77.0  86.0 125.0  68.0  60.0  76.0  80.0  29.0  71.0 499.0 137.0  74.0 106.0 125.0 144.0  88.0  97.0  66.0 122.0 

  65.0  86.0 116.0  55.0 173.0  50.0 135.0 123.0 109.0  75.0  81.0  76.0 141.0 162.0  88.0  65.0 101.0 131.0  30.0  57.0 137.0 410.0 141.0 103.0 124.0 106.0  81.0 119.0  92.0 154.0 

  93.0 106.0 135.0  72.0 167.0  64.0 154.0 113.0 140.0 105.0 117.0  94.0 126.0 134.0 101.0  93.0  98.0 134.0  51.0  63.0  79.0 141.0 481.0 179.0 118.0 132.0 156.0 109.0 117.0 134.0 

  98.0  87.0 144.0  80.0 166.0  59.0 158.0 123.0 137.0 100.0 111.0  82.0 112.0 142.0  98.0  88.0  82.0  83.0  36.0  52.0 105.0 103.0 178.0 499.0 105.0 144.0 212.0 106.0  73.0  89.0 

 153.0 152.0 141.0 101.0 137.0 114.0 191.0  88.0 108.0  96.0 101.0  41.0  81.0 105.0  72.0  93.0 130.0 120.0  27.0  84.0 125.0 127.0 114.0 103.0 474.0 191.0 117.0 122.0  99.0 115.0 

 105.0 162.0 180.0  83.0 172.0  90.0 185.0 113.0 117.0  98.0 109.0  94.0 109.0 149.0  78.0 101.0  85.0 130.0  38.0  87.0 134.0 106.0 132.0 145.0 182.0 499.0 121.0 143.0 111.0 149.0 

 136.0 102.0 133.0  71.0 160.0  52.0 144.0 121.0 135.0 113.0 125.0  62.0  91.0  86.0  96.0  80.0  87.0 106.0  28.0  72.0  89.0  81.0 156.0 213.0 116.0 122.0 487.0 116.0  83.0  98.0 

  83.0  94.0 126.0  77.0 160.0  79.0 170.0  76.0 145.0 117.0  97.0  79.0  80.0 112.0  88.0  78.0  80.0  90.0  37.0  70.0  89.0 118.0 109.0 105.0 130.0 144.0 119.0 471.0  79.0 139.0 

  71.0 127.0 123.0 100.0 179.0  75.0 105.0 103.0 100.0  61.0 104.0  49.0 106.0 112.0  66.0 102.0 127.0 143.0  53.0  77.0  67.0  92.0 123.0  72.0  90.0 112.0  82.0  79.0 437.0 129.0 

  87.0 120.0 128.0  68.0 167.0  62.0 128.0 106.0 130.0  90.0  81.0  84.0 147.0 146.0  82.0  79.0 121.0 137.0  40.0  55.0 120.0 155.0 134.0  90.0 115.0 146.0  97.0 139.0 130.0 499.0 

Figure 34.  Intra-Person Similarity Submatrix for Good Quality Case 1 

 

 

 



 

 

Figure 35.  Poor Quality Fingerprints from DHS2 Person 7 
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An example of characteristically poor quality fingerprints belonging to one particular person 
(Person 7) is shown in Figure 35.  These images suffer from several factors including areas of 
low contrast, areas of smudging, and only partial areas of the fingerprint captured. 

Figure 36 compares the distribution of matcher scores between the good quality example and the 
poor quality example.  The scores for the poor quality case are significantly lower with a mean of 
only 18.  Also notice that the shapes of the two distributions are quite different and easily 
distinguishable. 

 

Figure 36.  Comparison of Intra-Person Matcher Scores Between a Good and Poor Quality 
Case 

 

The fingerprints from a second good quality example (Person 24) are shown in Figure 37.  There 
appears to be a bit less contrast and more smudging in some of these fingerprints than in those of 
the first good quality example. 
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Figure 37.  Good Quality Fingerprints from DHS2 Person 24 
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Figure 38 compares the distribution of matcher scores between the two good quality examples.  
As can be seen, the distributions are quite similar.  This suggests that minutiae extraction and 
matching were not adversely affected by the image anomalies seen in Figure 37. 

 

Figure 38.  Comparison of Intra-Person Matcher Scores Between Two Good Quality Cases 

As an example of non-match distribution, the fingerprints of the two good quality cases can be 
matched to each other.  These scores are easily extracted from the appropriate off-diagonal block 
in the 3K×3K similarity matrix. 

The distribution of inter-person matcher scores from matching the two good quality cases to each 
other is plotted in Figure 39.  Notice the consistently low magnitude of scores, the mean of 
which is 8 and the maximum matcher score is 19.  These low scores should be expected since the 
fingerprints being compared are of different classification (whorl and right loop.) 

Notice also the small variance on this distribution.  The fact that this inter-person distribution has 
such a small mean and such a low variance indicates that there is very little chance that the 
identities of these two people will ever be confused based on matching their fingerprints with 
each other. 
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Figure 39.  Distribution of Inter-Person Matcher Scores Between Two Good Quality Cases 

 

After studying both intra-person and inter-person scores at the block level, a study was designed 
to analyze the results based on the entire 3K×3K similarity matrix.  The statistical mean and 
standard deviation were computed for each of the 10,000 30×30 blocks.  The statistics were then 
separated into two sets, those from intra-person comparison blocks and those from inter-person 
comparison blocks.  Note there are many more inter-person blocks (9,900 off-diagonal blocks) 
than intra-person blocks (100 main diagonal blocks).  The Bozorth98 matcher is essentially 
symmetric,‡‡ so only half of the off-diagonal blocks (those above the main diagonal) were used, 
totaling 4950 inter-person blocks. 

The distribution of means for both of these sets is plotted in .  Due to the significantly 
larger number of inter-person blocks than intra-person blocks, frequencies were plotted on the y-
axis in log scale. 

Figure 40

                                                 
‡‡ A matcher is symmetric if comparing A to B results in the same score as comparing B to A. 
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Comparing the two mean distributions, notice that the inter-person block means are relatively 
small with a low variance, while the intra-person block means are mostly larger, but with a 
relatively large variance. 

 

Figure 40.  Mean Submatrix Matcher Scores – Comparing intra-person to inter-person 
submatrices 

 

The distribution of standard deviations for both of these sets is plotted in .  Notice that 
the distributions of standard deviations follow a similar pattern to that of the means.  Inter-person 
block standard deviations are relatively small with a low variance, while the intra-person block 
means are larger, but with a larger variance. 

Figure 41
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Figure 41.  Standard Deviation of Submatrix Matcher Scores – Comparing intra-person to 
inter-person submatrices 

 

This consistency is further seen within the correlations plot of , where the mean of each 
block is plotted against its corresponding standard deviation.  Notice the points are somewhat 
clustered along a line from the origin of slope 1, and that the inter-person results are clustered 
near the origin.  Due to the high correlation, block analyses involving means should be sufficient. 

Figure 42

 72



 

 

Figure 42.  Correlation Plot of Mean vs. Standard Deviation from Submatrix Matcher 
Scores - Comparing intra-person to inter-person submatrices 

 

The graph in Figure 40 represents a method for analytically assessing the quality of a fingerprint 
repository.  The lower the intra-person block mean, the more difficult that particular person is to 
reliably match.  The amount of overlap between the mean distributions of intra-person and inter-
person block statistics represent how much potential confusability / difficulty exists in a 
particular repository.  More studies need to be conducted to be able to predict a level of 
performance from a measured amount of overlap, but this technique may be used to empirically 
compare different repositories.  It should be noted that this technique requires there exist 
multiple (in this case 30) impressions per finger per person in the repository to conduct the 
analysis. 

6. Implications of Metadata 

Inevitably with a large scale system performance study, involving the computation and 
comparison of aggregate statistics such as ROC curves or rank-1 analyses, there follows the 
question of, “Why?”  Without sufficiently organized and labeled data, and without tools to 
effectively store and access this labeled data, it is very difficult and tedious to analyze underlying 
events that contribute to an observed result. 
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Many factors play a potentially complex role in the outcome of a test, or more importantly, in the 
performance of any operational system.  Investigative studies conducted at NIST on the VTB 
consistently point to image quality as the single most significant factor affecting system 
performance.  Relevant information that may help explain variations in image quality as well as 
other factors limiting performance may include: 

•  Capture date 

•  Capture device 

•  Capture location 

•  Operator 

•  Demographics of the population captured – age, sex, occupation 

•  Motivation of the population captured - civilian vs. criminal; voluntary vs. compulsory 

•  Application performed – verification vs. identification 

These factors and many more, referred to as metadata, may help identify factors that affect or 
limit performance, and therefore they are important to answering the question, “Why?” 

6.1 DHS2 Metadata Study 

6.1.1 Nonstationary Results Observed 

The results in Section 5.6 shown in Figure 13 were not the first sets of results computed on the 
DHS2 repository.  The 3K×3K results above were computed on randomly selected subsets of 
their parent 6K×6K similarity matrices.  Originally, the 6K×6K matrices were divided in half, 
based and analyzed using a numerical sort of the person’s identification number (a number 
sequentially assigned to people based on a complex process of data preparation at NIST.)  Lower 
ordered identification numbers were grouped into the first-half 3K×3K matrices, while the higher 
ordered identification numbers were grouped into the second-half 3K×3K matrices. 

Using this non-random criterion for subdividing the parent similarity matrices generated the 
unexpected results shown in Figure 43.  The gray curve (All 6000) in the middle is the 6K×6K 
Multi-Trial ROC.  The blue curve (First 3000) is the 3K×3K Multi-Trial ROC corresponding to 
the lower ordered identification numbers.  The green curve (Second 3000) is the 3K×3K Multi-
Trial ROC corresponding to the higher ordered identification numbers.  Notice the significant 
separation in performance between the “First 3000” results and the “Second 3000”, which is 
quite different from the overlapping results seen in Figure 13. 
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Figure 43.  DHS2 Right Index Finger Large Scale Verification – Procedurally-Selected 
Submatrix variation of Multi-Trial ROC 

 

From these results, it is very evident that there is separation in performance between the first and 
second subsets, and it is highly suspected that the quality of the fingerprints images between the 
first 3000 people and the second 3000 people are nonstationary.  Without further analysis and 
looking for correlation within associated metadata, not much more can be said. 

6.1.2 Metadata Analyzed 

Given the separation in performance between the two subsets of ROC results observed in Figure 
43, an analysis was conducted on the metadata associated with the cases used in this verification 
study.  It was anticipated that an explanation for the difference in performance could be 
determined by analyzing the following factors recorded with each fingerprint in the DHS2 
repository.  (It was anticipated that other observations, important to DHS, would also be made as 
these factors are analyzed.) 
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DHS2 Metadata 

Encounter Date Date when fingerprints were captured 
Capture Location Location of where fingerprints were captured 
Cogent Image Quality Cogent Image Quality Measure (IQM) 
Gender Gender of the subject 

Transaction Type One of 4 types: Asylum, Border Patrol, 
Inspection, and Border Crossing Card 

Table 15.  DHS2 Metadata 

The large scale DHS2 verification study involved 60K people randomly selected across the 
entire repository.  Each person contributed a pair of right index fingerprints, one fingerprint used 
as a probe image and the other used as a gallery image; therefore, the study utilized a total of 
120K fingerprints.  Due to this large sample size, statistics and observations derived from the 
metadata associated with the fingerprints in this study should be representative of the entire 
DHS2 repository. 

The first factor analyzed was time.  In the DHS2 repository, a calendar date is recorded when a 
person’s right and left index fingers are live-scanned.  Therefore there is a capture date (called 
the “Encounter Date”) recorded for every probe and gallery fingerprint used in this study.  These 
dates are in the form of (mm/dd/yyyy) and were converted and binned into a sequence of quarter 
indices (called “Encounter Quarters”) where the earliest quarter (Quarter 1) is associated with the 
first quarter of 1995; Quarter 4 is associated with the 4th quarter of 1995; Quarter 5 is associated 
with the 1st quarter of 1996, and so on and so forth. 

The distribution of Encounter Quarters associated with the fingerprints in this study is shown in 
Figure 44.  Note the ramp up of activity from Quarter 1 through Quarter 20.  Also, notice the 
pronounced increase in activity in the fourth quarter of each year. 

The red curve in the figure charts the entire set of 60K fingerprint pairs.  The blue curve charts 
the Encounter Quarters associated with the first-half of the fingerprint pairs, while the green 
curve charts the second-half.  These three curves correspond to the three sets of results reported 
in Figure 43. 

As can be seen from the distributions in Figure 44, the majority of cases in the study fall within 
Quarters 16, 20, and 24.  The amounts in which the first-half and second-half cases are 
represented in these three quarters differ significantly.  The first-half cases are heavily 
represented in Quarter 20, while the second-half cases are more represented in Quarters 16 & 24.  
It is logical to hypothesize that the difference in performance between the first and second-half 
cases can be attributed to characteristic differences between these three quarters. 
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Figure 44.  Frequency of Encounters across Time 

 

An image quality measure (IQM) is also recorded with each fingerprint in the DHS2 repository.  
This is a proprietary quality measure developed by Cogent.  IQM values are computed on a scale 
of 1 to 8, with 1 being the highest quality and 8 being the lowest.  It was determined to be 
interesting to analyze how quality (expressed in terms of IQM) might vary over time in the 
repository. 

Little is publicly known about the Cogent IQM algorithm.  A mean IQM value may be used to 
represent the quality within a sample of fingerprints, but as there are a limited number of (eight) 
levels reported, and the distribution characteristics across the potential range of these levels is 
unknown, a different method was tested and applied.  With 1 being the highest quality level, it is 
logical when capturing fingerprint images to desire to have as many fingerprints as possible with 
an IQM value of 1; therefore, the percentage of fingerprints with IQM equal to 1 was computed 
and used to represent how “good” a repository (or subset) is. 

Figure 45 plots this measure of “good” quality across each quarter of the DHS2 repository.  
Notice an overall (red curve) decline in quality from Quarter 9 through Quarter 23.  This 
demonstrates that fingerprint image quality is nonstationary.  Up till Quarter 24, the second-half 
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cases (green curve) are of consistently better quality than first-half cases (blue curve).  This 
observation supports the second-half cases performing better than the first-half. 

The disparity between first and second half qualities is even greater when examining the high-
activity Quarters 16, 20, & 24.  In fact, the difference between the two sets within Quarter 20 is 
one of the largest across the entire series.  Quarter 20 is of significantly lower quality and, as 
seen in Figure 44, primarily comprised of first half cases, which again support the second half 
cases performing overall better than the first half. 

 

Figure 45.  Quality of Images Captured across Time 

 

Figure 46 plots the change in gender across time.  The statistic used here is the percentage of 
female cases within each quarter.  Female statistics are used here as opposed to male due to the 
hypothesis that female fingerprints are generally more difficult to match than male. 

Looking at the overall (red) curve, there is a trend of an increasing percentage of female cases, 
starting with about 5% at Quarter 4 and increasing to 15% at Quarter 20. 

Again, when examining differences between first and second-half statistics at Quarters 16, 20, 
and 24, notice the first-half cases for Quarters 20 has somewhat (4%) more females than the 
first-half.  Recall from Figure 44 that Quarter 20 is mostly comprised of first-half cases, and we 
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see here that there are more females represented in the first-half than the second half.  This lends 
support to the hypothesis that females are more difficult to match, as the first-half performs 
worse than the second-half and there is evidence that the ratios of gender do differ. 

 

Figure 46.  Gender across Time 

 

Another attribute recorded for each case in DHS2 is the location at which the fingerprints were 
captured (called the “Capture Location”).  There are over 300 different Capture Locations 
recorded in the 60K cases of this study.  Figure 47 plots a histogram of the 50 most frequent 
locations, representing 88% of the cases in this study; 48% of the cases are represented in the 
first 10 locations; 33% in the first 5 locations. 

Figure 48 plots image quality (% of cases with IQM = 1) across the 50 most frequent Capture 
Locations.  Notice the wide variation in quality across locations and the exceptionally high 
quality with locations such as Capture Location 6.  In general, the quality of second-half (green 
curve) cases is higher than first-half (blue curve) cases at nearly every location. 

The next figure, Figure 49, plots gender (% female cases) across Capture Locations.  As was the 
case with image quality, the percentage of females significantly fluctuates from location to 
location.  Of the more frequent locations, the most dramatic increase is with Capture Location 6 
where overall (red curve) 40% of the cases at this location are female.  A curious observation is 
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that Capture Location 6, although it has a high percentage of female cases, has significantly high 
image quality according to Figure 48.  Also notice in Figure 49 that with a majority of locations, 
the first-half (blue curve) cases have a higher percentage of females than the second-half (green 
curve). 

 

Figure 47.  Frequency of Encounters across Capture Location 
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Figure 48.  Quality of Images across Capture Location 
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Figure 49.  Gender across Capture Location 

 

While some interesting and perhaps useful qualitative observations can be made from the 
metadata plots above, it is difficult (if not impossible) to derive quantitative measurements from 
these graphs that accurately describe the effect these different metadata factors have on 
performance.  To take a more statistical view of these factors, a correlation matrix was computed 
between the integer data representing capture quarters, capture location, image quality, gender, 
and transaction types. 

Looking at the correlation coefficients in Table 16, the strongest correlations are between 
transaction type and gender with a value of 0.29, and between capture quarter and gender with a 
value of 0.2.  Neither of these are indications of strong correlations. 

                 Quarter     Location     Quality     Gender Transaction  
    Quarter  1.000000000 -0.003495314  0.06894202 0.20043526 -0.04144020 
   Location -0.003495314  1.000000000 -0.13102489 0.05149515  0.05456955 
    Quality  0.068942024 -0.131024892  1.00000000 0.01373389 -0.02282792 
     Gender  0.200435257  0.051495149  0.01373389 1.00000000  0.28768644 
Transaction -0.041440196  0.054569546 -0.02282792 0.28768644  1.00000000 

 

Table 16.  Correlation Table of Metadata Factors 
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6.1.3 DHS2 Metadata Study Summary 

By analyzing the metadata recorded with DHS2, several important discoveries were made.  First, 
we observed that both image quality and gender were nonstationary, as they varied significantly 
over time and across different capture locations.  Second, aggregate ROC analyses may hide 
these types of nonstationary factors, which are important to understanding and improving the 
performance of operational systems. This was demonstrated by comparing the separated results 
of Figure 43 (where subsets were selected procedurally based on an identification number) to the 
overlapped results of Figure 13 (where subsets were selected randomly).  This supports the third 
conclusion, that biometric performance studies should include tests for discovering and 
analyzing nonstationary factors. 

6.2 Concept for a Fingerprint Experiment Manager 

As described above, DHS2 repository has an extensive set of metadata associated with each pair 
of fingerprints captured, while the HEF framework utilized to generate performance statistics in 
this report provides virtual probe and gallery sets to be defined from within a large similarity 
matrix.  With the data and framework in place, NIST has the ability to conduct experiments 
where probe and gallery sets of fingerprints are dynamically and strategically selected.  By 
computing performance statistics on different probe and gallery sets, specific factors can be 
isolated and their effect measured. 

A challenge however exists.  As the size of a repository grows, the ability to manually select, 
archive, and compare results from multiple experiments becomes prohibitive.  Even more, 
specific pairs of probe gallery fingerprints matched in a prior experiment may be selected again 
for a new experiment given new criteria.  In this case, it would be advantageous to retrieve the 
previous match score rather than compute a new one. 

To automate all this bookkeeping, a database-driven experiment manager is needed.  This is the 
topic of ongoing research and development at NIST.  Conceptually, this database tool is initially 
loaded with a repository of fingerprints and associated metadata.  Metadata queries are 
constructed based on factors of interest and ran against the database returning a set of relevant 
probe and gallery fingerprints to be matched.  Those matches not previously computed between 
the probe and gallery sets are computed and stored in a repository-level similarity matrix.  After 
which performance statistics are computed and reports generated.  Then a new metadata query is 
constructed and a new set of experiments ran. 

A tool such as this holds great potential in gaining understanding of the performance of a 
fingerprint matching system. 

 

7. Conclusions 

This report documents a large set of evaluations performed on diverse data sets using a 
fingerprint verification system developed at NIST in cooperation with the FBI.  This system was 
designed to allow two functions to be performed.  First the system serves as an open system for 
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the evaluation of fingerprint technology which allows different datasets and evaluation methods 
to be tested.  Second, the system sets minimum standards of performance for fingerprint systems.  
The software used to build the system is publicly available at no cost so any system that can’t 
out-perform the VTB in either accuracy or speed should also have very minimal cost. 

7.1 Critical Test Parameters 

The conclusions presented here which involve datasets have used two distinct types of data.  The 
first type of data includes the NIST Special Databases such as SD14, SD24, and SD29.  These 
are small data collections (200-2000 subjects) that contain only images that are good enough to 
be matched by an AFIS or by human examiners or both.  Given the methods by which these 
small datasets were collected, all failures to acquire and failures to enroll have been eliminated.  
In other words, all cases were removed where the captured fingerprint image was of sufficiently 
poor quality so that using it to match would be impossible. These datasets have been widely used 
for research and development of fingerprint systems and reflect the type of data that might be 
available using well controlled laboratory conditions. Comparison of algorithms using this data 
can be duplicated by other workers in the field and should produce results similar to previously 
published studies.   

The second type of data is large datasets which were collected with no prior plan to use the 
fingerprints for evaluations.  The usual collection procedure for this data is to try to collect the 
best fingerprints possible in a fixed but limited time.  If none of the fingerprints collected are as 
good as could be obtained with an unlimited time, you submit the best set available.  These 
datasets contain measurable numbers of fingerprints that are not usable and that would be 
failures to acquire or failures to enroll.  Examples of this type of data are DHS2, DHS10, and 
TXDPS.  In these datasets the unusable fingerprints lower the TAR by some fixed amount.  In 
Section 5.13 this number for the DHS2 dataset was measured as 2%.  Additional studies using 
commercial AFIS system are underway to evaluate these rates for other datasets and systems. 

In all the comparisons of results discussed here, three factors need to be considered.  First, does 
the data contain the type of information needed to calculate the failure to acquire rate?  Second, 
is the data stationary over time? This not only implies consistent data collection procedures but 
uniform demographics.  Third, is the sample variance known or is the sample size large enough 
to allow confidence limits to be measured?  In the NIST Special Databases the images that would 
cause acquisition failures have been removed.  In the DHS, TXDPS, and DOS datasets, images 
that are of poor enough quality to cause acquisition failures are retained.  All of the large datasets 
used here were tested for stationary statistics and only DHS2 was nonstationary.  DHS2 is the 
only dataset which was collected at locations where the demographics have been observed to be 
time dependent. The two standard deviation variance of the SD sets was not calculated because 
of small sample sizes.  The two standard deviation variance in verification rate of the large 
samples ranges from 1% for DHS2, to 5% for TXDPS, with DHS10 and DOS data at about 2%; 
since DHS2 is nonstationary, its variance is dependent on sampling. 

7.2 Small Sample Test Conclusions 

For single fingers, plain-to-plain matching is substantially less accurate than rolled-to-rolled 
matching.  This is clearly illustrated by Figure 5 in which the rolled-to-rolled TAR at 1% FAR is 
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98% while the plain-to-plain TAR is 95%.  It is common for the FRR (1 - TAR) to be two to 
three times higher for plain-to-plain matching than for rolled-to-rolled matching.  As an example 
consider the data shown in Figure 6.  The TAR at 1% FAR for rolled-to-rolled fingerprints is 
96% and for plain-to-rolled matching is 90%.  Plain-to-rolled matching is usually somewhat less 
accurate than plain-to-plain matching.  In Figure 5 through Figure 9, the plain-to-rolled ROC 
curve is near or below the plain-to-plain ROC in all cases.  For Figure 8, the ring finger, plain-to-
rolled matching is substantially below plain-to-plain matching.  Preliminary results for 
commercial systems confirm that plain-to-rolled matching is substantially less accurate than 
rolled-to-rolled matching.  Further tests on plain-to-plain matching are being conducted on 
commercial systems. 

Since matcher scores for different fingers are nearly statistically independent, combining two 
fingers using a linear 2-D threshold is very effective.  Figure 22 and Figure 24 illustrate that 
matcher scores for thumbs and index fingers respectively are uncorrelated.  These figures also 
show that a simple linear discriminate with a slope of –1 will serve as a simple boundary 
between match and nonmatch scores.  When index finger and thumb scores are combined using 
this discriminate, it is possible to produce verification results with a TAR of 99% at a FAR of 
1%.  Combining right and left index finger matcher scores in the same way is somewhat less 
effective but still allows a TAR of 98% to be achieved at a FAR of 1%. 

For the matching of plain fingerprints, area is very important.  Thumbs are more effective than 
index fingers and little fingers are of very limited value.  This is clearly illustrated for live-scan 
data in Figure 4 and for plain fingerprint images taken from inked card in Figure 5 through 
Figure 9.  Most commercial AFIS systems make extensive use of index finger pairs for rolled-to-
rolled matching.  This strategy was adopted in identification applications because studies have 
shown that index fingers are effective when used for pattern classification-based filtering, 
particularly when compared to other fingers. This does not appear to be a good strategy for 
verification using plain impressions.  Finger area is more important and no filtering is required.  
The larger area of thumbs makes them a better candidate for verification. 

7.3 Large Sample Test Conclusions 

Tests on large datasets show similar single finger matching results and sample-related variations 
to those seen with the small datasets.  There is however a significant variation in sample results 
that is related to image quality and the variation of image quality about the mean value.  These 
results can not be adequately tested on small datasets since the small samples used were selected 
after matching and human visual inspection were conducted, which produces images with greater 
quality than one would expect to find in unscreened operational data. 

SD29 index finger plain-to-plain matching results on the VTB are similar to DHS2 and DOS 
plain-to-plain index finger results as shown in Figure 50.  This is not the result that was 
expected.  SD29 represents 20 year-old good quality inked data that was scanned and checked at 
NIST.  DHS2 is data collected by the former INS under field conditions using live-scan 
equipment.  The TAR at 1% FAR for SD29 is 88% while the TAR at 1% FAR for DHS2 and 
DOS is 90%.  The TAR at 0.01% FAR for SD29 is 76% while the TAR at 0.01% FAR for DHS2 
is 78%, and for DOS it is 79%.  This also shows that results for operational tests using live-scan 
data (DHS2 or DOS) are statistically the same as results using screened inked fingerprints 
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(SD29).  The expected loss of quality going from good quality inked cards to operational quality 
fingerprints is more than compensated for by the improvement in live-scan image quality. 

 

Figure 50.  Comparison of Plain-to-Plain Results from SD29, DHS2, & DOS 

 

As shown in Figure 51, SD24 index finger plain-to-plain matching results are similar to TXDPS 
plain-to-rolled index finger results.  SD24 data was collected under laboratory conditions at 
NIST using live-scan equipment.  TXDPS data is a mixture of inked and live-scan data collected 
under widely varying conditions.  (These conditions cause a large variance in the TXDPS data.)  
The TAR at 1% FAR for SD24 is 93% while the TAR at 1% FAR for TXDPS is 92%.  The TAR 
at 0.01% FAR for SD24 is 83% while the TAR at 0.01% FAR for TXDPS is 85%.  The lower 
bound on the TXDPS data results is a TAR of 88% at a FAR of 1% and a TAR of 81% at a FAR 
of 0.01%.  This is better than either SD29 or DHS2 and demonstrates that current law 
enforcement data can be collected with image quality approaching laboratory quality results.  It 
further suggests that improved collection or sensor technology should be able to bring the results 
of large scale data collections such as DHS2 and DOS close to the results of SD24 and TXDPS.  
At the same time Figure 51 shows the ROC results for DHS10 data.  This data yields 
substantially lower TAR for any given FAR and is an indication of the type of results that might 
be expected with some archival data set in existing systems. 
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Figure 51.  Comparison of Results from SD24, DHS10, & TXDPS 

 

The splitting of DHS2 verification results shown in Figure 43 demonstrates that large samples 
must be checked for stationary properties.  Analyzing the metadata recorded with DHS2, several 
important discoveries were made.  First, we observed that both image quality and gender were 
nonstationary, as they varied significantly over time and across different capture locations.  
Second, aggregate ROC analyses may hide these types of nonstationary factors, which are 
important to understanding and improving the performance of operational systems.  This was 
demonstrated by comparing the separated results of Figure 43 (where subsets were selected 
procedurally based on an identification number) to the overlapped results of Figure 13 (where 
subsets were selected randomly).  This supports the third conclusion, that biometric performance 
studies should include tests for discovering and analyzing nonstationary factors.  The ability of 
studies of the type discussed here to predict deployed system performance will depend on how 
well the correlation between demographic and location-dependent factors and biometric 
performance are understood.  Treating only the average performance derived from test samples 
that do not reflect these factors will produce incorrect results.  Fingerprint verification 
performance can not be treated as a single number that covers all systems or all demographic 
mixes. 
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The identification results shown in Figure 18 demonstrate as much as a 10% fluctuation in 
correct identification across ten, 100-finger rank-1 identification trials using a 620,000 
fingerprint gallery from DHS2 data.  The same data also shows that it is possible for the average 
results in 100-finger samples to be 10% different between right and left index fingers.  Figure 19 
shows the average results for this experiment as a function of gallery size.  Above a gallery size 
of 10, the right index finger consistently has a higher identification rate than the left index finger.  
The VTB’s identification rate for a gallery size of 620,000 is 76% for right index fingers, using 
rank-1 thresholding. 

Since most commercial AFIS systems use two or more fingers successfully for identification and 
since the NIST recommendation to Congress is for two or more fingers, limited tests were 
performed for identification using more than one finger.  Combining two index fingers using 
rank-based fusion improves the 620,000 fingerprint identification results by 9%.  The method 
used to combine fingers is one which produces minimal computational load.  The left index 
fingers of the top-100 right index fingers are tested and the scores are summed and ranked.  The 
effect of this combined scoring is shown in .  The details of this process are discussed 
in Section 5.12.3.  It should be kept in mind that this procedure requires that the scores of the two 
fingers used be largely statistically independent.  If a match is missed because of poor image 
quality and a second finger image of equally poor quality is used, the combined score may still 
not produce a satisfactory match.  This effect is illustrated in Figure 31.  Using 1000 fingerprints 
1.8% could not be scored as rank-1 and 0.2% fell below rank-1 using this combining procedure, 
so that 2.0% of the identifications were not improved by combining scores. 

Figure 28

Sections 5.12.1 & 5.12.2 discuss a very simple form of score-based fusion using two fingers for 
identification.  The results of these studies are shown in Figure 23 through Figure 27.  While the 
fusion is less than ideal as shown in tables 10 and 12, the results make a dramatic improvement 
in the single finger verification rates.  These results are the basis for the NIST recommendation 
for two or more fingerprints in Reference (303a) [34].  Using a thumb and index finger from 
SD29, a TAR of 98.6% can be achieved at a FAR of 1%.  Using two index fingers from SD29 a 
TAR of 97.6% can be achieved at a FAR of 1%. 

Since 2.0% of the identifications in the two-finger identification experiment failed to improve the 
results of a single-finger match, and since no data exists on the repeatability of large scale 
fingerprint samples, a study of fingerprint repeatability was done using DHS2 data.  Fingerprint 
matching repeatability results show that, for 98% of subjects, fingerprint matching is highly 
repeatable.  For the other 2% of subjects, fingerprints of adequate quality for matching can not be 
obtained.  This test is important for two reasons.  First it allows the repeatability and image 
quality to be evaluated solely on the basis of matcher performance.  Second, since sample size 
for each individual was 100, it allowed visual inspection of the image sets that were not 
repeatable.  This visual inspection confirmed that the non-repeatable image usually appeared to 
be of adequate contrast and resolution but that the friction ridges were not well defined. 

This document has introduced the VTB and results of several studies made possible by the VTB. 
The VTB will have an ongoing role as a platform for a variety of fingerprint studies in the future, 
building on these results.  As part of this ongoing work, an appendix comparing the VTB 
matcher to two commercial fingerprint systems has been added to this report.  This appendix 
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concludes that the performance of the VTB is very similar to commercial verification systems 
currently on the market. 
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APPENDIX A.   Matcher Comparisons to the VTB 

At the time this document was written no data comparing the VTB with other matchers was 
available.  During the review process, tests that enabled comparison of the VTB matcher with 
commercial products were started and some data of interest has become available.  This data is 
shown as a set of ROC curves in Figure 52.  All of the curves are derived from 6K×6K similarity 
matrices.  The figure contains a total of twelve ROC curves.  Three matchers (the VTB matcher 
and two commercial products) were tested on four sets of data. 

In all cases the suppliers were told that the primary data of interest was the data set from the 
Department of State Mexican visa program (DOS).  After this report went to editorial review, a 
new highest quality data set was obtained from DHS.  This data set, referred to as BEN, was 
acquired using new live-scan equipment and has been subjected to stringent human quality 
control.  Further tests with the BEN data are ongoing. 

The data presented in Figure 52 and Table 17 shows that the quality of data is as important for all 
the algorithms tested as is the particular algorithm being tested.  The best results presented are 
for plain-to-rolled matching of the right thumb on BEN data.  The two best algorithms are 
NIST’s VTB and vendor A.  For the VTB (blue diamond) and vendor A (red square) a TAR of 
98% is achieved at 1% FAR.  For the DOS data set using plain-to-plain index fingers at 1% 
FAR, vendor A (red plus) has a TAR of 94.5%, vendor B (blue square) has a TAR of 96% and 
the VTB (gray triangle) has a TAR of 91.4%.  In the first case (BEN right thumb plain-to-rolled) 
the VTB tied the best vendor, and in the second (DOS) case both vendors were better than the 
VTB. 

The two worst cases are vendor B for Texas data (yellow circle) and the VTB for DOS data (gray 
triangle).  This indicates that the results presented in this report are worst case for the VTB, but 
are better than one could expect for commercial software which is not optimized for Texas 
quality data. 

From this limited comparison we conclude that the data presented here fairly well brackets the 
range of results one might expect to obtain using commercial software.  The parameters of 
interest in this report for fingerprints are dataset quality, algorithm, and which and how many 
fingers are used.  This report covers the dataset quality parameters and one and two-finger 
matches for one algorithm.  Much further work is required to fully characterize all of the critical 
parameters of interest. 
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Figure 52.  ROC curves for three algorithms (VTB and two commercial fingerprint 
matchers) and four data sets 

 

 

Data Set VTB-TAR A-TAR B-TAR 

DOS 91.4% 94.5% 96% 
TX 93% 94% 88.5% 

BEN (right thumb) 98% 98% 96% 
BEN (right index) 94% 95.5% 92% 

Table 17.  TAR for three algorithms and four data sets at 1% FAR 


	INTRODUCTION
	Brief History of Biometrics at NIST
	Change in Focus as of 9-11
	USA PATRIOT Act Requirements
	Border Security Act Requirements
	303A Report

	Need for the VTB
	Report Organization

	VTB DESCRIPTION
	Hardware Description
	Software Description
	NIST Fingerprint Image Software
	Four-Finger Plain Segmenter
	Bozorth98 Fingerprint Minutiae Matcher
	Scoring Software


	VTB DATA REPOSITORIES
	NIST Special Database 14 (SD14)
	NIST Special Database 24 (SD24)
	NIST Special Database 29 (SD29)
	Immigration and Naturalization Service Recidivist Database
	DHS 2-Finger Images (DHS2)
	Matcher-Based Quality Control

	DHS 10-Finger Images (DHS10)
	DHS Consolidation Set of 10-Finger Images (DHS10-C)

	Department of State Mexican Visa Database (DOS)
	Texas Department of Public Safety Database (TXDPS)

	EVALUATION FRAMEWORK
	Terminology and Definitions
	Verification vs. Identification

	STUDIES AND RESULTS
	Overview of Studies
	Small-Scale Studies
	Large Scale Studies
	Other Studies

	Inked, Rolled Impression Verification Study with SD14
	Live-Scan, Plain Impression Verification Study with SD24
	Inked, Rolled vs. Plain Impression Verification Study with SD29
	Live-Scan, Rolled vs. Plain Impression Verification Study with DHS10-C
	DHS10 Consolidation
	DHS10-C Results

	Large Scale Live-Scan Verification Study with DHS2
	Large Scale Live-Scan Verification Study with DOS
	Large Scale Inked Verification Study with DHS10
	Large Scale Inked Verification Study with TXDPS
	Large Scale Identification Study with DHS2
	Large Scale Identification Study with DOS
	Fusion of Results from Multiple Fingerprints
	Score-Based Fusion Using SD29
	Score-Based Fusion Using DHS10-C
	Rank and Score-Based Fusion Using DHS2

	Person Variation Study with DHS2

	Implications of Metadata
	DHS2 Metadata Study
	Nonstationary Results Observed
	Metadata Analyzed
	DHS2 Metadata Study Summary

	Concept for a Fingerprint Experiment Manager

	Conclusions
	Critical Test Parameters
	Small Sample Test Conclusions
	Large Sample Test Conclusions


