
 
 

 

  

Abstract—In this paper we present a 3-D object segmentation 
and motion estimation scheme of range video data for crash 
prevention applications. The segmentation is based on slope 
values of every point in the scene with which atomic regions are 
constructed by region growing. Atomic regions are merged with 
the flat surfaces (non-ground points) according to their mean 
height and the range difference of neighboring points. Following 
segmentation we apply a 3-D recursive motion estimation 
algorithm to each moving object. Simulation results show that 
the segmentation scheme together with the recursive motion 
estimation algorithm can be highly effective in estimating 3-D 
motion parameters of multiple moving objects in range video 
data. 

I. INTRODUCTION 

Advanced vehicle-based safety and warning systems use 
3D sensors (radar, laser scanners, stereo) and cameras to 
measure road geometry (position, curvature), and range to 
obstacles in order to warn a driver of an impending crash 
and/or to activate safety devices (air bags, brakes, steering).  
For such sensitive operations high-speed range cameras that 
are capable of acquiring raster depth measurements of an 
object with relatively high frame rates, would be essential. 
These images can provide precise measurements of the 
geometry of the 3-D environment, including all three 
Cartesian coordinates of the points on an object.  This can 
make motion estimation and object tracking much easier and 
more reliable compared with using only video intensity 
images. In our earlier investigation we have shown that 
displacements of objects with complex 3-D motion in range 
moving images can be accurately estimated for a single object 
[13]. However, a typical road scene may contain multiple 
moving objects, which need to be segmented before 3-D 
motion estimation can be applied. 

There are many schemes for range image segmentation 
[1]-[10]. These segmentation schemes can be broadly 
classified into two basic approaches: region-based [1], [4], 
[5], [16], and edge-based [3], [6]-[8]. The region-based 
segmentation algorithms are based on detecting continuous 
surfaces that have similar geometrical properties. The main 
drawback of these techniques is that they are not very accurate 
and can produce distorted surface boundaries. Edge-based 
schemes rely on detecting discontinuities of surfaces (i.e. 
edges) and thus, can localize surface boundaries more 
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precisely compared with region-based algorithms. On the 
other hand, detected edges may not be complete due to the 
noise, sampling, and the limited capability of the edge 
detection algorithm. To connect an incomplete detected edge 
point to a solid edge, some algorithms such as Hough 
transform [15], can be applied. In both cases, the image is 
normally segmented into surfaces including planar surfaces 
and/or curved surfaces, which can be very useful for object 
recognition and classification. In particular, for applications 
such as crash prevention, it would be crucial to accurately 
track vehicles and other obstacles on the road.  

In this paper, we examine a region growing segmentation 
scheme, which has been applied prior to 3-D motion 
estimation. The segmentation scheme is described in Section 
II.  Section III presents the simulation results using a sequence 
of synthetically generated range video images.  

II. OBJECT SEGMENTATION 

In a realistic traffic scene there are roads, cars, buses, 
pedestrians, and so forth. In order to estimate motion 
parameters of moving objects, it would be necessary to 
segment the scene into multiple objects. As an example, Fig. 1 
shows one frame of a range image sequence that consists of 
two cars on the road. Both cars in the range image overlap, but 
each moves at a different speed.  

A. Slope Calculation and Thresholding 
In the segmentation process, and before separating each 

vehicle, it would be more convenient to remove the road (or 
the ground) first.  This can be achieved by computing the 
redial slope [11] of every pixel (indicated by their Cartesian 
coordinates (X, Y, Z)) using two vertical neighboring pixel’s 
Cartesian coordinates. That is, 
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where yx,  are the sensor grid (range image) index. 
In [11], the slope values are computed by a more complex 

process. That is, based on sensor geometry, the slope values 
are computed by the depth and the enclosed angle values of 
each pair of vertically adjacent beams. Compared with (1) 
however, this would be computationally more extensive. Bear 
in mind that the image data has to be transformed to the 
Cartesian coordinates for the motion estimation process, and 
such a transformation can be done prior to the segmentation 
process. 

Since the real range images will have some noise, some of 
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the slope values will not be correct for some noisy points. In 
order to alleviate this effect, we use the average coordinate 
values of the points in the neighboring area (includes 8 
neighboring points and the current one). That is, 
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Subsequently, the slope values of the points, including 
neighboring points, are averaged as the final slope values. 
That is, 
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Fig. 1. Two cars on the ground. 
 

Next, the slope values are compared with a threshold Λ . 
The pixels whose slope values are higher than Λ  are treated 
as the pixel with steep slope, as illustrated in Fig. 3(a). This 
step can remove the road pixels, whose slope values are close 
to 0 and lower than Λ . However, most obstacles, such as 
vehicles may contain flat surface areas (surrounded by steep 
surfaces), which could also be removed in this process, thus 
dividing the obstacle into several parts. 

B. Region Growing 
In order to regroup the separated parts into whole objects, a 

region growing method can be effectively utilized. Region 
growing is a process that put samples with the same property 
into one group. The region growing process can be easily 
deduced by looking at Fig. 2 and its operation is described in 
the following steps.  
1) Find a seed point in the image grid. A simple method is 

using raster scan, i.e., from left to right and from top to 
bottom. The first scanned point will be selected as the 
seed. 

2) For the seed point, its four (or eight) neighbor points 
(pixels) will be tested. If the neighboring pixels have the 
same property as the seed point (e.g., steep-slope), this 
point will be flagged and stored in a stack. Otherwise, 
this pixel will not be considered. 

3) After all the neighbors are tested, one point in the stack 
will be pulled out as the new seed point. 

4) Steps 1) - 3) should be repeated until the stack becomes 
empty. 

5) Repeat steps 1) – 4) until all the points in the image have 
been checked. 
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Fig. 2. Region Growing Process. 
 

  
(a)                                                       (b) 

  
(c)                                            (d) 

 
Fig. 3. Segmentation process. (a) The image after slope thresholding; (b) 
Region growing into atomic regions; (c) The segmented left car; (d) The 
segmented right car. 
 
 

Through the region-growing algorithm we can combine the 
pixels with the steep-slope property into atomic regions (Fig. 

WeE1.21

387



 
 

 

3(b)), whereby the average height of each region can be 
computed. Subsequently, starting at the region with the lowest 
mean height, pixels are merged (also via region-growing) if 
one of the following two conditions is met: 
1) The pixel is spatially adjacent to the previous one and its 

height is more than a predefined value (e.g., 1/3 mean 
height of the atomic region) for the atomic region. 

2) The pixel is spatially adjacent in depth to the previous 
one and has a high slope value. 

The spatial adjacency of pixels in both conditions is 
important for merging pixels in one object and separating 
pixels in different objects. The first condition can make the 
flat surfaces between steep surface parts merge into the 
obstacles. The second condition ensures merging the pixels 
with steep-slope. 

After segmentation, the road (or ground) is removed and the 
obstacles (two cars) are segmented (Fig. 3(c)-(d)), which 
makes the motion estimation of every object (car) possible. 

III. SIMULATIONS 

Range images can provide precise measurements of the 
geometry of the 3-D environment, including all three 
coordinates of the objects points. In particular, taking 
advantage of the in depth resolution (range), it is possible to 
perform an accurate estimation of objects that have undergone 
3-D translational and rotational movements. Estimating the 
complex 3-D motion displacement can best be accomplished 
by using time varying CEM, as proposed by Horn and Harris 
[12]. Their algorithm is based on the assumption that most of 
the surface is smooth so that local tangent planes can be 
constructed.  

In our earlier investigation, we have shown that the 
estimation accuracy can be greatly enhanced by recursively 
estimating the 3-D motion parameters [13]. In this approach 
the motion parameters are iteratively estimated, where the 
previous estimates are used in the process at each iteration. 
Motion estimation is based on minimizing the mean-square 
difference between the current frame and the motion 
compensated previous frame. Thus, in this recursive process 
two consecutive video frames (generated at a fixed frame rate) 
are used to measure the rate of depth change. After each 
iteration, the estimated motion vector is used to reconstruct 
the compensated previous frame for the next iteration. A 
detailed description of the motion estimation technique can be 
found in [13]. However, in this paper we have used both the 
Horn and recursive techniques to evaluate the performance of 
the combined segmentation and motion estimation techniques 
used for tracking multiple objects. 

In order to quantitatively analyze the segmentation and the 
3-D motion estimation algorithms [13] we have developed a 
method to synthetically generate sequences of moving range 
images. In particular, these moving images are produced in 
such a way that a 3-D object can be displaced in accordance 
with the predefined motion displacement parameters. These 
images can allow us to evaluate the accuracy of estimated 

motion vectors with reference to the actual displacement 
parameters.  
 

 

 
Fig 4. The OOGL file “Auto”. 

A. Generating Range Video Data 
Moving range image sequences were constructed via 3-D 

OOGL (Object Oriented Graphics Library) files. OOGL is a 
3-D object data file in which an object is defined by vertices, 
lines and surfaces. Fig. 4 shows a OOGL file called “Auto”, 
which was selected here to generate range video sequences for 
our simulation [14]. The 3-D OOGL image was then used to 
generate a sequence of 2.5-D moving range image files (RIF). 

A RIF file is a range image format, which is based on the 
Cartesian coordinates (X, Y, Z components) and consists of the 
object points and the Mask map (indicates where there are 
object points). In this format, each frame is constructed by 
first displacing the object in the OOGL file and then 
transforming it to the RIF file. In this way we can create a 
sequence of moving range images (frames) where the object in 
each frame can be displaced by a predefined 3-D motion 
vector. Two consecutive transformed RIF images were then 
used as the inputs to the motion estimator. 

To get the RIF files from the OOGL files, we must set some 
parameters such as: view plane normal, view up vector, 
camera position ("view reference point"), resolution of the 
output images, size of the camera image plane, focal length, 
and so on. Fig. 5 shows some of the parameters.  

To move objects, one method is to change the view 
reference point; up vector and view plane normal when 
converting OOGL file to RIF file. The other method, used in 
our paper, is adding a transformation matrix in the OOGL file 
and then creating the second frame. The transformation matrix 
is a 44×  real matrix for homogeneous object transformation. 
It can represent all of the 3D transformations such as rotation, 
translation, scaling, shearing and perspective. It acts by 
multiplication on the right of vectors. Thus, if p  is a 
4-element row vector representing homogeneous coordinates 
of a point in the OOGL object, and M  is the 44×  matrix, 
then the transformed point is pMp =′ . Suppose that frame 1 

],,[ 1111 ZYXF =  and transformation matrix M , frame 2 
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can be represented as: 
MFF ×= ]1,[]1,[ 12 . 

For rigid motion objects with sensor-centered coordinates, 
M  is in the form of 
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Fig. 5. Camera parameters  
 

B. Results 
In order to simulate a realistic situation as in normal traffic, 

we generated range video sequences of scenes consisting of 
multiple objects (e.g., cars and roads). In our approach, such 
range image sequences are realized by first generating 
single-object images in RIF format. These images are then 
combined according to the depth value of every point. That is, 
for each point the sample values from the images in the same 
position with the closest point (the point with the least depth 
value) will be selected as the point in the combined range 
image. Fig. 6 and Fig. 7 illustrate the first frame of the two 
sequences used in our experiments. Both sequences are 
comprised of three objects: two cars and a flat surface 
(ground).  

In the first sequence both cars are driving in a forward 
direction and the rear sides of the cars are captured (see Fig. 6). 
In the other sequence, the first car (the car on the left in Fig. 7) 
is moving forward, but the second car is driving in a cross 
section from right to left.  

In Fig. 6, the parameters for the car on the left side are: U=1, 
V=-0.5, W=1, A=-0.01, B=0.02, and C=0.01. For the car on 
the right side, the parameters are set as: U=1, V=0.5, W=-1, 
A=0.01, B=-0.02, and C=0.01. In Fig. 7, the parameters for 
the car on the left side are: U=1, V=-0.5, W=-1, A=0.01, 
B=-0.02, and C=0.01. The parameters for the car on the right 
of the image (see the side of the car in Fig. 7) are: U=-1, V=0.5, 
W=1, A=0.01, B=0.02, and C=0.01. 

 
(a) 

 
(b) 

Fig. 6. Object segmentation results. (a) The first image; (b) The second image. 
For both the images, from left to right are: (1) The original image; (2) The 
segmented left car; (3): The segmented right car. 
 

 
(a) 

 
(b) 

Fig. 7. Object segmentation results. (a) The first image; (b) The second image. 
For both the images, from left to right are: (1) The original image; (2) The 
segmented left car; (3): The segmented right car. 
 
Since these images are synthetically generated, it would be 
necessary to deliberately corrupt them with noise. This would 
allow us to test the resistance of the segmentation and motion 
estimation schemes under more realistic conditions. Thus, in 
our experiments we have corrupted the range images with 
20% salt and pepper impulse noise (with uniform distribution) 
[16].   

To estimate the motion parameters in both scenarios (Fig. 6 
and Fig. 7) we first applied the segmentation scheme to 
separate the objects. As can be seen from Fig. 6 and Fig. 7 the 
road is removed and both cars have been successfully 
separated despite the 20% impulse noise. This is mainly due to 
the effect of filtering shown in (2) and (3), which plays a 
crucial role in improving the segmentation performance.  

The next step is to estimate the motion parameters for each 
segmented object. We then applied a recursive scheme to 
estimate the motion parameters for both scenarios (please note 
that the results for the first iteration correspond to the Horn & 
Harris algorithm).  
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We use two criteria as a measure of performance: Mean 
Square Error (MSE) and Motion Vector Error (MVE). The 
MSE between Frame 1 and Frame 2 is defined as, 
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where R is the region that combines both objects in two frames, 

21 MASKMASKR �= , and m is the number of the points in 
region R. 

Given the true motion parameters ),,,,,( CBAWVU and 
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Fig. 8 and Fig. 9 show the motion estimation results 
(subjective and objective) of the two cars for scenario 1 (see 
Fig. 6). Fig. 10 and Fig. 11 present the motion estimation 
results for scenario 2 (see Fig. 7). For both scenarios we can 
observe a substantial improvement in estimating the motion 
parameters using the recursive method, as compared with the 
Horn and Harris algorithm. The improvement in the 
estimation accuracy after each iteration can be seen from the 
objective results shown in Fig. 9 and Fig.11 (for scenario 1 
and scenario 2, respectively). Looking at MSE-based 
objective results in Fig 9(a) in particular, we can observe that 
the MSE of the right car is considerably higher than the left car. 
This is mainly due to the considerable overlap with the left car 
resulting in a variational partial covering of its rear side. 
Nonetheless, as far as its convergence to the actual motion 
displacement vector is concerned (i.e., MVE criterion), we 
can clearly observe the effectiveness of the motion estimation 
scheme from Fig. 9(b). We can also observe a similar 
performance in scenario 2 (see Fig 10 and Fig.11). 
 

 
(a) 

 

 
(b) 

Fig. 8. Subjective comparison of different algorithms. (a) The results for the 
left car; (b) The results for the right car. For both cars, from left to right are: (1) 
The difference image between the original two images; (2) The difference 
image between the second image and the estimated second image using the 
estimated motion parameters of the first iteration (Horn’s algorithm); (3) The 
difference image between the second image and the estimated second image 
using the motion parameters of the final iteration (the recursive algorithm). 

 

 
(a) 

 

 
(b) 

Fig. 9. Objective evaluations of the recursive motion estimation scheme for 
the left car (U=1; V=-0.5; W=1; A=-0.01; B=0.02; C=0.01) and the right car 
(U=1; V=0.5; W=-1; A=0.01; B=-0.02; C=0.01) segmented from Fig. 6. (a) 
MSE; (b) MVE. 
 

 
(a) 

 
(b) 

Fig. 10. Subjective comparison of different algorithms. (a) The results for the 
left car; (b) The results for the right car. For both cars, from left to right are: (1) 
The difference image between the original two images; (2) The difference 
image between the second image and the estimated second image using the 
estimated motion parameters of the first iteration (Horn’s algorithm); (3) The 
difference image between the second image and the estimated second image 
using the motion parameters of the final iteration (the recursive algorithm). 
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(a) 

 

 
(b) 

Fig. 11. Objective evaluations of the recursive motion estimation scheme for 
the left car (U=1; V=-0.5; W=-1; A=0.01; B=-0.02; C=0.01) and the right car 
(U=-1; V=0.5; W=1; A=0.01; B=0.02; C=0.01) segmented from Fig. 7. (a) 
MSE; (b) MVE.  
 

IV. CONCLUSION 
Humans are very good at detecting when a collision may 
occur, but may not be able to react quickly enough to avoid it. 
With the rapid progress of range camera technology, it has 
become possible to acquire raster depth measurements of an 
object, which can then be used in pre-crash awareness and 
prevention. In this paper we considered a region-growing 
scheme to separate multiple moving obstacles. A 3-D motion 
estimation scheme is used to estimate the velocity of the 
vehicles in front of the range video camera. It is shown that a 
combination of region growing segmentation and recursive 
motion estimation can enhance the tracking ability 
considerably. 
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