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Abstract
The Guide to the Expression of Uncertainty in Measurement (GUM),
published by the International Organization for Standardization (ISO),
recognizes Type B state-of-knowledge probability distributions specified by
scientific judgment as valid means to quantify uncertainty. The ISO-GUM
discusses symmetric probability distributions only. Sometimes an
asymmetric distribution is needed. We describe a trapezoidal distribution
which may be asymmetric depending on the settings of its parameters. We
describe the probability density function, cumulative distribution function
(cdf), inverse function of the cdf, moment generating function, moments
about origin (zero), expected value and variance of a trapezoidal
distribution. We show that triangular and rectangular distributions are
special cases of the trapezoidal distribution. Then we derive the moment
generating functions, moments, expected values and variances of various
special cases of the trapezoidal distribution. Finally, we illustrate through a
real life example how a Type B asymmetric trapezoidal distribution may be
useful in quantifying a correction for bias (systematic error) in a result of
measurement and in quantifying the standard uncertainty associated with the
correction.

1. Introduction

The International Organization for Standardization (ISO)
Guide to the Expression of Uncertainty in Measurement
(GUM) recognizes Type B (non-statistical) evaluations. A
Type B estimate and standard uncertainty for an input
quantity are the expected value and standard deviation
of a state-of-knowledge probability distribution specified
by scientific judgment based on all available information,
[1, section 4.3]. The ISO-GUM [1] discusses the
following probability distributions for a Type B input
variable of the measurement equation: normal (Gaussian)
distribution, rectangular (uniform) distribution, isosceles
triangular distribution and isosceles trapezoidal distribution.
These distributions are symmetric about their expected values
and they are useful in many applications. However, in
some applications an asymmetric distribution is needed [1,
sections 4.3.8, F.2.4.4 and G.5.3]. In section 2, we describe a

trapezoidal distribution, which may be asymmetric depending
on the settings of its parameters. We give explicit and simple
expressions for the moment generating function (mgf) and
the moments of a trapezoidal distribution. In particular,
we give expressions for the expected value and variance
of a trapezoidal distribution. These expressions are new
contributions to the literature. We also discuss how random
numbers from a trapezoidal distribution may be numerically
generated. In section 3, we discuss various special cases
of the trapezoidal distribution, which include triangular and
rectangular distributions. Then we derive the mgfs, moments,
expected values and variances of various special cases of the
trapezoidal distribution.

A particular use of a Type B probability distribution
is to quantify a correction for bias (systematic error) in
a result of measurement. The exact bias is unknowable;
therefore, a correction for bias carries uncertainty. According
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Figure 1. Probability density function of Trapezoid (a, c, d, b).

to the ISO-GUM, a result of measurement that is subject to
non-negligible bias should be corrected3 and the uncertainty
associated with the correction should be quantified and
included in the combined standard uncertainty associated
with the corrected result [1, section 3.2]. This is a signal
contribution of the ISO-GUM because it establishes, for the
first time, an approach to account for the uncertainty from
unknown bias. A correction for bias and its associated
standard uncertainty are generally the expected value and
standard deviation of a Type B state-of-knowledge probability
distribution4 for an input variable which represents a correction
(or a correction factor) in the measurement equation. In
section 4, we review the ISO-GUM’s approach to quantify and
incorporate a correction for bias and its associated standard
uncertainty. In section 5, we illustrate through a real life
example how a Type B asymmetric trapezoidal distribution
may be useful in quantifying a correction for bias and its
associated standard uncertainty. A summary appears in
section 6.

2. Trapezoidal distribution

A random variable X has a trapezoidal distribution if its
probability density function (pdf) f (x) has the shape of a
trapezoid shown in figure 1. A trapezoidal distribution may
be defined by four parameters, a, c, d and b, where a and b are
the end points and the points c and d identify the rectangular
part of the trapezoid. We refer to such a distribution as
Trapezoid (a, c, d, b), where a � c, c � d and d � b. We
use the symbols r , s and t for the widths of the line segments
between a, c, d and b, where r = (c − a), s = (d − c) and
t = (b − d). Clearly r + s + t = (b − a) is the width of the
trapezoid.

The area of the trapezoid shown in figure 1 is h(c−a)/2+
h(d − c) + h(b − d)/2. For a trapezoid to represent a pdf
its area should be one. By equating the area h(c − a)/2 +
h(d − c) + h(b − d)/2 to one and solving for h we get the
height h = 2/[(b − a) + (d − c)] = 2/(r + 2s + t). Then
algebraic equations of the straight lines in figure 1 give the pdf.
Thus, the pdf f (x) of the trapezoidal probability distribution,

3 The exception is when one is highly certain (very sure) that the bias is
negligible. This corresponds to the situation where both the expected value
and the standard deviation of a state-of-knowledge probability distribution for
the correction variable are close to zero.
4 There is no direct correspondence between the classification of uncertainties
as Type A or Type B evaluations and the classification of the uncertainties
as arising from random effects or those associated with the corrections for
systematic effects [2, section D2].

Trapezoid (a, c, d, b), is

f (x) = 0 if x � a, (2.1)

f (x) = (x − a)

(c − a)
h if a � x � c, (2.2)

f (x) = h if c � x � d, (2.3)

f (x) = (b − x)

(b − d)
h if d � x � b, (2.4)

f (x) = 0 if b � x, (2.5)

where

h = 2

[(b − a) + (d − c)]
= 2

(r + 2s + t)
. (2.6)

The cumulative distribution function (cdf) F(x), defined as
F(x) = Pr(X � x), is obtained by integrating the pdf of
X defined above in (2.1)–(2.6), within the limits from −∞
to x. Thus, the cdf F(x) of the trapezoidal distribution,
Trapezoid (a, c, d, b), is

F(x) = 0 if x � a, (2.7)

F(x) = h(x − a)2

2(c − a)
if a � x � c, (2.8)

F(x) = h

2
(c − a) + h(x − c) if c � x � d, (2.9)

F(x) = 1 − h(b − x)2

2(b − d)
if d � x � b. (2.10)

and
F(x) = 1 if b � x. (2.11)

In particular,
F(a) = 0, (2.12)

F(c) = h

2
(c − a), (2.13)

F(d) = 1 − h

2
(b − d) = [(d − a) + (d − c)]

[(b − a) + (d − c)]
(2.14)

and
F(b) = 1. (2.15)

The inverse function x = F−1(y) of the cdf F(x) is determined
by setting y = F(x), for 0 � y � 1, and solving equations
(2.8)–(2.10) for x. Thus the inverse function x = F−1(y) of
the cdf F(x) is

F−1(y) = a +

√
2(c − a)

h
× √

y

if 0 � y � h

2
(c − a),

(2.16)

F−1(y) = (a + c)

2
+

y

h

if
h

2
(c − a) � y � 1 − h

2
(b − d),

(2.17)

F−1(y) = b −
√

2(b − d)

h
×

√
1 − y

if 1 − h

2
(b − d) � y � 1.

(2.18)

118 Metrologia, 44 (2007) 117–127



Trapezoidal and triangular distributions for Type B evaluation of standard uncertainty

In particular,
F−1(0) = a, (2.19)

F−1

(
h

2
(c − a)

)
= c, (2.20)

F−1

(
1 − h

2
(b − d)

)
= d (2.21)

and
F−1(1) = b, (2.22)

as one would expect in view of the equations from (2.12) to
(2.15).

2.1. Moment generating function and moments of Trapezoid
(a, c, d, b)

The mgf of the pdf of a random variable X, denoted by M(t),
is defined as M(t) = E(etX), provided that this expected value
exists in some neighbourhood of zero5. As the name suggests,
an mgf can be used to generate the moments about origin (zero),
E(Xk), for k = 1, 2, . . .. As we shall see, in equation (2.24),
the mgf of a trapezoidal distribution exists for all values of t .
Therefore, we may express it as

M(t) =
∫ b

a

etXf (x) dx =
∫ b

a

( ∞∑
k=0

tkXk

k!

)
f (x) dx

= 1 +
∞∑

k=1

E(Xk)
tk

k!
, (2.23)

where f (x) is the pdf of the random variable X. The mgf of
the trapezoidal distribution Trapezoid (a, c, d, b) is obtained
by successively integrating etX with respect to the three parts
of the pdf f (x) defined in equations (2.1)–(2.6). Thus, we
have

M(t) =
∫ b

a

etXf (x) dx = h

t2

(
ebt − edt

b − d
− ect − eat

c − a

)
.

(2.24)

We can expand (2.24) to get the following expression for the
mgf of Trapezoid (a, c, d, b):

M(t) = 1 +
∞∑

k=1

h

(k + 2)(k + 1)

×
(

bk+2 − dk+2

b − d
− ck+2 − ak+2

c − a

)
tk

k!
. (2.25)

By comparing (2.23) and (2.25), the kth moment, E(Xk), of
the trapezoidal distribution Trapezoid (a, c, d, b) is

E(Xk) = h

(k + 2)(k + 1)

(
bk+2 − dk+2

b − d
− ck+2 − ak+2

c − a

)
(2.26)

for k = 1, 2, . . . , where h = 2/(r + 2s + t) = 2/[(b − a) +
(d − c)].

The most important moments of a trapezoidal distribution,
from the viewpoint of its use to quantify uncertainty in
measurement, are its expected value, E(X), and variance,

5 In keeping with a statistical convention, we use the symbol t for the argument
of a moment generating function M(t). In this paper, we have also used the
symbol t for the width of the line segment t = (b − d).

V (X) = E(X − E(X))2, which is the second central moment
(moment about mean). The expected value E(X) is obtained
by substituting k = 1 in (2.26). Thus we have

E(X) = h

6

(
b3 − d3

b − d
− c3 − a3

c − a

)
. (2.27)

The expected value (2.27) can alternatively be expressed as

E(X) = (b2 − a2) + (d2 − c2) − ac + bd

3[(b − a) + (d − c)]
. (2.28)

The second moment, E(X2), is obtained by substituting k = 2
in (2.26). Thus we have

E(X2) = h

12

(
b4 − d4

b − d
− c4 − a4

c − a

)
. (2.29)

The second moment (2.29) can alternatively be expressed as

E(X2)= (b3 − a3) + (d3 − c3) − (ac2 + a2c) + (bd2 + b2d)

6[(b − a) + (d − c)]
.

(2.30)

The variance V (X) can be obtained from the formula V (X) =
E(X − E(X))2 = E(X2) − (E(X))2. It is useful, however,
to obtain a concise expression for the variance V (X). The
variance V (X) of Trapezoid (a, c, d, b) depends only on the
widths r , s and t of the left-side triangle, the middle rectangle
and the right-side triangle of the trapezoid. So an expression for
V (X) can be obtained in terms of r , s and t . We have succeeded
in obtaining the following expression for the variance V (X) of
Trapezoid (a, c, d, b):

V (X)= 3(r + 2s + t)4 + 6(r2 + t2)(r+2s + t)2 − (r2 − t2)2

[12(r + 2s + t)]2
,

(2.31)

where r = (c − a), s = (d − c), t = (b − d) and
(r+2s+t) = [(b−a)+(d−c)] = 2/h. The numerator of (2.31)
can alternatively be expressed as a fourth degree polynomial in
s with coefficients made of r and t . Thus, another expression
for the variance V (X) of Trapezoid (a, c, d, b) is

V (X) = 6s4 + 12(r + t)s3 + [12(r + t)2 − 6rt]s2

18(r + 2s + t)2

+
6(r + t)(r2 + rt + t2)s + (r + t)2(r2 + rt + t2)

18(r + 2s + t)2
. (2.32)

Both expressions (2.31) and (2.32) for the variance V (X) are
equivalent and useful.

Comment 1. A ‘generalized trapezoidal distribution’ having
seven parameters, a, b, c, d, n1, n3 and α, is described in [3].
They report closed form expressions for the first two moments
E(X) and E(X2) of a four-parameter trapezoidal distribution.
However, our expressions for E(X) and E(X2), given in (2.27)
and (2.29), are much simpler than in [3]. Reference [3] does
not report a closed form expression for the variance V (X).
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2.2. Generation of random numbers from Trapezoid
(a, c, d, b)

The ISO-GUM’s approach to determine the expected value and
variance for an output variable (measurand) is to propagate
the expected values and variances of probability distributions
for the input variables through a linear approximation of the
measurement equation. An alternative approach proposed
in [4] is to propagate probability distributions by numerical
simulation of the measurement equation. The latter approach
requires generation of random numbers from the probability
distributions specified for the input variables. Random
numbers from a trapezoidal distribution can be easily generated
from the inverse cdf function x = F−1(y) defined in (2.16)–
(2.18). Suppose {y1, . . . , yn} is a set of random numbers
from a rectangular distribution on the interval [0, 1] obtained
by a random number generator. Then the set of numbers
{x1, . . . , xn}, where xi = F−1(yi), for i = 1, . . . , n, is
a set of random numbers from the trapezoidal distribution
Trapezoid (a, c, d, b).

3. Special cases of the trapezoidal distribution
Trapezoid (a, c, d, b)

The trapezoidal probability distribution Trapezoid (a, c, d, b),
sketched in figure 1, is very versatile. By varying the
intermediate points c and d with respect to the end points a

and b and with respect to each other, we can obtain various
useful special cases. In this section, we describe the mgfs, the
moments (about zero), the expected values and the variances
of the following special cases of the trapezoidal distribution
Trapezoid (a, c, d, b):

(i) only left-side sloping trapezoidal distribution,
(ii) only right-side sloping trapezoidal distribution,

(iii) isosceles trapezoidal distribution,
(iv) triangular distribution,
(v) left-side sloping right triangular distribution,

(vi) right-side sloping right triangular distribution,
(vii) isosceles triangular distribution and

(viii) rectangular distribution.

Random numbers from these distributions can be
generated from the corresponding inverse cdfs x = F−1(y).
The inverse cdfs for these special case distributions can be
obtained from the inverse cdf x = F–1(y) defined in (2.16)–
(2.18) for a trapezoidal distribution by proceeding along the
same lines as used in the following subsections to determine
the mgfs and the moments.

3.1. Only left-side sloping Trapezoid (a, c, b)

The trapezoidal distribution of figure 1 approaches an only left-
side sloping trapezoidal distribution shown in figure 2 as the
point d approaches the point b. When the point d approaches
the point b, the width t of the right-side triangle approaches
zero. The pdf f (x), the cdf F(x), the inverse cdf F−1(y)

and the mgf M(t) of an only left-side sloping trapezoidal
distribution are obtained from equations (2.1) through (2.18)
and (2.24) by taking the limit as d approaches b.

ca b
X

f (x)

h

r s

Figure 2. Probability density function of only left-side sloping
Trapezoid (a, c, b).

L’Hospital’s Rule. When determining the limits we
sometimes need to use L’Hospital’s Rule for indeterminate
forms which states the following. If the limits of each
of the two functions φ1(z) and φ2(z) are zero but the
limit of [φ′

1(z)/φ
′
2(z)] is finite, where φ′

1(z) and φ′
2(z)

are the derivatives of φ1(z) and φ2(z), respectively, then
lim[φ1(z)/φ2(z)] = lim[φ′

1(z)/φ
′
2(z)]. The rule extends to

second and higher order derivatives.
The mgf and the moments of an only left-side sloping

trapezoidal distribution with parameters a, c and b, where
a � c and c � b, are determined by taking the limits of
(2.24) and (2.26) as d approaches b. Thus we have

M(t) = h

t
(ebt ) − h

t2

(
ect − eat

c − a

)
(3.1)

and

E(Xk) = h

(k + 2)(k + 1)

(
(k + 2)bk+1 − ck+2 − ak+2

c − a

)
,

(3.2)
for k = 1, 2, . . ., where h = 2/(r +2s) = 2/[(b−a)+(b−c)].

The expected value of an only left-side sloping trapezoidal
distribution can be obtained by substituting b for d in (2.28).
Thus we have

E(X) = 3b2 − a2 − c2 − ac

3(2b − a − c)
. (3.3)

The expected value (3.3) agrees with (3.2) evaluated for k = 1.
The variance of a left-sided sloping trapezoidal

distribution is obtained by setting t = 0 in (2.32). Thus we
have

V (X) = 6s4 + 12rs3 + 12r2s2 + 6r3s + r4

18(r + 2s)2
, (3.4)

where r = (c − a) and s = (b − c).

3.2. Only right-side sloping Trapezoid (a, d, b)

The trapezoidal distribution of figure 1 approaches an only
right-side sloping trapezoidal distribution shown in figure 3
as the point c approaches the point a. When the point c

approaches the point a, the width r of the left-side triangle
approaches zero. The pdf f (x), the cdf F(x), the inverse
cdf F−1(y) and the mgf M(t) of an only right-side sloping
trapezoidal distribution are obtained from equations (2.1)
through (2.18) and (2.24) by taking the limit as c approaches a.
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Figure 3. Probability density function of only right-side sloping
Trapezoid (a, d , b).

The mgf and the moments of an only right-side sloping
trapezoidal distribution with parameters a, d and b, where
a � d and d � b, are determined by taking the limits of
(2.24) and (2.26) as c approaches a. Thus we have

M(t) = h

t2

(
ebt − edt

c − a

)
− h

t
(eat ) (3.5)

and

E(Xk) = h

(k + 2)(k + 1)

(
bk+2 − dk+2

b − d
− (k + 2)ak+1

)
,

(3.6)
for k = 1, 2, . . ., where h = 2/(2s+t) = 2/[(b−a)+(d−a)].

The expected value of an only right-side sloping
trapezoidal distribution can be obtained by substituting a for c

in (2.28). Thus we have

E(X) = b2 + d2 + bd − 3a2

3(b + d − 2a)
. (3.7)

The expected value (3.7) agrees with (3.6) evaluated for k = 1.
The variance of a right-sided sloping trapezoidal

distribution is obtained by setting r = 0 in (2.32). Thus we
have

V (X) = 6s4 + 12ts3 + 12t2s2 + 6t3s + t4

18(t + 2s)2
, (3.8)

where s = (d − a) and t = (b − d).
We note that (3.8) is the same as (3.4) where r is replaced

with t . This is what one would expect because the variance is
unchanged if the right and left sides of a trapezoid are flipped
vertically.

3.3. Isosceles Trapezoid (a, c, d, b)

The trapezoidal distribution Trapezoid (a, c, d, b) of figure 1
becomes an isosceles trapezoidal distribution shown in figure 4
when r = t or equivalently r = (c – a) = (b−d) and c = (a+r)

and d = (b − r). Thus, an isosceles trapezoidal distribution is
defined by only three parameters: a, b and r .

The mgf and the moments of an isosceles trapezoidal
distribution, determined by substituting c = (a + r) and
d = (b − r) in (2.24) and (2.26), are

M(t) = h

t2

(
ebt − e(b−r)t

r
− e(a+r)t − eat

r

)
(3.9)

c da b
X

f (x)

h

r s r

Figure 4. Probability density function of isosceles Trapezoid (a, c,
d, b).

and

E(Xk) = h

(k + 2)(k + 1)

×
(

bk+2 − (b − r)k+2

r
− (a + r)k+2 − ak+2

r

)
, (3.10)

where k = 1, 2, . . ., where h = 2/[(b − a) + (d − c)] =
1/(r + s) = 1/(b − a − r).

The expected value of an isosceles trapezoidal distribution
can be obtained by substituting c = (a + r) and d = (b − r)

in (2.28). Thus we have

E(X) = a + b

2
. (3.11)

The expected value (3.11) agrees with (3.10) evaluated for
k = 1.

The variance of an isosceles trapezoidal distribution is
obtained by replacing t with r in (2.32). Thus we have

V (X) = 2r2 + 2rs + s2

12
. (3.12)

By substituting 2r2 = r2 + r2 = (c − a)2 + (b − d)2 and
2rs = (c − a)(d − c) + (d − c)(b − d), in (3.12), the variance
of an isosceles trapezoidal distribution, expressed in terms of
the widths (c − a), (d − c) and (b − d), is

V (X) = {
(c − a)2 + (d − c)2 + (b − d)2

+ (c − a)(d − c) + (d − c)(b − d)
}
/12, (3.13)

The expression (3.13) simplifies to

V (X) = a2 + b2 + c2 + d2 − ac − ad − bc − bd

12
, (3.14)

where c = (a + r) and d = (b − r).

Comment 2. The ISO-GUM [1, section 4.3.9] discusses an
isosceles trapezoidal distribution defined on a base of width
2a and a top of width 2aβ, where 0 � β � 1. The Trapezoid
(−a, −aβ, aβ, a) is such a distribution. This distribution
approaches a rectangular distribution on the interval (−a, a)

as β approaches one, and it approaches an isosceles triangular
distribution on the interval (−a, a) as β approaches zero. If
we substitute −a for a, −aβ for c, aβ for d and a for b in
(3.14), we get V (X) = a2(1 + β)2/6. This is the expression
given in the ISO-GUM [1, section 4.3.9].
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ca b
X

f (x)

h

r t

Figure 5. Probability density function of Triangle (a, c, b).

Comment 3. Suppose a random variable X1 has a rectangular
distribution on the interval (−k, +k) and suppose another
random variable X2 has a rectangular distribution on the
interval (−δ, +δ) where k � δ. Then the probability
distribution of the sum X = X1+X2 is the isosceles trapezoidal
distribution Trapezoid (−(k + δ), −(k − δ), (k − δ), (k + δ))
[5, sections 4.07–4.13]. If we substitute a = −(k + δ),
c = −(k − δ), d = (k − δ) and b = (k + δ)) in (3.14), we
get V (X) = (k2 + δ2)/3. This is the expression given in [5].
When k = δ, the distribution of X = X1 + X2 is an isosceles
triangular distribution on the interval (−2k, +2k) with variance
V (X) = (2/3)k2.

3.4. Triangle (a, c, b)

The trapezoidal distribution of figure 1 approaches a triangular
distribution shown in figure 5 as the point d approaches the
point c. When d approaches c, the width s of the middle
rectangle approaches zero. The pdf f (x), the cdf F(x),
the inverse cdf F−1(y) and the mgf M(t) of a triangular
distribution are obtained from equations (2.1) through (2.18)
and (2.24) by taking the limit as d approaches c.

The mgf and the moments of a triangular distribution with
parameters a, c and b, where a � c and c � b, are determined
by taking the limits of (2.24) and (2.26) as d approaches c.
Thus we have

M(t) = h

t2

(
ebt − ect

b − c
− ect − eat

c − a

)
(3.15)

and

E(Xk) = h

(k + 2)(k + 1)

(
bk+2 − ck+2

b − c
− ck+2 − ak+2

c − a

)
,

(3.16)
for k = 1, 2, . . ., where h = 2/(r + t) = 2/(b − a).

The expected value of a triangular distribution can be
obtained by replacing d with c in (2.28). We get

E(X) = a + b + c

3
. (3.17)

The expected value (3.17) agrees with (3.16) evaluated for
k = 1.

The variance of a triangular distribution is obtained by
setting s = 0 in (2.32). We get

V (X) = r2 + rt + t2

18
. (3.18)

a b
X

f (x)

h

r

Figure 6. Probability density function of left-side sloping right
Triangle (a, b).

An expression for the variance of a triangular distribution in
terms of the parameters a, c and b is obtained by substituting
(c − a) for r and (b − c) for t in (3.18). Thus we have

V (X) = a2 + b2 + c2 − ab − ac − bc

18
. (3.19)

Comment 4. Expressions (3.17) and (3.19) agree with [6].
The expected value and variance of a triangular distribution
with end points −α1 and α2 and with peak at zero were reported
in [7] as E(X) = (α2 − α1)/3 and V (X) = (α2 − α1)

2/18 +
α1α2/6. If we substitute a = −α1, b = 0 and c = α2 in (3.17)
and (3.19), we get these results.

3.5. Left-side sloping right Triangle (a,b)

The trapezoidal distribution of figure 1 approaches a left-side
sloping right triangular distribution shown in figure 6 as both
the points d and c approach the point b. Then both s and
t approach zero. The pdf f (x), the cdf F(x), the inverse cdf
F−1(y) and the mgf M(t) of a left-side sloping right triangular
distribution are obtained from equations (2.1) through (2.18)
and (2.24) by taking the limits as both d and c approach b.

The mgf and the moments of a left-side sloping right
triangular distribution with parameters a and b are determined
by taking the limits of (2.24) and (2.26) as both d and c

approach b. Thus, we have

M(t) = h

t
(ebt ) − h

t2

(
ebt − eat

b − a

)
(3.20)

and

E(Xk) = h

(k + 2)(k + 1)

(
(k + 2)bk+1 − bk+2 − ak+2

b − a

)
,

(3.21)
for k = 1, 2, . . . , where h = 2/r = 2/(b − a).

The expected value of a left-side sloping right triangular
distribution can be obtained by substituting b for both d and c

in (2.28). We get

E(X) = a + 2b

3
. (3.22)

The expected value (3.22) agrees with (3.21) evaluated for
k = 1.

The variance of a left-side sloping right triangular
distribution is obtained by setting s = 0 and t = 0 in (2.32).
We get

V (X) = r2

18
= (b − a)2

18
. (3.23)
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a b
X

f (x)

h

t

Figure 7. Probability density function of right-side sloping right
Triangle (a, b).

3.6. Right-side sloping right Triangle (a,b)

The trapezoidal distribution of figure 1 approaches a right-
side sloping right triangular distribution shown in figure 7
as both the points c and d approach the point a. Then both
r and s approach zero. The pdf f (x), the cdf F(x), the
inverse cdf F−1(y) and the mgf M(t) of a right-side sloping
right triangular distribution are obtained from equations (2.1)
through (2.18) and (2.24) by taking the limits as both c and d

approach a.
The mgf and moments of a right-side sloping right

triangular distribution with parameters a and b are determined
by taking the limits of (2.24) and (2.26) as both c and d

approach a. Thus, we have

M(t) = h

t2

(
ebt − eat

b − a

)
− h

t
(eat ) (3.24)

and

E(Xk) = h

(k + 2)(k + 1)

(
bk+2 − ak+2

b − a
− (k + 2)ak+1

)
,

(3.25)
for k = 1, 2, . . . , where h = 2/t = 2/(b − a).

The expected value of a right-side sloping right triangular
distribution can be obtained by substituting a for both c and d

in (2.28). We get

E(X) = 2a + b

3
. (3.26)

The expected value (3.26) agrees with (3.25) evaluated for
k = 1.

The variance of a left-side sloping right triangular
distribution is obtained by setting r = 0 and s = 0 in (2.32).
We get

V (X) = t2

18
= (b − a)2

18
. (3.27)

3.7. Isosceles Triangle (a,b)

The triangular distribution of figure 5 becomes an isosceles
triangular distribution shown in figure 8 when c = (a + b)/2
or equivalently r = t . Thus, an isosceles triangular distribution
is defined by only two parameters a and b.

The mgf and moments of an isosceles triangular
distribution with parameters a and b are determined by
substituting c = (a + b)/2 in (3.15) and (3.16). Thus we
have

M(t) = h2

t2
(ebt – 2e(a+b)t/2 + eat ) (3.28)

a b
X

f (x)

h

r r

Figure 8. Probability density function of isosceles Triangle (a, b).

a b
X

f (x)

h

s

Figure 9. Probability density function of Rectangle (a, b).

and

E(Xk) = h2

(k + 2)(k + 1)
(bk+2 − 2[(a + b)/2]k+2 + ak+2),

(3.29)
for k = 1, 2, . . . , where h = 1/r = 2/(b − a).

The expected value and variance of an isosceles triangular
distribution are obtained from (3.17)–(3.19) by replacing c

with (a + b)/2 and t with r . Thus we have

E(X) = a + b

2
. (3.30)

and

V (X) = r2

6
= (b − a)2

24
. (3.31)

The expected value (3.30) agrees with (3.29) evaluated for
k = 1.

3.8. Rectangle (a,b)

The trapezoidal distribution of figure 1 approaches a
rectangular distribution shown in figure 9 as the point c

approaches the point a and the point d approaches the point
b. Then both r and t approach zero. The pdf f (x), the cdf
F(x), the inverse cdf F−1(y) and the mgf M(t) of a rectangular
distribution are obtained from equations (2.1) through (2.18)
and (2.24) by taking the limit as c approaches a and d

approaches b.
The mgf and moments of a triangular distribution with

parameters a and b are determined by taking the limits of (2.24)
and (2.26) as c approaches a and d approaches b. Thus we have

M(t) = h

t
(ebt − eat ) (3.32)

and

E(Xk) = h

(k + 1)
(bk+1 − ak+1), (3.33)

for k = 1, 2, . . . , where h = 1/s = 1/(b − a).
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Table 1. Expected values and variances of trapezoidal, triangular, and rectangular probability distributions.

Expected value Variance
E(X) V (X)

Trapezoid (a, c, d, b), figure 1
h

6

(
b3 − d3

b − d
− c3 − a3

c − a

)
3(r + 2s + t)4 + 6(r2 + t2)(r + 2s + t)2 − (r2 − t2)2

[12(r + 2s + t)]2

where h = 2÷ where r = (c − a), s = (d − c), t = (b − d),
[(b − a) + (d − c)] and (r + 2s + t) = [(b − a) + (d − c)]

Only left-side sloping Trapezoid (a, c, b), figure 2
3b2 − a2 − c2 − ac

3(2b − a − c)

6s4 + 12rs3 + 12r2s2 + 6r3s + r4

18(r + 2s)2

where r = (c − a) and s = (b − c)

Only right-side sloping Trapezoid (a, d, b), figure 3
b2 + d2 + bd − 3a2

3(b + d − 2a)

6s4 + 12ts3 + 12t2s2 + 6t3s + t4

18(t + 2s)2

where s = (d − a) and t = (b − d)

Isosceles Trapezoid (a, c, d, b), figure 4
a + b

2

a2 + b2 + c2 + d2 − ac − ad − bc − bd

12

Triangle (a, c, b), figure 5
a + b + c

3

a2 + b2 + c2 − ab − ac − bc

18

Left-side sloping right Triangle (a, b), figure 6
a + 2b

3

(b − a)2

18

Right-side sloping right Triangle (a, b), figure 7
2a + b

3

(b − a)2

18

Isosceles Triangle (a, b), figure 8
a + b

2

(b − a)2

24

Rectangle (a, b), figure 9
a + b

2

(b − a)2

12

The expected value of a rectangular distribution, obtained
by substituting a for c and b for d in (2.28), is

E(X) = a + b

2
. (3.34)

The expected value (3.34) agrees with (3.33) evaluated for
k = 1.

The variance of a rectangular distribution is obtained by
substituting r = 0 and t = 0 in (2.32) and then replacing s

with (b − a). Thus we have

V (X) = s2

12
= (b − a)2

12
. (3.35)

For quick reference, the expected values and variances of
the trapezoidal distribution Trapezoid (a, c, d, b) and its special
cases are summarized in table 1.

4. The ISO-GUM’s approach to incorporate
correction for bias and its associated uncertainty

An important use of a Type B probability distribution is to
quantify the correction for bias in a result of measurement and
to quantify the uncertainty associated with the correction. A
bias may be additive or multiplicative.

4.1. Additive bias

Suppose x is a result of measurement for the value Y of a
measurand and its associated standard uncertainty is u(x).
Suppose the expected value of the sampling distribution of

x is X, then the difference B = X − Y is the additive bias6

in x. A metrological term for the additive bias is offset. A
measurement equation is required to incorporate a correction
for bias in the result x. All inputs and output of a measurement
equation are variables having state-of-knowledge probability
distributions. The measurement equation corresponding to the
additive bias X − Y is

Y = X + C, (4.1)

where C is a variable with a state-of-knowledge probability
distribution for the negative Y − X of bias [8, section 2.2]. In
the measurement equation (4.1), X is a variable representing
the state of knowledge about the expected value of x and Y is a
variable representing the state of knowledge about the value of
the measurand. The ISO-GUM [1, section 4.1.6] interprets the
result x and the uncertainty u(x) as the expected value, E(X),
and the standard deviation, S(X), of a state-of-knowledge
probability distribution for X. (This interpretation is justified
when Bayesian statistics is used for Type A evaluations [8].
However, when sampling theory is used, this interpretation is
a declaration.) Suppose that the expected value, E(C), and the
standard deviation, S(C), of a state-of-knowledge probability
distribution for C are c and u(c), respectively. Then a corrected
result y for Y is determined by substituting the result x for
the variable X and the correction c for the variable C in the

6 As in the ISO-GUM, we use the same symbol X for the expected value of the
sampling distribution of x as well as for a variable having a state-of-knowledge
probability distribution about the expected value. Likewise, we use the same
symbol Y for the value of the measurand as well as for a variable having a
state-of-knowledge probability distribution about the value of the measurand.

124 Metrologia, 44 (2007) 117–127



Trapezoidal and triangular distributions for Type B evaluation of standard uncertainty

measurement equation (4.1). Thus

y = x + c. (4.2)

If the state-of-knowledge probability distributions for X and
C are uncorrelated, then the combined standard uncertainty
u(y), determined by propagating the uncertainties using the
measurement equation (4.1), is

u(y) = [u2(x) + u2(c)]1/2. (4.3)

The ISO-GUM [1] regards the result y and uncertainty u(y)

as the expected value, E(Y ), and the standard deviation, S(Y ),
of a state-of-knowledge distribution for Y . In the example
discussed in section 5, the biases are additive; therefore,
expressions (4.2) and (4.3) are used to determine the corrected
result and its associated uncertainty.

4.2. Multiplicative bias

In some applications, multiplicative bias, defined as the ratio
B = X/Y , is more appropriate than the additive bias X − Y .
A metrological term for correcting the multiplicative bias is
scaling. The measurement equation corresponding to the
multiplicative bias X/Y is

Y = X × C, (4.4)

where C is a variable with a state-of-knowledge probability
distribution for the reciprocal Y /X of multiplicative bias. The
corrected result y based on (4.4) is

y = x × c, (4.5)

where the correction factor c is the expected value of C. The
uncertainty u(y) is determined from a linear approximation of
the measurement equation (4.4) which is

Y − y

y
≈ X − x

x
+

C − c

c
. (4.6)

The expression for propagating uncertainties based on the
linear approximation (4.6) is

ur(y) = [u2
r (x) + u2

r (c)]
1/2, (4.7)

where ur(y) = u(y)/|y|, ur(x) = u(x)/|x| and ur(c) =
u(c)/|c| are the relative standard uncertainties associated with
y, x and c, respectively [8]. Then

u(y) = |y| × ur(y) = |y| × [u2
r (x) + u2

r (c)]
1/2. (4.8)

In a physical chemistry paper [9], the bias is multiplicative;
therefore, expressions (4.5) and (4.8) are used there to
determine the corrected result and its associated uncertainty.

4.3. Trapezoidal versus rectangular distribution for the
correction variable

The expected value E(C) = c and the standard deviation
S(C) = u(c) are usually quantified by specifying a Type B
state-of-knowledge distribution for the correction variable C

[1, section 4.3]. Often, the distribution for C is specified to
be a rectangular distribution on some interval (−a, a) with

Table 2. The amounts of Hg in mg kg−1 as determined by the two
methods with uncertainties as reported in [10].

Method 1 Method 2

xi 0.368 mg kg−1 0.310 mg kg−1

si 0.0110 mg kg−1 0.0086 mg kg−1

ni 4 20
s(xi) 0.0055 mg kg−1 0.0019 mg kg−1

ci 0
u(ci) 0.0060 mg kg−1

u(xi) 0.0081 mg kg−1 0.0019 mg kg−1

the expected value zero and the standard deviation a/
√

3. A
rectangular distribution represents uniform (equal) probability
in the interval (−a, a) and zero probability outside. A
trapezoidal distribution, for example, Trapezoid (−a, −aβ,
aβ, a) where 0 < β < 1, represents uniform (equal)
probability in the sub-interval (−aβ, aβ) and the probability
decreases to zero linearly as we move out to the end points of
the interval (−a, a). Often, the end points of the rectangular
distribution are not known exactly. Also, it is more realistic
to expect that the values near the end points are less probable
than the values near the middle of the interval. Therefore,
a trapezoidal probability distribution with (one or both) sides
sloping is often a more realistic state-of-knowledge distribution
for C than a rectangular distribution. We quote the ISO-GUM
[1, section 4.3.9]

‘In 4.3.7, because there was no specific knowledge
about the possible values of Xi within its estimated
bounds a− to a+, one could only assume that it
was equally probable for Xi to take any value
within those bounds, with zero probability of being
outside them. Such step function discontinuities
in a probability distribution are often unphysical.
In many cases it is more realistic to expect that
values near the bounds are less likely than those near
the midpoint. It is then reasonable to replace the
symmetric rectangular distribution with a symmetric
trapezoidal distribution having equal sloping sides (an
isosceles trapezoid), . . . .’

In some cases an asymmetric distribution for the
correction variable C is either required or is a more realistic
representation of the state of knowledge. The expressions
for the expected values and variances tabulated in section 3
make the trapezoidal distribution, Trapezoid (a, c, d, b), and
its special cases easy to use.

5. Asymmetric correction for bias and uncertainty

Our interest in trapezoidal distribution arose from a ‘two-
method problem’ addressed in [10, section 4]. The amount
of mercury (Hg) in a reference material was measured by
two methods. Method 1: cold vapour atomic absorption
spectrometry (CVAAS) in NIST7. Method 2: another method
in another US laboratory. The results, as reported in [10,
section 4], are displayed in table 2. The two-method problem
is how to determine a combined result for the amount of Hg
(the measurand) based on the results displayed in table 2 and
more importantly how to determine the uncertainty associated
with the combined result.
7 National Institute of Standards and Technology, Gaithersburg, MD, USA.
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In table 2, xi = ∑
j xij /ni is the arithmetic mean and

si = √
[
∑

j (xij − xi)
2/(ni − 1)] is the experimental standard

deviation of ni independent measurements, and s(xi) =
si/

√
ni is an estimate of the standard deviation of the mean xi ,

for i = 1 and 2. A correction is applied to the result xi when it is
believed to have a recognized systematic effect. The (additive)
correction applied to xi is ci with uncertainty u(ci). The
correction and uncertainty applied to the result x1 are indicated
in table 2. The result x2 is not corrected (supposedly, because
no systematic effect was recognized). The uncertainties, u(xi),
as reported in [10] are shown in table 2. These uncertainties
are obtained from the expression (4.3) by substituting s(xi) for
u(x) and u(ci) for u(c) [10].

In [10], the arithmetic mean of the two results x1 and
x2 is used as the initial combined result xA = (x1 +
x2)/2 = 0.339 mg kg−1. The corresponding standard
uncertainty is u(xA) = √

[(1/2)2u2(x1) + (1/2)2u2(x2)] =
0.0042 mg kg−1. The resulting two-standard uncertainty
interval is (xA±2×u(xA)) = (0.339±2×0.0042) mg kg−1 =
(0.3306, 0.3474) mg kg−1. This interval excludes both results
x1 = 0.368 mg kg−1 and x2 = 0.310 mg kg−1. The results x1

and x2 are highly plausible values of the common measurand;
therefore, u(xA) = 0.0042 mg kg−1 is deemed to be an
undervaluation of the uncertainty associated with xA [10]. The
undervaluation of u(xA) is attributed to an unknown bias8 in
xA [7, 11]. Following the ISO-GUM’s approach (discussed
in our section 4), the authors of [10] apply the correction
c = 0 for bias in xA with uncertainty u(c) = 0.0167 mg kg−1

to obtain the corrected result y = xA + c = xA =
0.339 mg kg−1 with uncertainty u(y) = √

[u2(xA) + u2(c)] =
0.0173 mg kg−1. The corresponding two-standard uncertainty
interval is (y ± 2 × u(y)) = (0.339 ± 2 × 0.0173) mg kg−1 =
(0.3045, 0.3735) mg kg−1. This interval includes both results
x1 = 0.368 mg kg−1 and x2 = 0.310 mg kg−1. Thus,
the uncertainty u(y) = 0.0173 mg kg−1 is regarded as a
satisfactory expression of the uncertainty associated with the
corrected combined result y = xA = 0.339 mg kg−1.

5.1. Results from rectangular and trapezoidal distributions

In [10] the correction c = 0 and uncertainty u(c) =
0.0167 mg kg−1 were determined from a rectangular distribu-
tion on the interval (x2 − xA, x1 − xA) = (−0.029, 0.029),
which has the expected value zero and the standard deviation
0.029/

√
3 = 0.0167. (Since x2 is less than x1, the lower

limit of the rectangular distribution is x2 – xA and the upper
limit is x1 − xA.) As an alternative probability distribution
to determine the correction c and uncertainty u(c), we con-
sider the trapezoidal distribution, Trapezoid (x2 − u(x2) − xA,
x2 + u(x2) − xA, x1 − u(x1) − xA, x1 + u(x1) − xA). Both dis-
tributions are sketched in figure 10. The expected value and
standard deviation of the trapezoidal distribution, determined
from the expressions (2.28) and (2.32), are E(C) = 0.0002
and S(C) = 0.0171; thus, c = 0.0002 mg kg−1 and u(c) =
8 When only one method is used, the bias in the result may remain hidden,
unknown and unaccounted for in the reported uncertainty. When multiple
methods are used the possibility that the results may be biased is exposed.
The bias in the result xi is E(xi) − Y , for i = 1 and 2, and the bias in xA is
E(xA) − Y , where E(.) is the expected value of the sampling distribution.

Figure 10. Sketches of the rectangular and trapezoidal distributions.

Table 3. Result xA, correction c, corrected result y and
corresponding uncertainties in mg kg−1 determined from rectangular
and trapezoidal distributions.

Rectangular Trapezoidal
distribution distribution

xA 0.3390 0.3390
u(xA) 0.0042 0.0042
c 0.0000 0.0002
u(c) 0.0167 0.0171
y 0.3390 0.3392
u(y) 0.0173 0.0176

0.0171 mg kg−1. This trapezoidal distribution is slightly asym-
metric about zero; therefore, it represents a small non-zero cor-
rection. The result xA, correction c, corrected result y = x + c

and the corresponding uncertainties based on the two distribu-
tions are shown in table 3. We note that both rectangular and
trapezoidal probability distributions yield two-standard uncer-
tainty intervals (y±2×u(y)) that include the results x1 and x2.

5.2. Motivation underlying trapezoidal distribution

Suppose XA is the expected value9 of the sampling distribution
of the mean xA, then the additive bias in xA is XA − Y .
The measurement equation required to incorporate correction
for bias in xA is Y = XA + C. A Type B distribution for
the correction variable C is a state-of-knowledge probability
distribution for the negative Y − XA of bias where both Y and
XA are regarded as random variables with state-of-knowledge
distributions. Following the ISO-GUM [1], the result xA

is interpreted as the expected value of a state-of-knowledge
probability distribution for XA. (This interpretation is justified
when Bayesian statistics is used for Type A evaluations.) Thus,
we may heuristically think that a probability distribution for
C represents subjective belief probabilities about the possible
values of Y − xA, where xA is known [7, 8, 12]. In [10], the
limits of the rectangular distribution for C are set as x2−xA and
x1−xA. This corresponds to uniform (equal) belief probability
for values of Y in the interval (x2, x1) and zero probability for
values outside this interval. Since the possible values of Y

are in the interval (x1, x2) as well as to the left and to the
right of this interval, one cannot be definite about the limits

9 We use the same symbol XA for the expected value as well as for a random
variable having a state-of-knowledge distribution about the expected value.
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of a rectangular distribution specified for C. Therefore, we
considered a trapezoidal distribution for C. In setting the
parameters of the trapezoidal distribution as x2 − u(x2) − xA,
x2 +u(x2)−xA, x1 −u(x1)−xA and x1 +u(x1)−xA we thought
as follows. The result of method 1 is not just the single value
x1 but a range of values, for example (x1 ± 2 × u(x1)), that
could reasonably be attributed to Y . In particular, based on
method 1 alone, the range of values (x1 − u(x1), x1 + u(x1))

may be regarded as highly plausible values for Y . Similarly,
based on method 2 alone, the range of values (x2 − u(x2),
x2 + u(x2)) may be regarded as highly plausible values for Y .
Therefore, a trapezoidal distribution with the left-side sloping
on the interval (x2 −u(x2)−xA, x2 +u(x2)−xA) and the right-
side sloping on the interval (x1 −u(x1)− xA, x1 + u(x1)− xA)

may be a better state-of-knowledge distribution for C than
a rectangular distribution with sharp cutoffs at x2 − xA and
x1 − xA.

6. Summary

A Type B estimate and standard uncertainty are determined
from a state-of-knowledge probability distribution specified by
scientific judgment. All probability distributions discussed in
the ISO-GUM are symmetric. However, in some applications
an asymmetric distribution is needed. We described a
trapezoidal distribution which may be asymmetric depending
on the settings of its parameters. A trapezoidal distribution is
versatile. In particular, asymmetric and isosceles triangular
distributions and rectangular distribution are special cases.
The ISO-GUM’s procedure to determine a result and standard
uncertainty for an output quantity (measurand) is to propagate
the expected values and the standard deviations of the
probability distributions specified for the input quantities
through a linear approximation of the measurement equation.
We presented explicit and simple expressions for the expected
values and the variances of a trapezoidal distribution and of
its special cases. (We also presented explicit and simple
expressions for the moment generating functions and moments
of all orders.) A working group of the BIPM/JCGM10

has drafted Supplement 1 to the ISO-GUM (draft GUMS1).
The draft GUMS1 [4] propagates probability distributions
specified for the input variables through a numerical simulation
of the measurement equation to determine a probability
distribution for the value of the output variable. Numerical
simulation requires generation of random numbers from the
probability distributions specified for the input variables.
We showed how random numbers from a trapezoidal
distribution and from its special cases may be easily generated.
Thus, we have proposed many useful alternatives to the

10 Bureau International des Poids et Mesures (BIPM), Joint Committee for
Guides in Metrology (JCGM).

use of a rectangular distribution for the Type B input variables.
A particular application, in which a Type B probability
distribution is often used, is to determine the correction
for bias and the standard uncertainty associated with the
correction in a result of measurement. We illustrated how
a trapezoidal distribution may be used to determine an
asymmetric correction for bias and its associated standard
uncertainty.
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