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Abstract. Most images f�x ,y� are not smoothly differentiable functions
of x and y, but display edges, localized singularities, and other significant
fine-scale roughness, or texture. Correct characterization and calibration
of image roughness is vital in many image processing tasks. The L1

Lipschitz exponent �, where 0���1, measures fine-scale image
roughness provided the image is relatively noise free. A recently devel-
oped mathematical technique for estimating � is described. The method
is based on successively blurring the image by convolution with increas-
ingly narrower Gaussians, using commonly available fast Fourier trans-
form algorithms. Instructive examples are used to illustrate the quantita-
tive changes in � that occur when an image is either degraded or
restored. Of particular interest are the documented changes in � that
accompany APEX blind deconvolution of real images from the Hubble
space telescope, from magnetic resonance imaging and positron emis-
sion tomography brain scans, and from state-of-the-art nanoscale scan-
ning electron microscopy. Additional applications include monitoring of
image sharpness and imaging performance in imaging systems, evalu-
ation of image reconstruction software quality, detection of abnormal fine
structure in biomedical images, and monitoring of surface finish in
industrial applications. © 2008 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.2899144�
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restoration; APEX deconvolution; Hubble telescope; MRI and PET brain scans;
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Introduction

his paper discusses an effective mathematical framework
or quantifying the unsmoothness of images, and then ap-
lies this methodology to some significant questions in im
ge restoration.* An elegant computational technique,
ased on fast Fourier transform �FFT� algorithms, translates
his theory into an important and practical image metrology
ool. Interesting real images from such fields as astronomy,
lectron microscopy, and brain research provide valuable
llustrative examples. In all figures, the axis label “log u”
efers to the natural logarithm of u.

Most natural images f�x ,y� display edges, localized
harp features, and other significant fine-scale details, or
exture, and cannot be modeled as smoothly differentiable
unctions of x and y. In many digital image processing
asks, it is necessary to provide prior information that speci-
es the degree of unsmoothness in the unknown desired

rue image. If an image is incorrectly postulated to be too
mooth, the processing algorithm may produce a smoothed
ut version of the true image, in which critical diagnostic

The mathematical and computational techniques described in this paper
re covered by U.S. patent application number 10/928,308. Licensing in-
uiries should be directed to Terry Lynch, jtlynch@nist.gov.

091-3286/2008/$25.00 © 2008 SPIE
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information has been lost. The class BV�R2� of functions of
bounded variation includes functions with sharp edges, as
well as smooth continuously differentiable functions. That
class has been used extensively to model images over the
last 15 years or so.1–4 However, it has become increasingly
evident that the class BV�R2� does not allow for the type of
fine-scale sharp structures commonly found in natural im-
ages, in addition to edges. For this reason, image deblurring
based on the BV�R2� assumption notoriously produces im-
agery in which important fine-scale texture has been se-
verely eroded. This is known as the staircase effect.3–7 It is
now recognized that significantly wider function classes,
such as the so-called Lipschitz classes ��� , p ,��, are nec-
essary to adequately describe natural images.

The L1 Lipschitz exponent �, where 0���1, is a
mathematical index that can capture the fine-scale content
and degree of unsmoothness in an image, provided that
image is relatively noise free. Images that are of bounded
variation �including smoothly differentiable images� have
�=1. The value of � decreases systematically with increas-
ing roughness. Images with significant nondifferentiable
small-scale structures typically have ��1. One may also
consider Lp spaces with p�1.

In a recent paper,7 a new computational approach for

estimating image Lipschitz exponents was developed,

March 2008/Vol. 47�3�1
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ased on blurring the image with successively narrower
orentzian �Cauchy� probability density functions. This

heory was then used in Ref. 7 to construct a new image
eblurring method, the so-called Poisson singular integral
PSI� method. That method is based on prior knowledge of
he L2 Lipschitz exponent in the unknown true image. An
ducated guess for that value, based on knowledge of ex-
onent values for similar images, is often sufficient to ob-
ain useful sharpening. The major result in Ref. 7 is the
emonstration that the PSI method can recover texture in
ases where the BV�R2� approach fails completely.

The present paper is based on the use of technically
ore advantageous Gaussian densities rather than Lorentz-

an densities. It complements the results in Ref. 7 by ex-
loring further applications of Lipschitz exponents, in par-
icular the quantitative changes in � that occur when an
mage is either degraded or restored. Of significant interest
re the documented changes in � that accompany APEX
lind deconvolution of real images.6 Examples include im-
ges from the Hubble space telescope, from magnetic reso-
ance imaging �MRI� brain scans, from functional cerebral
ositron emission tomography �PET� imaging, and from
tate-of-the-art nanoscale scanning electron microscopy
SEM�. We also consider synthetically degraded images
nd compare the changes in Lipschitz exponent that result
rom competing restoration algorithms.

These examples indirectly bear upon several other con-
exts where a simple practical method of quantifying image
oughness can be useful. Many imaging systems suffer per-
ormance degradation over time and require periodic main-
enance. In SEM, the shape of the electron beam changes
ith time, often without the user’s knowledge. Periodic
erformance testing can be accomplished by monitoring
harpness degradation in the micrograph of a specially de-
igned test object.8 Such degradation can be quantified by
easuring the increase in the Lipschitz exponent. In some

maging systems, a decrease in � might indicate an increase
n system noise. Measuring the � of a test image can also
e used to evaluate and compare the performance of com-
eting image reconstruction packages. Automatic measure-
ent of � might be useful in monitoring the smoothness of

urface finishes in certain industrial applications. In some
edical applications, measurement of �, along with other

ppropriate processing, might be helpful in prescreening for
ertain types of abnormalities.

Sections 2–4 develop the mathematical preliminaries,
ulminating in Eq. �15�, which can be evaluated using FFT
lgorithms. Sections 5–7 illustrate the use of that technique
n estimating Lipschitz exponents. Section 8 studies the be-
avior of Lipschitz exponents as images are synthetically
egraded and restored. Section 9 demonstrates the value of
hat tool in confirming APEX blind sharpening of real
lurred imagery. Finally, Sec. 10 contains the conclusion.

Lipschitz Classes and Image Roughness

function f�x ,y��BV�R2� may not be differentiable at a

iven set of points, but it is constrained to satisfy

ptical Engineering 037012-
�
R2

�f�x + h1,y + h2� − f�x,y��dxdy � Const�h�, �h� → 0,

�1�

where

�h� = �h1
2 + h2

2�1/2. �2�

However, from the standpoint of modeling texture, it is
advantageous to consider functions f�x ,y� satisfying a
weaker constraint, such as

�
R2

�f�x + h1,y + h2� − f�x,y��dxdy � Const�h��, �h� → 0,

�3�

where � is fixed, and 0���1. Such an f is said to be of
Lipschitz class ��� ,1 ,��. A function f�x ,y� satisfying Eq.
�1� necessarily satisfies Eq. �3�, but not vice versa in gen-
eral. Thus BV�R2����� ,1 ,��.

One may also consider Lipschitz classes ��� , p ,��, 1
� p��, consisting of functions f�x ,y� satisfying

��
R2

�f�x + h1,y + h2� − f�x,y��pdxdy�1/p

� Const�h��, �h� → 0. �4�

The case p=2 is important and was used in Ref. 7.
An effective method of estimating Lipschitz exponents

can be based on blurring the image by successive convolu-
tions with increasingly narrower Gaussians and evaluating
the discrete Lp norm of the difference between the blurred
and original images. This Lp norm tends to zero as the
Gaussian approaches the Dirac � function. An important
mathematical theorem relates the Lp Lipschitz exponent of
the image to the rate at which the above Lp norm tends to
zero. Moreover, that theorem remains valid for the peri-
odized image problem, in which case the convolution can
be accomplished quite easily using commonly available
FFT algorithms.

3 The Spaces �„� ,p ,�… and the Gaussian
Kernel

Define the Fourier transform ĥ�	 ,
� of h�x ,y��L1�R2� by

F�h� = ĥ�	,
� 	 �
R2

h�x,y�exp�− 2�i�	x + 
y��dxdy . �5�

For each fixed t�0, consider the Gaussian kernel in R2

��x,y,t� =
exp�− �x2 + y2�/4t�

4�t
, �x,y� � R2. �6�

We have

�̂�	,
,t� = exp�− t�	2 + 
2�� . �7�

For each t�0, define the linear operator Gt on Lp�R2�, 1

� p��, by

March 2008/Vol. 47�3�2



G

B
t
t
p
t
a
r

e
�
s




T
T
u

F

f
t
e
s




I

c
s




a
q
n

4
A
T
c
F
s
v
t

F

w
P
s
d

A
s

Carasso and Vladár: Calibrating image roughness by estimating Lipschitz exponents…

O

t f = �
R2

��u,v,t�f�x − u,y − v�dudv . �8�

ecause ��x ,y , t� approaches the Dirac � function as t
ends to zero, it is not surprising that 
Gtf − f
p→0 as t
ends to zero. However, the rate at which this happens de-
ends on the smoothness �or lack thereof� of f�x ,y�, and
his rate can be used to characterize f�x ,y�. There is a large
mount of literature on that subject.9,10 We have from Theo-
em 4 in Ref. 9,

Theorem 1. Let Gt, t�0, be the Gaussian integral op-
rator in �8�, and let 0���1, 1� p��. Then, f
��� , p ,�� if and only if there is a positive constant Kp

uch that

Gtf − f
p � Kpt�/2, 0 � t � 1. �9�

his result can be used to fashion an image analysis tool.
heoretically, given any image f�x ,y� in L1�R2�, one could
se the Fourier transform in Eq. �5� to form

�Gtf� = exp�− t�	2 + 
2�� f̂�	,
� �10�

or sequences of positive t values tending to zero. Inverse
ransformation is always possible on account of the factor
xp�−t�	2+
2��, and this can be used to produce an infinite
equence of positive numbers

n = �
Gtnf − f
1/
f
1�, tn↓0. �11�

f every such sequence �tn ,
n� ultimately lies below the

urve 
�t�=C1t�/2, with 0� t� ṫ̄, and suitably chosen con-
tants C1�0 and 0���1, then

Gtf − f
1 � C1
f
1t�/2, t↓0, �12�

nd f�x ,y����� ,1 ,�� by Theorem 1. However, this re-
uires handling infinite domain Fourier integrals and does
ot lead to a practical procedure.

Periodized Problems and FFT Algorithms
practical procedure can be realized by using the fact that

heorem 1 remains valid in the periodic case.9 We now
onsider the periodized image problem10–15 and obtain the
ourier series analog of Eq. �10�. Let � denote the unit
quare −1 /2�x ,y�1 /2 in R2. The image f�x ,y� is now
iewed as originally defined on � from which it is ex-
ended by periodicity to all of R2. We redefine the image

ourier transform f̂�	 ,
� by

f̂�	,
� = �
�

f�x,y�exp�− 2�i�	x + 
y��dxdy , �13�

here 	 ,
 are now integers running from −� to +�. The
oisson summation formula10,16 can now be used to con-
truct the periodized Gaussian operator G*

t . That operator is
efined by specifying its action on any given image f�x ,y�.
s shown in Ref. 7, G*

t f is given by the complex Fourier

eries

ptical Engineering 037012-
G*
t f = �

	,
=−�

�

exp�− t�	2 + 
2�� f̂�	,
�exp�2�i�x	 + y
�� ,

�14�

where 	 ,
 are integers running from −� to +�. The factor
exp�−t�	2+
2�� ensures uniform convergence of the Fou-
rier series in Eq. �14�.

Theorem 1 remains valid with G*
t replacing Gt and using

G*
t f in Eq. �14� in lieu of Gtf in Eq. �8�. Next, consider the

partial sum

SN�x,y� = �
	,
=−N

N

exp�− t�	2 + 
2�� f̂�	,
�exp�2�i�x	 + y
�� .

�15�

Because of uniform convergence, 
G*
t f −SN
p can be made

arbitrarily small by choosing N large enough in Eq. �15�,
and G*

t f in Eq. �14� can be approximated by the finite sum
SN. Given the 2J�2J–pixel digitized image f�x ,y�, the dis-
crete Fourier transform17 is now the appropriate numerical
tool for approximating the finite Fourier series SJ. One can
use FFT algorithms to approximate the Fourier coefficients

f̂�	 ,
�, −J�	, 
�J, and then apply the filter exp�−t�	2

+
2��. An inverse FFT then yields an accurate approxima-

tion to G*
t f at each of the 2J�2J pixels, for each small t

�0. We may then examine the discrete Lp relative error in
Gaussian approximation as t↓0, and locate constants Cp
and � such that


G*
t f − f
p � Cp
f
pt�/2, 0 � t � t̄ . �16�

In summary, the results of this section lead to an accurate
numerical procedure, based on correct mathematical analy-
sis, for assessing membership in any ��� , p ,�� space.

Remark 1. Pitfall at very small t�0. We deal with dis-
cretely defined high-resolution 8-bit images f�x ,y�, typi-
cally of size 512�512 or 1024�1024 pixels. Such an
f�x ,y� may be viewed as a piecewise constant or trigono-
metric polynomial approximation to the original continu-
ously defined image intensity field f��x ,y�, or as some
other kind of finite dimensional representation of the hypo-
thetical infinite dimensional object f�. The Lipschitz expo-
nent is predicated on a continuously defined image and is,
in fact, a property of f��x ,y�. On the other hand, all norms
are equivalent on a finite dimensional space. Hence, even if
f��x ,y� is highly nonsmooth and not of bounded variation,
the discrete total variation norm for f�x ,y� is always finite,
though it may be very large. To estimate the nonsmoothness
properties of f��x ,y� by examination of the finite dimen-
sional representation f�x ,y� will require some sagacity. As
explained theoretically in Ref. 7, there is a finite dimen-
sionality pitfall in the above Gaussian singular integral
methodology that requires the exclusion of very small val-
ues of t�0. As will be amply demonstrated in the examples
that follow, the behavior of 
G*

t f − f
p at very small t is a

spurious artifact that must be ignored. This behavior is dis-

March 2008/Vol. 47�3�3
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onnected from the true smoothness properties in the image
ntensity field f��x ,y�, and it gives a false reading for the
ipschitz exponent �.

Application to Real Images—the Characteristic
Elbow

ur first example, in Fig. 1, is the 512�512–pixel Giza
yramids image. The FFT procedure discussed in Sec. 4
as used to obtain the L1 relative errors in the Gaussian

pproximation

�t� = 
G*
t f − f
1/
f
1, �17�

t 400 values of t given by tn=0.5�0.95�n, n=1,400, where

*
t f is given by Eq. �14�. A plot of 
�t� versus t on a

og-log scale produced the solid curve A in Fig. 1. Least
quares fitting was used to find the two distinct majorizing
ashed straight lines � and �. For each dashed line, the
-axis intercept value obtained by least squares was slightly
ncreased so as to make each line lie visibly above the solid
urve A; however, the slope of each line remains the same
s that obtained from least squares. The curve A exhibits a
haracteristic elbow shape. It consists of a straight line seg-
ent with slope �1 beginning near log t=−20 and continu-

ng to near log t=−10. There is then a transition to a differ-
nt regime, one that is more slowly increasing and that
ontinues to near log t=0. The line �, defined by log 
�t�

Fig. 1 This 512�512 Giza Pyramids image i
exponent ��0.32. This follows from the grap

discussed in Sec. 4. Solid curve A is a plot of 


G
*
t f is as defined in Eq. �14�. Majorizing dashed

accurately captures linear behavior in Eq. �17�
larger values of t. Linear behavior at very small
ness. �See Remark 1.� Majorizing dashed strai
curately reflects behavior for −10� log t�−1 bu

� is taken to be the true behavior in Giza Pyra
� t�0.1. From Eq. �9�, this implies image ���0
7.72+0.988 log t, accurately captures the straight line

ptical Engineering 037012-
trend in Eq. �17� for very small values of t but is grossly
inaccurate at larger values of t. It was obtained by exclud-
ing data corresponding to log t�−12 from the least squares

fit. The line � implies that 
G*
t f − f
1�2253
f
1t0.988 for all

t�0. As stressed in Remark 1, this correct statement pri-
marily reflects the fact that the 512�512–pixel Giza Pyra-
mids image lies in a finite dimensional space,7 but does not
reflect the smoothness properties of the intensity field
f��x ,y� that gave rise to the digitized pyramids image. The
slope of � gives a false reading for �. Such � line behavior
is a feature of every example in this paper. The majorizing
dashed straight line �, defined by log 
�t�=−1.31
+0.159 log t, accurately reflects the behavior of Eq. �17� for
−10� log t�−1 but is grossly inaccurate at very small val-
ues of t. The line � was obtained by excluding all data
corresponding to log t�−10 from the least squares fit. Note
that this still leaves over 160 data points remaining. The

behavior along � indicates that 
G*
t f − f
1�0.27
f
1t0.159,

0� t�0.1, and this is taken to be the true behavior in the
pyramids image. From Eq. �9�, this implies �=2.0
�0.159=0.318. Thus the pyramids image lies in the space
��0.318,1 ,��, and is not of bounded variation, because
this requires �=1. Estimates of � in any other discrete Lp

norm can be obtained similarly. It is recommended that data
for very small values of t always be included in log-log
plots of 
�t� to enable clear identification of the spurious

f bounded variation, but has an L1 Lipschitz
se of Theorem 1, using the FFT techniques

*
t f− f 
1 / 
 f 
1 versus t, on a log-log scale, where

ht line �, defined by log 
�t�=7.72+0.988 log t,
y small values of t but is grossly inaccurate at
leading and is unrelated to true image smooth-
�, defined by log 
�t�=−1.31+0.159 log t, ac-

ssly inaccurate at very small t. Behavior along

age and indicates 
G
*
t f− f 
1�0.27
 f 
1 t0.159, 0

,��.
s not o
hical u

�t�= 
G

straig
for ver
t is mis
ght line
t is gro

mids im
.318,1
linear trend, prior to rejecting that part of the data. This

March 2008/Vol. 47�3�4
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rocedure of identifying the � line by using least squares
tting on the “slowly varying” interval near log t=0, will
e used throughout this paper. Blurring with Gaussians
eads to better defined elbows than does blurring with
orentzians.

Remark 2. Parallel computation. The above blurring pro-
ess with successively narrower Gaussians can obviously
e implemented in parallel. For large images, such parallel
omputation would be significantly more efficient.

Lipschitz Exponents of Some Typical Images

n interesting collection of 512�512–pixel 8-bit images
s shown in Fig. 2. These images include natural as well as
an-made objects, extending from the nanoscale to the

lanetary scale. As in Fig. 1, least squares fitting was used
n the slowly increasing region of the graph of log 
�t�
ersus log t to find the majorizing � line in each case. This
eads to positive constants C1 and � for each image such

Fig. 2 These 512�512–pixel 8-bit images h
�0.54 and are not of bounded variation. See T
hat

ptical Engineering 037012-
Table 1 Values of �C1, �� in Eq. �18� for each image f�x ,y� in Fig. 2.

Image Size
L1 norm values

of C1 and �

Sydney Opera House 5122 C1=0.42, �=0.476

USS Theodore Roosevelt 5122 C1=0.69, �=0.535

Washington, D.C., Landsat 5122 C1=0.80, �=0.236

Heart ventricle single photon
emission computed tomography

5122 C1=0.70, �=0.330

Transverse brain PET 5122 C1=1.07, �=0.502

Sagittal brain MRI 5122 C1=0.83, �=0.447

Weather satellite hurricane 5122 C1=0.82, �=0.411

Nanoscale electron
micrograph

5122 C1=0.69, �=0.183

US Air Force
resolution chart

5122 C1=2.08, �=0.203
ave L1 Lipschitz exponents � in the range 0.18��
able 1.
March 2008/Vol. 47�3�5
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G*
t f − f
1 � C1
f
1t�/2, 0 � t � 0.1, �18�

here G*
t is the periodized Gaussian operator in Eq. �14�.

s seen in Table 1, these images have L1 Lipschitz expo-
ents in the range 0.18���0.54.

Low Lipschitz Exponents
lusters of galaxies are examples of objects whose images
an have very low Lipschitz exponents. In Fig. 3, two
12�512–pixel images of the Abell 426 �Perseus� cluster
re shown side by side. These images were obtained from
he NASA Space Telescope Science Institute Digitized Sky
urvey. Each image is centered on the exact same point in

he sky. However, image 3�a� covers a 1 /2-Mpc square of
he sky, and image 3�b� covers a 1-Mpc square and thus has
higher density of bright pixels. The solid curves A and B

re the corresponding plots of 
�t�= 
G*
t f − f
1 / 
f
1 versus t

n a log-log scale. Using least squares fitting on −6
1

Fig. 3 Galaxy clusters can have very low Lipsc
cluster obtained from NASA STScI Digitized
�512 pixels and each is centered on the exac
square of the sky, and image �b� covers a 1-Mp

plots of 
�t�= 
G
*
t f− f 
1 / 
f 
1 versus t, on a log-log

find that image �a� has an L1 Lipschitz exponent
� lines were not plotted to avoid clutter. Solid
−10. This confirms the observation in Remark
artifact and is not connected to image smoothn
log t�0, we find that image �a� has an L Lipschitz ex-

ptical Engineering 037012-
ponent �=0.116, and image �b� has �=0.042. The corre-
sponding � lines were not plotted in Fig. 3 to avoid clutter.
Notice that the solid curves A and B have identical slopes
of near unity for log t�−10, even though images 3�a� and
3�b� have sharply distinct smoothness properties. This con-
firms the observation in Remark 1 that the slope of the �
line is a finite dimensionality artifact and is not connected
to image smoothness.

8 Degrading and Restoring Images; the
Lipschitz Exponent as an Image Metrology
Tool

This section deals with synthetically degraded images and
studies the behavior of Lipschitz exponents as images are
degraded and restored. All Lipschitz exponents in Figs. 4
and 5 were estimated using least squares fitting of the L1

traces on the interval −7� log t�0. As in Fig. 3, corre-
sponding � lines were not plotted to avoid clutter. Notice

ponents. These images of Abell 426 �Perseus�
urvey. Images �a� and �b� are of size 512
point in the sky. Image �a� covers a 1/2-Mpc

re. Solid curves A and B are the corresponding

Using least squares fitting on −6� log t�0, we
16, and image �b� has �=0.042. Corresponding
A and B have identical slopes �1 for log t�

he slope of the � line is a finite dimensionality
hitz ex
Sky S

t same
c squa

scale.
�=0.1
curves

1 that t
that all traces in Figs. 4 and 5 have identical slopes for

March 2008/Vol. 47�3�6



l
t

n
o
�

al, with

Carasso and Vladár: Calibrating image roughness by estimating Lipschitz exponents…

O

og t�−10, irrespective of the parent image. Once again,
his is spurious � line behavior that must be ignored.

Our first example, in Fig. 4, involves noising and de-
oising the 512�512–pixel Marilyn Monroe image. The
riginal image in Fig. 4�a� has trace A and an L1 exponent

Fig. 4 Image denoising. Noise addition can a
removal algorithms can eliminate texture and in
to images �a�, �b�, �c�, and �d�, respectively. Le
results. �� lines not plotted to avoid clutter.� �a
=0.591. �b� Adding salt and pepper noise to ima
�c� The nonlinear partial differential equation’s
noise, as well as texture, and results in �=0.71
filtering produces closer approximation to origin
=0.591. Salt and pepper noise with density 0.1 was added

ptical Engineering 037012-
to Fig. 4�a�. This produced Fig. 4�b� with trace B. There is
a very sharp difference between traces A and B, and the
Lipschitz exponent in Fig. 4�b� has a substantially smaller
value, �=0.302. Obviously, the addition of noise can sig-
nificantly lower Lipschitz exponents, and this leads to two

y lower Lipschitz exponent �, but some noise
�. Gaussian traces A, B, C, and D correspond
uares fitting on �−7,0� produced the following
nal Marilyn Monroe image has L1 exponent �
leads to �=0.302, a very noticeable reduction.
variation” noise removal algorithm eliminates
h is higher than in original. �d� The 2D median
�=0.645.
rtificiall
crease
ast sq
� Origi
ge �a�
“total

4, whic
important observations. First, as mentioned in Sec. 1, the
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ipschitz exponent reflects true image smoothness only
hen the image is relatively noise free. Second, the sensi-

ivity of � to the presence of noise may be used to monitor
nd detect noise in imaging systems, by periodically re-
valuating � for a suitable test image.

Fig. 5 Image deblurring. Not all deblurring algo
and D correspond to images �a�, �b�, �c�, and
duced the following results. �� lines not plotte
Monroe image has L1 exponent �=0.887. �b� T
tion” deblurring of �a� erodes texture and lead
=0.714. �d� SECB deblurring gives �=0.616. T
We now consider two distinct denoising methods. The

ptical Engineering 037012-
first method used was the “total variation” method.1 This
method assumes that the original Marilyn Monroe image is
of class BV�R2�, and it is based on nonlinear partial differ-
ential equations. The Marquina-Osher scheme18 was used
with �t=0.1��x�2, �=0.0001, and regularization parameter

are equally effective. Gaussian traces A, B, C,
pectively. Least squares fitting on �−7,0� pro-
void clutter.� �a� Synthetically blurred Marilyn
linear partial differential equation’s “total varia-
=0.695. �c� Lucy-Richardson deblurring has �
losest to original image value �=0.591.
rithms
�d�, res
d to a

he non
s to �
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=2.0. Forward integration was pursued for 300 time steps
t. This resulted in Fig. 4�c� and the L1 Gaussian trace C.
vidently, the total variation method has eliminated a good
eal of texture along with the noise in Fig. 4�c�, and trace C
ies well below the original trace A. Figure 5�c� has an L1

ipschitz exponent �=0.714, larger than the original value
f 0.591. The second denoising method used was two-
imensional �2D� median filtering with a 3�3 neighbor-
ood. This produced Fig. 4�d� and L1 trace D. Figure 4�d� is
good approximation to the original, and trace D is closer

o trace A than is trace C. The L1 Lipschitz exponent in Fig.
�d� is �=0.645.

Our second example, summarized in Fig. 5, involves
lurring and deblurring the Marilyn Monroe image. Figure
�a� results from synthetic blurring of Fig. 4�a� by convo-
ution with a Lorentzian density. The solid curve A in Fig. 5
s the L1 Gaussian trace for that blurred image, and it has
=0.887. Blurring without adding noise increases �, as

Fig. 6 Evaluating the effectiveness of APEX b
See Ref. 25. �a� Original Hubble space telescop
L1 Lipschitz exponent �=0.416. �b� APEX proc
exponent �=0.191, which is a 54% decrease. L
lurring is generally a smoothing operation.

ptical Engineering 037012-
Three mathematically distinct methods of deblurring
Fig. 5�a� are examined under the present ideal conditions of
perfect knowledge of the point spread function �psf� and no
added noise. Such a study highlights the intrinsic recon-
structive ability of each scheme, and the accompanying
changes in � are of interest. The first method used was
again the Marquina-Osher total variation partial differential
equation procedure.18 Here, we used �t=0.1��x�2, �
=0.0001, and regularization parameter �=1000. Forward
integration was pursued for 100 time steps �t. This resulted
in Fig. 5�b� and the L1 Gaussian trace B. The second
method used was the Lucy-Richardson iterative
procedure.19 That procedure was terminated after 200 itera-
tions, resulting in Fig. 5�c� and trace C. The third method
used was the “slow evolution from the continuation bound-
ary” �SECB� procedure,19 with s=0.01 and K=1000. This
produced Fig. 5�d� and trace D.

2

convolution of Whirlpool galaxy �M51� image.
�1024–pixel image has Gaussian trace A and
image has Gaussian trace B and L1 Lipschitz
quares fitting on �−11,0� was used.
lind de
e 710
essed
east s
In Fig. 5�b�, the BV�R � assumption underlying the
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arquina-Osher method has resulted in a smoothed out re-
onstruction of the original. This is particularly evident in
he poorly resolved hair. As a result, the L1 Lipschitz expo-
ent from trace B has the value �=0.695, which is higher
han the original value of 0.591. In Fig. 5�c�, the Lucy-
ichardson method is a Bayesian approach based on maxi-
um likelihood. That method does not presume a priori

moothness in the unknown original image. On the other
and, the Lucy-Richardson method typically requires large
umbers of iterations ��2000� to reconstruct fine detail.19

erminating the procedure after 200 iterations, as is quite
ommonly done, and was done in Fig. 5�c�, produces a
moothed out result. Nevertheless, Fig. 5�c� appears more
ifelike than Fig. 5�b�, and the hair is better resolved. Trace

almost coincides with trace B for log t�−6, but falls
elow trace B for smaller t. Surprisingly, the Lipschitz ex-
onent in Fig. 5�c�, with the value �=0.714, is slightly
igher than in Fig. 5�b�. The SECB procedure in Fig. 5�d�
s a noniterative direct deblurring method, based on solving
n ill-posed fractional diffusion equation backward in time.
he “slow evolution” constraint19 that is used to regularize

hat problem does not require smoothness and allows for
2

Fig. 7 Evaluating the effectiveness of APEX blin
6. �a� Original 512�512–pixel image has Gau
APEX processed image has Gaussian trace B
decrease. Least squares fitting on �−7,0� was u
onsmooth solutions not in BV�R �. For this reason, Fig.

ptical Engineering 037012-1
5�d� appears to be a higher quality approximation to the
original image than the previous two reconstructions. This
is reflected in trace D, which lies above traces B and C and
has a well-defined elbow. The L1 Lipschitz exponent in Fig.
5�d� has the value �=0.616, which is quite close to the
original value of 0.591.

9 Real Imagery, APEX Blind Deconvolution, and
Lipschitz Exponents

The above-mentioned experiments on synthetically de-
graded imagery with perfectly known psfs are instructive,
and they indicate the Lipschitz exponent to be a useful
image metrology tool. However, in many imaging situa-
tions that result in blurred imagery, the system psf is gen-
erally only poorly known. Effective methods of “blind de-
convolution” that do not require knowledge of the psf are
of considerable interest, but it must be emphasized that
such procedures are fraught with serious mathematical and
computational difficulties regarding uniqueness and conver-
gence.

The APEX method is a recently developed blind decon-
volution technique that is targeted at a specific class of

nvolution of sagittal brain MRI image. See Ref.
ace A and L1 Lipschitz exponent �=0.447. �b�

1 Lipschitz exponent �=0.296, which is a 34%
d deco
ssian tr
and L
shift-invariant blurs, in the form of 2D isotropic, bell-
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haped, heavy-tailed, probability density functions. Not all
mages can be usefully enhanced with the APEX method,
ut the method has been found useful in a variety of appli-
ations, including astronomy, nanoscale electron micros-
opy, and MRI and PET brain imaging.6,20,21 As a rule,
PEX-detected psfs that successfully sharpen these images

urn out to be low exponent Lévy stable laws.6,20,21 Such
lurs are very far from Gaussians or Lorentzians and are
ot generally known in the imaging literature.

A priori knowledge about the solution is a fundamental
spect of solving inverse problems in applied mathematics.
his is especially the case with blind deconvolution where
evere ill-conditioning is compounded with nonuniqueness
f solutions. The plausibility of APEX reconstructions must
e gauged by experienced analysts using independent con-
iderations. Successful APEX deconvolution should pro-
uce an image that is visibly sharper than the original, yet
ne where the newly enhanced features can be traced back
o the original. Such sharpening should be accompanied by

measurable drop in Lipschitz exponent. A decrease in
ipschitz exponent reflects the extent to which small-scale

nformation has been reconstructed. Quantitative confirma-

Fig. 8 Evaluating the effectiveness of APEX b
slice. See Ref. 6 �a� Original 512�512–pixel im
�=0.502. �b� APEX processed image has Gauss
is a 21% decrease. Least squares fitting on �−6
ion of sharpening is one of several elements that bear on

ptical Engineering 037012-1
the plausibility of the APEX image. We now give several
examples of Lipschitz behavior before and after APEX pro-
cessing. These examples involve real images originating
from significant areas of application.

Our first example, in Fig. 6, involves an iconic Hubble
space telescope Whirlpool galaxy �M51� image. The origi-
nal full resolution image was taken with NASA’s ultra so-
phisticated advanced camera for surveys. APEX processing
of the stepped-down 710�1024–pixel color image is dis-
cussed in detail in Ref. 21. Here, we examine Lipschitz
behavior in the blue component of that image, before and
after APEX processing. Using least squares fitting on the
interval −11� log t�0, we find that the original image,
Fig. 6�a�, has the L1 Gaussian trace A with Lipschitz expo-
nent �=0.416. The APEX image, Fig. 6�b�, again shows
substantial additional detail, and it has the L1 Gaussian
trace B with Lipschitz exponent �=0.191. This is a remark-
able 54% drop in �.

We next consider brain imaging. APEX processing of
the 512�512–pixel sagittal MRI brain image in Fig. 7 was
previously discussed in Ref. 6. Using least squares fitting

convolution of transverse functional PET brain
as Gaussian trace A and L1 Lipschitz exponent
ce B and L1 Lipschitz exponent �=0.394, which
s used.
lind de
age h
ian tra
on the interval −7� log t�0, we find that the original MRI
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i
e
c
L
c

c
m
s
c
e
s
a
A
w
i
1
i
G
A
F
n
n
t
d
f
l
s

Carasso and Vladár: Calibrating image roughness by estimating Lipschitz exponents…

O

mage, Fig. 7�a�, has the L1 Gaussian trace A with Lipschitz
xponent �=0.447. The APEX image, Fig. 7�b�, is signifi-
antly sharper visually. It has the L1 Gaussian trace B with
ipschitz exponent �=0.296. This represents a 34% de-
rease in �.

In functional PET imaging, a positron emitting radionu-
lide is injected into the patient and used to tag glucose
olecules in their course through the brain. Performing

pecific mental tasks activates various parts of the brain,
ausing increased glucose uptake and increased positron
mission. Centers of activity translate into relatively bright
pots in the PET image. However, blurring tends to attenu-
te such relative differences, resulting in a loss of contrast.
PEX processing of the transverse PET image in Fig. 8
as previously discussed in Ref. 6. The 512�512–pixel

mage in Fig. 8�a� is a stepped-up version of an original
28�128–pixel image. Using least squares fitting on the
nterval −6� log t�0, we find that image 8�a� has the L1

aussian trace A with Lipschitz exponent �=0.502. The
PEX-processed image 8�b� shows identical features as in
ig. 8�a�, but contrast has been substantially increased. Sig-
ificantly, several bright spots appear in Fig. 8�b� that were
ot apparent in Fig. 8�a�. Image 8�b� has the L1 Gaussian
race B with Lipschitz exponent �=0.394. This is a 21%
ecrease in �. The low resolution initial 128�128 PET
ormat is a serious limitation in this example. Higher reso-
ution PET imagery would enable more substantial APEX

Fig. 9 Evaluating the effectiveness of APEX
1024�768–pixel micrograph of Au/Pd decorate
Lipschitz exponent �=0.303. �b� APEX proce
exponent �=0.234, which is a 23% decrease. L
harpening.

ptical Engineering 037012-1
The last example involves state-of-the-art nanoscale
SEM. Previous work on applying APEX blind deconvolu-
tion to SEM imagery is discussed in Ref. 20. Since that
time, significantly more powerful equipment has become
available.† It is an interesting fact that the high quality im-
agery produced by this new instrumentation can still be
usefully enhanced by the APEX method. Moreover, Lips-
chitz analysis can be used to confirm such sharpening.

Figure 9 deals with a Au /Pd decorated magnetic tape
sample, taken with a Hitachi S-4800 SEM using an accel-
erating voltage of 1 kV. The field of view is 1 
m. The
original 1024�768–pixel micrograph in Fig. 9�a� has the
L1 Gaussian trace A with Lipschitz exponent �=0.303. The
APEX-processed micrograph, Fig. 9�b�, which is notice-
ably sharper, has the L1 Gaussian trace B with Lipschitz
exponent �=0.234. This is a 23% decrease in �. Least
squares fitting on the interval −7� log t�0 was used.

Sharpening in Fig. 9�b� was confirmed independently,
using a proprietary vendor software package.

Remark 3. Uncertainty in Lipschitz exponents. Esti-
mated Lipschitz exponent values in all examples in this
paper depend on the choice that was made for the “slowly

†Certain commercial equipment is identified in this paper to adequately
describe experimental procedures. Such identification does not imply rec-
ommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the equipment so identified is neces-

econvolution in nanoscale SEM. �a� Original
netic tape sample has Gaussian trace A and L1

age has Gaussian trace B and L1 Lipschitz
quares fitting on �−7,0� was used.
blind d
d mag

ssed im
east s
sarily the best available for the purpose.
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arying” interval in the trace of 
�t�, as discussed in Sec. 5.
east squares fitting on that interval produces the � line
hose slope is � /2. The particular choice of interval is a
atter of judgment. A somewhat larger or smaller interval
ight have been used in any given case, resulting in a

lightly different value for �. However, as was always the
ase here, when Lipschitz exponents are used to evaluate
he effectiveness of an image processing algorithm on a
iven image, the same fitting interval should be used in
before and after” comparisons.

0 Conclusion
mathematical framework for quantifying the unsmooth-

ess of images, leading to an effective computational tool
or estimating image Lipschitz exponents, has been pre-
ented. The L1 Lipschitz exponent �, where 0���1, is a
seful image metrology tool that measures fine-scale con-
ent, provided the image is relatively noise free. It is found
hat natural images have L1 values of � lying between 0.2
nd 0.5, typically. Such images are not of bounded varia-
ion, because this requires �=1.0.

The use of Lipschitz exponents in the quantitative evalu-
tion of image reconstruction procedures was studied. Us-
ng synthetically degraded images, it was shown that Lips-
hitz exponents can measure the extent to which competing
enoising algorithms remove texture along with the noise.
ike-wise, Lipschitz exponents can measure the ability of
ompeting deblurring algorithms to recover texture. Quan-
itative confirmation of fine structure recovery is particu-
arly important in blind image deconvolution, where the
ause of the blur is unknown. This was illustrated in the
ase of APEX blind deconvolution applied to Hubble space
elescope imagery, SEM, and MRI and PET brain scans.
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