

 400 Int. J. Information and Computer Security, Vol. x, No. x, 200x

 Copyright © 2007 Inderscience Enterprises Ltd.

Smart Cards for mobile devices

Wayne Jansen*
National Institute of Standards and Technology,
Gaithersburg, Maryland, USA
E-mail: jansen@nist.gov
*Corresponding author

Serban Gavrila
VDG Inc., Chevy Chase, Maryland, USA
E-mail: gavrila@nist.gov

Clément Séveillac
Amadeus, Sophia Antipolis, France
E-mail: clem@via.ecp.fr

Abstract: While mobile handheld devices provide productivity benefits, they
also pose new risks. User authentication is the best safeguard against the risk of
unauthorised use and access to a device’s contents. This paper describes two
novel types of Smart Card (SC) with unconventional form factors, designed to
take advantage of common interfaces built into many current handheld devices.

Keywords: mobile devices; authentication; Smart Cards; SCs.

Reference to this paper should be made as follows: Jansen, W., Gavrila, S. and
Séveillac, C. (2007) ‘Smart Card for mobile devices’, Int. J. Information and
Computer Security, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Wayne Jansen is a Principal Computer Scientist at the
National Institute of Standards and Technology (NIST), Computer Security
Division in Gaithersburg, Maryland. His research interests lie mainly in
communications, distributed applications, and security. Currently, he heads the
Mobile Security Project, focused on securing mobile software and handheld
devices.

Serban Gavrila received his Bachelor’s and Master’s Degree in Computer
Science from the University of Bucharest, Romania. He joined VDG Inc.
of Chevy Chase, Maryland, USA in 1995 as a senior research scientist. He has
been involved in compiler construction and development of access control
management systems.

Clément Séveillac has been passionate about Information Technology and
Information Security even before entering Ecole Centrale Paris, a Prestigious
French Engineering School. During his studies there, he had the opportunity to
work for various companies, including SchlumbergerSema (now Axalto).
Just after graduating, he went to NIST for two years in the Mobile Security
Project. He is now developing technologies for the travel industry in the South
of France.

 Smart Card for mobile devices 401

1 Introduction

With the continuing trend towards a highly mobile workforce, the use of mobile handheld
devices such as Personal Digital Assistants (PDAs) and smart phones is growing at an
ever-increasing rate. These devices are moderately inexpensive productivity tools that
have become a necessity for government and industry. While mobile devices have their
limitations, they are nevertheless extremely useful in managing appointments and contact
information, reviewing documents and spreadsheets, corresponding via electronic mail
and instant messaging, delivering presentations, accessing remote corporate data, and
handling voice calls. Over time, users can accumulate significant amounts of sensitive
corporate information on them and enable automatic access to corporate resources via
wireless and wired communications, making that information a potential target for attack.

One of the most serious security threats to any computing device is unauthorised use.
This threat is especially acute for mobile handheld devices, since their small size
allows them to be easily misplaced, lost, or stolen. User authentication, the ability to
differentiate legitimate users from illegitimate ones, is the first line of defence against
unauthorised use, and provides a foundation for access control and confidentiality.

Smart Card (SC) authentication is perhaps the best-known example of a proof
by possession mechanism. Other classes of authentication mechanisms include proof by
knowledge (e.g., passwords) and proof by property (e.g., fingerprints). SCs are credit
card-size, plastic cards that hold an embedded computer chip containing an operating
system, programs, and data (Husemann, 1999; Vedder, 1992). SCs can improve
the security of a device by providing an independent tamper-resistant processing
environment for use in authentication and other security services (Turban and
McElroy, 1998). Many organisational security infrastructures incorporate SCs. However,
standard-size SCs are generally not amenable to handheld devices because of the
comparatively large-size of the card, the need for a suitable card reader, and the difficulty
and cumbersomeness of interfacing a reader to the device.

This paper describes two types of SC that use standard interfaces supported by most
handheld devices, in lieu of those interfaces favoured by most SC readers. The paper
explains how these novel forms of SC can be applied to authenticate users on handheld
devices, and provides details of the solutions’ design and implementation.

2 Background

SCs are designed to protect the information they contain. Tamper resistance techniques
are used to protect the contents of the chip embedded on the card. The computer chip
requires a SC reader to obtain power and a clock signal and to communicate with the
computing platform. Once contact is made with the reader, a SC uses a serial interface to
communicate with software running on the computing platform. Java Card is currently
one of the more popular operating systems for SCs.1 Data units received by the SC are
processed by Java applications installed on the card. The Java Card runtime facilitates the
development and deployment of Java applications to support authentication and other
security-related applications, such as those involving electronic commerce.

For a SC to allow access, it typically requires the user to enter a Personal Identity
Number (PIN) first, to verify that the individual in possession of the card is the person to
whom the card was issued. Incorrect PINs keep the card from functioning and eventually

 402 W. Jansen, S. Gavrila and C. Séveillac

cause it to lock. Once the PIN is successfully entered, a dialogue between the computing
platform and SC occurs, by which the platform confirms that the card and the credentials
of the user on the card are valid.

The capabilities and form factor of standard credit card-size SCs are compatible
with some handheld devices, provided that a reader can somehow interface with
the device and a compatible driver is available for the platform’s operating system.
For example, several manufacturers produce SC readers as hardware modules that
fit into a Type II PCMCIA Card slot. These readers accept standard-size SCs, obtained
separately. A platform, such as an iPAQ 5550 PDA, whose expansion options include
both single and double PCMCIA slot expansion sleeves, can readily accept such readers
and operate them, once a suitable driver is installed. More elegant solutions also exist
such as the Blue Jacket (Axcess Mobile Communications, 2005), which incorporates
a SC reader within the expansion sleeve and can support an optional Bluetooth
communications and a Type II compact flash interface. Either solution, however, is
limited to certain types of PDAs and adds considerable bulk to the device.

SCs come in other form factors. A popular format emerging for SCs is a Universal
Serial Bus (USB) key fob. This chewing gum pack-size hardware component has a
printed circuit board with a processor and memory encased within a plastic housing
containing a USB connector at one end. Many manufacturers produce USB devices that
function identically to SCs and, since they interface through a USB port, eliminate the
need for a reader. Currently, however, very few handheld devices support host USB
ports, which are needed to interface to these peripherals. One constraining factor is that
the handheld device would need to draw on its battery to power any peripherals plugged
into the USB port.

Another alternative is the iButton, a 16 mm computer chip contained in a stainless
steel shell, able to be mounted in jewellery such as a ring (Maxim/Dallas Semiconductor
Corp, 2002). Capabilities of these button-size devices range from a simple memory token
to a microprocessor and arithmetic accelerator able to support a Java Card-compliant
Virtual Machine. However, a button receptacle incorporated into the device or easily
added (e.g., via a compact flash card) is needed to foster their use with PDAs and other
handheld devices. USB holders are also available for iButtons, but would require a host
USB port.

The authentication mechanisms described in this paper rely on packaging SC
functionality in a form factor that is compact, unencumbering, and compatible with
the capabilities possessed by handheld devices. The mechanisms were designed to
authenticate the user via an issued SC security token. Once the user succeeds in
authenticating, the token is closely monitored to confirm its presence throughout the
user’s interaction with the device. Removing the token from the device or turning it off,
automatically terminates access to the device. The two SC authentication tokens used are
distinguished from one another as being either contact or contactless. These compact
tokens require only that participating handheld devices respectively support a standard
memory card interface or a common wireless interface for Personal Area Network (PAN)
communications.

The authentication mechanisms were implemented in C and C++ on an iPAQ PDA,
running the Familiar distribution of the Linux operating system from handhelds.org and
the Open Palmtop Integrated Environment (OPIE). The Familiar distribution was
modified with MAF, a framework for multimode authentication (Jansen et al., 2003b).
The framework includes a policy enforcement engine that governs the behaviour of the

 Smart Card for mobile devices 403

device (Jansen et al., 2003a) and a facility to add new authentication mechanism modules
and have them execute in a prescribed order. MAF authentication mechanisms consist of
two parts: an authentication handler, which embodies the procedure that performs the
actual authentication, and a user interface, which performs all necessary interactions with
the user. The authentication mechanisms described in this paper are referred to as the
Smart Multimedia Card (SMC) and Bluetooth Smart Card (BSC) mechanisms, and were
implemented specifically for MAF. MAF functionality was used to protect authentication
components and any security-related files stored on the handheld device.

3 Smart Multimedia Card (SMC) authentication

The SMC authentication mechanism relies on a SC chip packaged in a multimedia card
format. The postage stamp-size card houses a MultiMedia Card (MMC) controller, SC,
and additional flash memory. Many PDAs and other handheld devices support an
MMC card slot, making such cards a viable means to provide SC functionality.
The MultiMediaCard Association has recently drafted standard specifications for secure
MMCs.

A pre-production Smart MMC produced by Renesas called the X-Mobile Card
(XMC) observes the draft standard and was used for the prototype implementation.
The tamper resistant hardware module complies with Java Card 2.2.1, Global
Platform 2.1, FIPS 140-2 (currently under evaluation), and other standards. To use the
XMC, a Linux device driver was developed, which is now available at an open source
site for Linux SC software.

3.1 Operation

The SMC mechanism relies on the user to possess an issued SC security token to satisfy
authentication. The handler software, which runs in user space on the handheld device,
monitors card insertion and removal, and controls all the necessary steps regarding the
authentication mechanism. The aim of the mechanism is twofold: to authenticate the user
to the handheld device, and to ensure that the SC with which the user authenticated
remains in force. To carry out its function, the SMC handler communicates with the
modified Linux kernel, the OPIE plug-in component that forms the user interface, and a
special purpose ‘Enroller’ applet on the SC. Figure 1 illustrates the situation.

Figure 1 Authentication Handler Communications

 404 W. Jansen, S. Gavrila and C. Séveillac

In its initial communications with the kernel, the handler indicates that it is a special type
of handler, operating in polling mode, and specifies the polling interval for call back.
It then receives orders from the kernel either to poll the SC or to perform authentication.
For the former, detected state changes in the card from the previous poll cause the
handler to request a call back with an order to perform authentication. For the latter, the
handler replies to the kernel with the verdict of the authentication.

In communications with the OPIE plug-in, the handler tells the user interface
to display certain informative messages, when needed, and to accept PIN entry from
the user.

In communications with the XMC SC and the Java Card ‘Enroller’ applet,
the handler uses the PC/SC Lite software protocol stack. PC/SC Lite is an open source
software stack for Linux based on the Personal Computer/Smart Card (PC/SC)
specification (PC/SC Workgroup, 2005), a popular general-purpose architecture for SCs.
The communication with the card consists of exchanging Application Protocol Data
Units (APDUs) with the on-card applet over a Global Platform Secure Channel.
The ‘Enroller’ applet validates the PIN supplied by the user via the handler and verifies
the user’s claimed identity using the FIPS 196 challenge-response protocol. The applet
and PIN are placed on the SC along with the user’s public key credentials during card
personalisation.

3.2 Implementation

The SMC handler operates in two modes, as directed by the kernel: a polling mode,
periodically checking the status of the SC during a polling moment, and an authenticator
mode, performing an authentication with the SC.

Performing authentication is accomplished by the handler obtaining the PIN from the
user and issuing the appropriate APDUs to establish an authentication session with the
SC, create a secure channel to the card, issue a challenge, and verify the response.
The challenge-response protocol used is compliant with FIPS 196 (National Institute of
Standards and Technology, 1997). FIPS 196 is designed with measures to conceal the
base secret used and avoid replay. Figure 2 illustrates the scheme, omitting the requisite
PIN satisfaction step that occurs.

The upper part of the diagram shows the initial exchange used to enrol a SC token at
right with the handheld device at left, while the remainder shows the exchanges used to
verify the claimed identity following FIPS 196 procedures:

• the device, acting as the verifier, generates a random challenge ‘B’ and passes
it to the SC for signing with the private key associated with the enrolled identity
certificate

• the SC, acting as the claimant, generates a random value ‘A’, signs A||B with the
private key on the card (‘||’ denotes concatenation), and returns A and the signature
to the device

• the device retrieves the enrolled identity certificate, verifies it, then verifies the
card’s signature over A||B using the public key in the certificate

• if everything successfully verifies, authentication succeeds; otherwise, the
authentication attempt fails.

 Smart Card for mobile devices 405

Figure 2 Challenge-response exchange

Performing polling operations is slightly more involved. The handler begins by obtaining
the card’s state and weighing several factors: whether a previous authentication session
exists, the card’s current and previous states, and whether the card was reinserted
(and maybe replaced) between the previous and the current polling moments.
The possible cases that can occur during a poll and the action taken by the handler in
each case appear in Table 1.

Table 1 Decision matrix

Previous authentication
session exists

Card’s
current state

Card’s
previous state

Card
reinserted Action

Yes Tell kernel the
authentication failed

Present

No Do nothing

Present

Absent N/A Tell kernel to attempt
authentication

Present N/A Tell kernel the
authentication failed

Yes

Absent

Absent N/A Do nothing
Present No Do nothing Present
Absent N/A Tell kernel to attempt

authentication
Present N/A Tell kernel the

authentication failed

No

Absent

Absent N/A Do nothing

 406 W. Jansen, S. Gavrila and C. Séveillac

The most interesting case in the table is the first entry, where the card is present, but was
removed and inserted (and possibly replaced) since the last polling moment. To force
reauthentication to occur in this situation, the handler changes the current card state to
‘absent’, while the previous state remains ‘present’. It then tells the kernel that the
authentication failed. In the next iteration, the previous card state and current card state
are updated, resulting respectively in ‘absent’ and ‘present’ settings. The handler then
tells the kernel that conditions exist to attempt authentication, so that it will be called
back subsequently to perform an authentication operation.

The Enroller applet works in conjunction with the handler. It is a Java Card
applet designed for use in the XMC and other Java Card-compliant SCs (Ortiz, 2003).
The name of the applet is a bit of a misnomer, since the applet participates both in the
personalisation of the card and the authentication process. The applet conforms to
Java Card 2.1.2 specifications and supports secure channel communications with a host
application as specified in Global Platform 2.1. The applet supports a set of APDUs that
provides the following functionality:

• generates an RSA private/public key pair

• stores an RSA public or private key

• retrieves the RSA public key

• stores or retrieves an X.509 certificate

• sets or verifies the user PIN

• signs a host challenge with the private RSA key

• supports the creation of a secure communication channel with a host application.

3.3 Safeguards

The fundamental threat to user authentication is an attacker impersonating a user and
gaining control of the device and its contents. Both the device and SC and the
communications between them are potential targets.

Security measures that apply to the device rely on MAF and on the security
of the underlying operating system. MAF policy rules regarding device resources are
enforced at the kernel level, independently of access permissions assigned to users.
The SMC handler is protected from substitution and overwrites through the multimode
authentication and policy enforcement functionalities of MAF. The handler uses the
following security-related files stored on the handheld device, which are also protected
through the policy enforcement functionality of MAF:

• the 16-byte authentication key used to set up the secure channel of communication to
the SMMC card – installed through security administration and accessed only by the
handler

• the 16-byte MAC key used to set up the secure channel of communication to the
XMC card – installed through security administration and accessed only by the
handler

• the user’s PIN – read by the handler, but not maintained in memory

 Smart Card for mobile devices 407

• the user’s X.509 certificate – captured from the token at enrolment, and accessed
only by the handler

• the X.509 certificate of the root CA used to validate the user’s certificate on the
token – installed through security administration.

SCs such as the XMC are designed to resist tampering and monitoring of the card,
including sophisticated attacks that involve reverse engineering, fault injection, and
signal leakage. For this authentication mechanism, the card must avoid disclosing its
base secret – the private key used to sign challenges it receives, the user PIN created at
card personalisation time, and the Global Platform keys used for maintaining the secure
channel with the device. The private key should be also used exclusively for
authentication.

The SMC token requires correct PINs to unlock its functions. Several bad PIN entry
attempts lock the card. A Global Platform Secure Channel is used to protect the PIN and
any other information sent from the device to the card. The private key of the user and the
user’s PIN established during personalisation cannot be exported from the token.

The challenge-response mechanism specified in FIPS 196 is designed with measures
to conceal the base secret used and avoid replay. The authentication of an entity depends
on two things: the verification of the claimant’s binding with its key pair, and the
verification of the claimant’s digital signature on the random number challenge.
In signing the challenge and verifying the signature, the handler uses OpenSSL v0.9.7
APIs that comply with the PKCS No. 1 standard, while the applet uses an available on
card function.

4 Bluetooth Smart Card (BSC) authentication

The BSC authentication mechanism, as with the SMC, relies on a SC chip
packaged together with other components in a compact-size form factor, such as
a key fob. However, rather than bringing a SC into physical contact with a handheld
device, a Bluetooth wireless interface is used. Bluetooth is a short-range wireless
communications protocol that operates in the globally available 2.4 GHz frequency
band (McDermott-Wells, 2005). Many models of mobile devices are manufactured with
built-in Bluetooth radios. SC authentication over Bluetooth can provide the security of
SC-based authentication to a device with the following advantages:

• no need exists for a specialised SC reader

• the token can be small enough to fit comfortably on a person

• it can work within a few meters of the device, without a direct line of sight

• it does not draw power from the handheld device

• if the device moves outside the proximity of the token (e.g., becomes forgotten
or stolen), access is locked

• it can be discrete (i.e., non-discoverable by third parties).

A BSC token houses a Bluetooth radio, SC, processor and memory, and battery.
The token could also include a display and a keypad to allow PIN entry and other

 408 W. Jansen, S. Gavrila and C. Séveillac

management functions. Since many PDAs and other handheld devices support a
Bluetooth radio, such tokens are a viable means to incorporate SC functionality. A BSC
token could also be used with Bluetooth-enabled workstations. The mechanism is also
amenable to other types of low-power PAN communications. While designed for
handheld device authentication, the token could also be used for user authentication on
other computing platforms, such as Bluetooth-enabled notebook computers.

4.1 Operation

The BSC has many similarities with the SMC insofar as both solutions depend on the
functionality of a Java Card-compliant SC chip, use the same challenge-response protocol
for user authentication, and are implemented to execute within the MAF environment.
Therefore, wherever possible, components of the SMC were reused for BSC.

The main difference from SMC is that communications between the device and token
takes place using a Bluetooth channel rather than an MMC bus. Another difference is that
PIN entry may occur at the BSC token rather than at the handheld device.

In developing the solution, an effective way was found to split the PC/SC
functionality between the handheld device and the BSC token to allow Bluetooth
communications, yet have minimal impact on any SC application. Figure 3 illustrates
how the PC/SC Lite components used previously in the SMC were divided and allocated
between the device and token. Three main PC/SC Lite software components support
a SC application: the service provider, a resource manager, and a driver for the SC reader.
The software application, such as the handler, normally communicates with the driver
indirectly via the service provider, which in turn uses the standardised PC/SC interface to
the resource manager. Similarly, the resource manager uses a standard interface
component called the IFD handler to communicate with the driver. The driver is closely
tied to characteristics of the SC reader, while the service provider is closely tied to the
characteristics of the SC, allowing an application to use any SC with any reader, provided
that the respective service provider and driver software are available.

Figure 3 Reification of the PC/SC Lite architecture

 Smart Card for mobile devices 409

The IFD handler, shown as a small box appearing between the resource manager and
driver, was the key to adapting Bluetooth communications. The IFD Handler provides a
standard interface to the resource manager on one side and maps the functions over the
Bluetooth channel to the other, permitting the BSC token to implement an entire IFD
subsystem independently of the other PC/SC Lite components. APDUs are sent over the
L2CAP Bluetooth layer using a socket interface.

The arrangement allows the BSC solution to work with any type of Java
Card-compliant SC recognised by the PC/SC Lite framework. For simplicity, however,
XMCs were used in the token prototype.

4.2 Implementation

The SMC handler on the device side and the SMC applet on the card side were reused in
the BSC implementation. Only a small addition to the SMC handler had to be made to
enable remote PIN verification. Remote PIN verification is a request from the handler to
the IFD subsystem on the token to inquire about its capabilities to accept PIN entries.
If the capability is not present, the handler prompts the user for this information on the
device, as done for the SMC. If the capability is present, the handler bypasses those steps
and instead relies on the BSC token to obtain the PIN from the user. This change works
equally well for the SMC and BSC tokens, allowing the same updated handler to be used
for both authentication mechanisms. Thus, the part of the BSC implementation that
distinguishes it from the SMC is the IFD handler developed to communicate over
Bluetooth to the IFD subsystem on the token.

The IFD handler is software executing on the handheld device that implements a
standard, hardware-independent, and I/O channel-independent interface into the IFD
subsystem. The IFD handler has to map the standard interface it offers onto the Interface
Device functionality (e.g., a SC reader), to allow data to be exchanged with a SC.
Communicating with a device driver often suffices. However, for the BSC token, which
supports a complete IFD subsystem independently from the host, the IFD handler merely
maps the identical interface to the SC functionality over a Bluetooth channel. The new
IFD handler for the BSC looks like a normal SC reader driver interface for the PC/SC
Lite stack, but operates as a proxy for another IFD handler present on the BSC token
reachable via Bluetooth.

The protocol used to forward the IFD functions and arguments to the BSC token, and
to receive the corresponding responses, is a custom Tag/Length/Value-based serialisation
protocol. Any forward message starts with a byte representing the IFD function being
transmitted. From this identifier, both the client and the server know the number of the
arguments, their type, and their order for each defined function. Following the identifier
byte, each argument comes in proper sequence, encoded as follows:

• if the argument is fixed length, it is directly appended

• if the argument is variable length, it is preceded by its length and then appended.

The return messages are even simpler, since most of them are fixed length.
Any arguments returned are serialised using the same encoding described above.

The token was implemented virtually as an OPIE application running on an iPAQ
PDA. The virtual token appears on the PDA’s display and functions as the real token
would. A server module on the token handles key functions, including all of the SC and

 410 W. Jansen, S. Gavrila and C. Séveillac

Bluetooth socket interactions. Figure 4 shows a screen shot of a token in a key fob form
factor.

Figure 4 Bluetooth Smart Card (BSC) token

A user interacts with the token through the On/Off button. By default, neither Bluetooth
nor the server module is launched until the On/Off button is pressed, turning the token
on. Bluetooth is started first, which is indicated by the lower circular LED at left
becoming blue. The server module then launches, which is indicated by the top circular
LED at left becoming green. Once the server is operational, it represents its level of
activity through the stacked LEDs at right.

Another variant of the token allows the user to enter the SC PIN directly at the token,
avoiding any Bluetooth eavesdropping attack. Figure 5 shows the virtual token displayed
on the PDA screen. The same common functions as the previous variant are supported.
However, adding a numeric pad with control buttons and an alphanumeric display
screen allows the possibility of passkey entry for Bluetooth pairing in addition to PIN
entry. The same server module is used by both tokens (i.e., with and without
a PIN keypad). A flag (--nopin) tells the server whether or not it should run in remote
PIN verification mode.

Figure 5 Token with Personal Identity Number (PIN) entry

 Smart Card for mobile devices 411

The application for the PIN entry token receives a notification from the server when a
PIN is needed, and reacts by displaying a prompt on its screen and activating the keypad.
When the user enters a PIN and presses OK or Cancel, the application sends back a
command to the server to inform it either that the PIN was entered (and its value) or that
entry was cancelled.

4.3 Safeguards

As with the SMC, both the device and SC and the communications between them are
potential targets for the BSC. Because of the similarities in implementation, only the
differences due mainly to the Bluetooth communications are discussed.

The device must be designed to resist tampering, as with the SMC. In addition
to the security-related files inherited from the SMC handler, the BSC handler requires the
following additional files on the handheld device, which must be protected through the
policy enforcement functionality of MAF:

• the token’s Bluetooth address: created during device pairing for exclusive use by the
handler

• the Bluetooth link keys: created during device pairing for exclusive use by the
handler.

The BSC token must also be made tamper resistant. This is facilitated by the use of a SC
as its foundation.

Because the BSC solution uses a wireless radio-based communication channel,
the following issues not present in the SMC must be dealt with:

• an attacker can eavesdrop on the communication channel from a distance

• an attacker can send information to the device and token via an active Bluetooth
interface to attempt to impersonate one or both parties, or to disrupt communications

• when the device selects a token with which to communicate, the device cannot be
certain it contacted the user’s token

• when a token is contacted, the token cannot be certain the device that contacted it is
the device of its user.

The device and token must be paired to one another as part of the initial enrolment phase,
when the token is first registered with the device. Bluetooth pairing establishes shared
symmetric keys on both units, used to authenticate and encrypt exchanged L2CAP
packets respectively via a MAC and stream cipher. Though security vulnerabilities
have been noted in Bluetooth, risks and countermeasures have also been identified
(Sun et al., 2001; BSI, 2003). Through continuous pairing (i.e., bonding), a trusted
connection exists between the device and token during operation. Each unit automatically
accepts communication from the other in encrypted form, bypassing the discovery and
authentication process that normally occurs during Bluetooth interactions.

Residual risks are addressed by sending vital information over the Bluetooth link
within a secure channel. As with the SMC, pre-established symmetric keys (i.e., one for
MAC, and one for Triple DES encryption) are used to protect transmitted APDUs using
the Global Platform Secure Channel Protocol 01 format. Figure 6 illustrates the two

 412 W. Jansen, S. Gavrila and C. Séveillac

levels of confidentiality protection afforded through the secure channel encapsulation and
Bluetooth security features.

Figure 6 Communication protection

Under the Secure Channel Protocol, the data portion of an APDU is encrypted.
Encryption is applied unidirectionally from the device to the SC token. Encapsulated
APDU commands and unencapsulated responses are encrypted using Bluetooth
mechanisms. If needed, the host and card applications could be modified to encrypt all or
parts of the response messages returned from the SC, but this is not currently part of the
Global Platform Secure Channel Protocol. However, apart from the PIN transmission,
none of the other information exchanged (i.e., the FIPS 196 challenge and response)
affects the overall mechanism, if exposed.

5 Conclusions

While mobile devices provide productivity benefits, they also pose new risks. This paper
demonstrates how SC authentication can be implemented to reduce them, using
non-traditional form factors and interfaces. The approach provides users a simpler and
less cumbersome way to interface SC functionality when compared with conventional
types of SCs.

References
Axcess Mobile Communications (2005) Blue Jacket Product Information, November,

http://www.axcess-mobile.com/products/BlueJacketFlyer.pdf.
Bundesamt für Sicherheit in der Informationstechnik (BSI) (2003) Bluetooth Threats and Security

Measures, November, http://www.bsi.de/english/publications/brosch/B05_bluetooth.pdf.
Husemann, D. (1999) ‘The Smart Card: don’t leave home without it’, Concurrency, Vol. 7, No. 2,

pp.24–27.
Jansen, W., Karygiannis, T., Iorga, M., Gavrila, S. and Korolev, V. (2003a) ‘Security policy

management for handheld devices’, Proceedings of the 2003 International Conference on
Security and Management, pp.199–204.

Jansen, W., Korolev, V., Gavrila, S., Heute, T. and Séveillac, C. (2003b) ‘A framework for
multi-mode authentication: overview and implementation guide’, NIST Interagency
Report 7046, pp.1–30.

Maxim/Dallas Semiconductor Corp (2005) What is an iButton?, November, http://www.ibutton.
com/ibuttons/index.html.

 Smart Card for mobile devices 413

McDermott-Wells, P. (2005) ‘What is Bluetooth?’, Potentials, Vol. 23, No. 5, pp.33–35.
National Institute of Standards and Technology (1997) ‘Entity authentication using public key

cryptography’, Federal Information Processing Standards Publication (FIPS PUB) 196,
US Department of Commerce, February 18, Gaithersburg, Maryland.

Ortiz, C.E. (2003) ‘An introduction to java card technology’, Sun Developer Network, May 29,
http://developers.sun.com/techtopics/mobility/javacard/articles/javacard1.

PC/SC Workgroup (2005) ‘Interoperability specification for ICCs and Personal Computer’
systems’, Part 1 – Introduction and Architecture Overview, June, http://www.pcscworkgroup.
com/specifications/files/pcsc1_v2.01.0.pdf.

Sun, J., Howie, D., Koivisto, A. and Sauvola, J. (2001) ‘Design, implementation, and evaluation of
Bluetooth security’, Proceedings of the IEEE International Conference on Wireless LANs and
Home Networks, Singapore, pp.121–130.

Turban, E. and McElroy, D. (1998) ‘Using Smart Cards in electronic commerce’, Proceedings
of the Thirty-First Hawaii International Conference on Systems Science, Hawaii, Vol. 4,
pp.62–69.

Vedder, K. (1992) ‘Smart Cards, computer systems and software engineering’, Proceedings of the
IEEE CompEuro ‘92 Conference, pp.630–635.

Note
1Certain commercial products and trade names are identified in this paper to illustrate technical
concepts. However, it does not imply a recommendation or an endorsement by NIST.

