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Abstract 
 

The National Institute of Standards and 
Technology is involved in developing standard 
protocols for the performance evaluation of 3D 
imaging systems, which include laser scanners and 
LADARs (LAser Detection and Ranging).  A LADAR 
is an optical device that typically yields voluminous 
3D “point clouds” by scanning scenes.  In many 
applications, a model of an object which is present in 
the scene has been specified, and the task amounts to 
recovering this object from scan data.  Specifically, 
the recovery of spheres from point clouds will be 
addressed, aiming at estimating the location of their 
centers and, if not known beforehand, their radii.  This 
information can be used, for instance, to 
“register”LADAR data to a specified coordinate 
frame.  Two experiments recovering spheres based on 
best-fitting data points are reported. Sphere fitting 
based on orthogonal least squares is compared to a 
novel approach, minimizing instead the squares of 
range errors incurred in the direction of the scan. 
 
 

1. Introduction  
 
 The past decade has witnessed the rapid growth 
of the technology for 3D imaging systems (e.g., laser 
scanners and LADARs - LAser Detection and 
Ranging) and the applications for these systems.  
LADAR determines 3D coordinates of points on an 
object by sending out a signal and analyzing its 
reflection back to the instrument as shown in Figure 1.  
A LADAR is mainly a scanning device in that it sends 
out a multitude of signals in a very short time, 
resulting in point clouds containing typically millions 
of data points.  Applications include monitoring of 
construction sites, the development of as-built models 
of existing structures and conditions, mapping, 
visualization of “hidden” objects, guiding of 
unmanned vehicles, just to mention a few. 

 
Fig. 1. Schematic of the operation of a LADAR 

scanner. 
 

The metrology of LADARs is a current research 
issue at the National Institute of Standards and 
Technology (NIST). This work also supports the 
development of standard test protocols for the 
performance evaluation of LADARs.  Figure 2 shows 
the indoor, artifact-based LADAR facility at NIST. 

 

 
Fig. 2. Indoor, artifact-based 3D Imaging Facility 

at NIST.1 
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Figure 3 presents a LADAR visualization of a 
rubble pile.  The casual reader may see this picture as 
just what a photographic camera might produce. But 
this would miss the point that, once the point cloud 
has been captured in 3D, it can be displayed as seen 
from different viewpoints. For instance, the point 
cloud generated off a sphere is displayed in Figure 4 
as seen sideways, that is, perpendicular to the 
direction of the scan.  
 

 
Fig. 3.  LADAR scan of a rubble pile. 

 

 
Fig. 4.  Point Cloud and fitted sphere. 

 
The point cloud in Figure 4 consists of actual data 

points. The superimposed picture of the sphere does 
not depict the actual sphere but a “fitted” sphere, a 
sphere that in some sense best represents the point 
cloud, a sphere that was calculated using a fitting 
algorithm. The fitted sphere is expected to capture the 
radius and location of the actual sphere vis-à-vis the 
point cloud. Fitting the sphere thus provides a method 
for recovering the actual sphere from which the point 
cloud had been generated.  

1.1 The Fitting Paradigm  
 

Fitting requires the definition of a “gauge 
function,” which expresses a measure of deviation of 
the point cloud as a whole from a putative geometric 
model such as a sphere.  The parameters of the model 
governing its shape and size are the arguments of the 
gauge function. They are the variables of an 
optimization problem: to minimize the deviation of 
data points from an object model.  

Gauge functions are typically defined in two 
steps.  First, a measure of the individual deviation  
 

( )( )model ,,,deviation iiii zyx=∆  
 
of each data point from the putative model is defined. 
Then a norm *  is selected and applied to the vector 

of all deviations i∆ , in order to arrive at a single 
gauge value for an overall measure of deviation,  
 

( )i∆∆∆=∆ ,,, 21 …  
 

The quantity ∆ represents the desired gauge 
function, which depends on the model parameters as 
its arguments, since every one of the individual 
deviations ∆i depends on those parameters.  

The following are the most commonly selected 
norms:  

• the Chebychev norm ( )∞L : ii ∆max  

• the least-squares norm ∑ ∆i iL 2
2 :  

• the sum of absolute values norm ∑ ∆i iL :1   
The most commonly used gauge function is based 

on orthogonal distances of data points (xi, yi, zi), from 
the sphere (see Fig. 5).  These distances are then 
combined by summing their squares, 
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where (x0, y0, z0) and r denote the center and radius of 
the sphere, respectively.  Fitting procedures which 
minimize the above gauge function are commonly 
referred to as “orthogonal least squares” or “geometric 
sphere fitting” [1, 9]. 



 3

 
Fig. 5.  Orthogonal distance error. 

 
The use of the Chebychev norm has been 

explored by [2, 3, 10].  Applications are in the quality 
control for manufactured parts to determine whether 
they meet desired tolerance criteria. 

In our work on spheres, the desired end result 
consists of the “center coordinates” ( )*

0
*
0

*
0 ,, zyx of a 

fitted sphere, and perhaps its “radius” r*.  Indeed, 
when fitting spheres, two different tasks may be 
encountered:  

• fitting a sphere with its radius “free” to be 
determined;  

• fitting a sphere with a specified “fixed” 
radius.  

 

2. Locating I-Beams  
 

The following demonstration experiment [5] was 
designed to demonstrate the feasibility of automated 
placing and picking of an I-beam by the computer-
guided crane developed at NIST.  The I-beam, 
residing on the laboratory floor, was scanned for 
location and orientation with the data in the LADAR’s 
coordinate system. 

This instrument’s coordinate system then had to 
be related to the coordinate system of the crane, a 
process generally called “registration”.  To this end, 
three “target” spheres, “A”,“B”,“C”, were placed in 
the vicinity of the I-beam (see Fig. 6).  The centers of 
the spheres were predetermined in the coordinate 
system of the crane.  The LADAR scan covered these 
spheres along with the I-beam, and the fitting process 
yielded center coordinates in the instrument system.  
Thus, there were three target locations, each of which 
with coordinates known in both systems.  The 
“Procrustes” algorithm [7] was employed, which 
combines a translation with a rotation in order to 
transform one system into the other, matching the 
coordinates at each target point as well as possible.  

 
Fig. 6.  Determining location and orientation of an 

I-beam using LADAR. 
 

It is clear that the accuracy of the fitting algorithm 
as applied to the target spheres is the key to a correct 
registration.  Thus, the fixed radius option for sphere 
fitting was used for the actual demonstration.  The 
radii of the target spheres (76.2 mm, 3 in) were 
known, and it could be determined how well the radii 
were reproduced if the free radius option of the sphere 
fitting algorithms were to be used.  The results were 
disconcerting. 

The radii were generally underestimated.  In 
particular, applying a commercial fitting package to 
target sphere “C” yielded for n = 90 the average 
radius, raverage , 
 

( ) ,76,3..69 mmrmmdevstdmmr actualaverage ===  
 
a discrepancy of about 10 %.  An effort was therefore 
started to determine the reasons for such errors.  

At first, suspicion centered on the quality of the 
target spheres which were made of polystyrene.  It 
was thought that this material might permit some 
penetration of the sphere by the laser beam, or perhaps 
the dimensions of the spheres were not quite accurate.  
The experiment described in the following section was 
therefore conducted. 
 

3. Fitting an Aluminum Sphere 
 
 In this experiment, a data set was collected, and 
reduced to avoid boundary effects, off an aluminum 
sphere machined to a radius of 101.6 mm (4 in). This 
data set is displayed in Figure 7 together with two 
subsets, an upper and a lower subset into which the 
full set had been split as shown in Figure 8. The 
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results of applying the commercial fitting package to 
these three data sets are displayed in Tables 1 and 2.  
 

 
 

Fig. 7.  Full “hemispherical” data set from 
aluminum sphere.  

 

 
Fig. 8.  Upper and lower portions of the 

hemispherical data set. 
 
 
 

Table 1.  Orthogonal fitting; variable radius. 
 

 x y z r 
Full -6254.99 -196.51 -78.85 98.41 
Upper -6258.27  -196.37 -83.02 102.36 
Lower -6258.61 -196.82 -72.61 103.66 

 
 

Table 2.  Orthogonal fitting; fixed radius.  

 
The first observation concerns the result of fitting 

the full data set with the free radius option.  As in the 
demonstration reported in Section 2, the radius was 
still underestimated:  

 
mmrmmr actualcomputed 6.101,41.98 == , 

 

but then it was overestimated for both the upper and 
the lower portion of the full data set. The next 
observation concerned the high level of sensitivity in 
the z-coordinate, which represents vertical elevation. 
Note that the same sensitivity in the z-coordinate 
showed up when the known radius of 101.6 mm had 
been kept fixed.  Such variations are at odds with the 
fact that regions on the sphere are equivalent.  Indeed, 
the upper and the lower data set occupy essentially 
symmetric positions on the sphere. Yet there is a 
substantial difference in fitting results.  

The upper and the lower subsets are, however, in 
a different position vis-à-vis the LADAR instrument. 
The angles of incidence certainly differ for these two 
subsets.  This forces the conclusion that the instrument 
position has to be taken into account when fitting. A 
method for this will be presented in Section 4.  
 

4. Fitting in Scan Direction  
 

In what follows, we assume that the data points 
are acquired in scan direction, i.e., the data point 
(xi, yi, zi) and its intended impact point on a sphere are 
found on a ray, referred to as “scan ray,” emanating 
from the origin (0, 0, 0), so that the intended target 
point is at the intersection of the scan ray with the 
sphere.  The distance between the data point and that 
intersection will be considered the actual error - see 
Fig. 9.  Of course, the scan ray may not intersect the 
sphere, in which case we declare a “miss;” otherwise, 
a “hit.”  In reality, one might argue, every data point 
would arise from a hit, as otherwise it would not have 
gotten into the data set.  But as long as a sphere is not 
in the best-fit position, misses are to be expected. 

 
Fig. 9.  Actual error in scan direction. 

  
These considerations suggest a gauge function 

based on the range errors in scan direction, in 
particular, combining them using the square root of 
the sum of squares of the respective range errors.  This 

 x y z r 
Full -6259.19 -196.58 -78.87 101.6 
Upper -6257.52 -196.36 -82.55 101.6 
Lower -6256.59 -196.77 -73.98 101.6 
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approach, however, fails to provide a suitable basis for 
a gauge function as it depends solely on data points 
scoring hits.  Indeed, any sphere position that avoids 
hits altogether would yield a minimum of zero.  For 
this reason, an appended gauge function is proposed 
which includes also points which produce misses, and 
defining their deviations as the orthogonal distance to 
the sphere.  This expenditure will be resorted to until 
the set of hits stabilizes.  The final result will be based 
on the stabilized set of hits only. 

This and similar procedures are still subject to 
experimentation and adjustments.  Our first efforts, 
however, were clearly successful as attested by the 
results given in Table 3.  They indicate that the 
abnormalities reported in Section 2 appear indeed to 
be caused primarily by “modeling error,” namely the 
choice of an unsuitable gauge function for the fitting 
procedure.  

 
Table 3.  Fitting in scan direction; variable radius. 
 
 x y z r 
Full -6258.98 -198.07 -79.18 101.29 
Upper -6259.06 -198.15 -78.90 101.22 
Lower -6259.38 -198.01 -79.12 101.60 
 

Unfortunately, the appended gauge function is not 
continuous because a perturbation of the sphere 
location may cause a hit to become a miss, or vice 
versa, and thus switch to a different definition of 
deviation.  Fortunately, those discontinuities are 
associated with a small number of points and thus tend 
to have only a noise-like effect on the overall gauge 
function.  Nevertheless, an optimizer is needed which 
does not require differentiability and also tolerates 
small discontinuities.  Recall also that the final 
optimization will be with respect to the un-appended 
gauge function.  The method that turned out to be 
successful was a method based on recent research in 
the optimization of noisy functions. Loosely speaking, 
this method is designed for minimizing functions with 
many local but non-global minima.  The algorithm 
works well as long as these minima are “shallow,” i.e., 
they act as perturbations of an overall smooth and 
well-behaved function.  

This method also permits constraining the 
minimization to avoid, for instance, values of 
variables that define spheres that would infringe upon 
the instrument location. 

The algorithm proceeds in two stages. In order to 
form a centered finite difference approximation to the 
gradient of the gauge function, a finite-difference step-
length is calculated. Initially this finite-difference 
step-length is taken to be quite large and is gradually 
decreased as iterates draw closer to the solution [4]. 
When the gauge function becomes sufficiently small, 

this finite difference step-length is defined to be the 
value that maximizes the expected accuracy in the 
gradient of the gauge function given an estimate of the 
error in the gauge function incurred by each of the 
“misses”.  The algorithm progresses towards the 
solution until convergence criteria are met and the 
finite difference step-length is decreased below the 
square root of machine precision or to a size to be 
sufficiently below a threshold defined by the estimate 
of noise in the gauge function generated by misses.  
Each iteration of the algorithm is based on a 
minimization a quasi-Newton (in this case, BFGS) 
method. With the gradient calculation in hand any 
gradient-based method could have been employed 
(e.g., conjugate gradient). As a final step, once 
convergence the gradient convergence criteria has 
been met, a direct search method coordinate search is 
employed [8] to guarantee as much accuracy in the 
solution as possible.  This coordinate search method 
requires no gradient calculation or approximation, and 
has been applied successfully in the past on difficult 
non-differentiable constrained optimization problems 
(e.g., [6]).  
 

5. Concluding Remarks  
 

The experimental evidence presented here, 
although limited so far, indicates that for certain 
applications it may not be enough to base fitting 
methods on the coordinates of points alone, but that it 
may be necessary to take into account the directions in 
which those points had been acquired.  This may 
require a general revision of currently used 
approaches to approximation.  
 

6. Footnotes 

1  Certain products are shown in this photograph.  In 
no case does this imply recommendation or 
endorsement by NIST, nor does it imply that the 
products are necessarily the best available for the 
purpose. 
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