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Abstract 
The X  and  control charts with unequal subgroup sizes have been discussed in the 
literature and used in practice. Several estimators of the process standard deviation based 
on sample standard deviations have been proposed in constructing the charts. We discuss 
the properties of these estimators and make comparisons using the criterion of minimum 
mean squared error. Control charts for 

S

X  and  based on the recommended estimator of 
the process standard deviation are also discussed 

S
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1. Introduction 
 
Control charts for X  and  with unequal subgroup sizes are often used in practice. 
When the subgroup size varies, the corresponding control chart for equal subgroup sizes 
needs to be modified. Burr (1969), (1976) discussed the use of the sample standard 
deviation as the estimator of the process standard deviation. SAS (1995)

S

1 and Hart and 
Hart (2002) also provided three approaches to estimate the process standard deviation 
when the subgroup size varies. Montgomery (2001) used 

4 ( )i

S
c n , which is related to 

one of these three estimators to estimate the process standard deviation. Based on these 
estimators, the corresponding X  and  control charts can be constructed. However, the 
properties of these estimators of the process standard deviation have not been studied 
completely. In this article, we will compare these estimators and illustrate the 
construction of the corresponding

S

X  and control charts using the best of these 
estimators. 

S

 
2. Estimators of Process Standard Deviation  

                                                 
1 A  commercial product is identified in this paper to adequately describe the statistical 
methodology. Such identification does not imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor does it imply that the product identified is necessarily 
the best available for the purpose. 
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We assume that the process variable X  is normally distributed with a mean μ  and a 
variance 2σ . We also assume that there are k  subgroups. For the ith subgroup, the 
sample size is  (  > 1). Given subgroups with unequal sample sizes, SAS (1995), pp. 
1214 - 1215 lists three estimators of 

in in
σ , the process standard deviation. The first, called 

the default estimator, is also proposed in Levinson and Tumbelty (1997) and Hart and 
Hart (2002) and is given by 
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where  is the sample standard deviation of the ith subgroup and is defined as iS 4 ( )ic n
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The second estimator, called the minimum variance linear unbiased estimator (MVLUE), 
was proposed by Burr (1969) and is given by 
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Burr (1969) showed that MVLUEσ̂  is unbiased and has minimum variance among all the 
estimators that are linear combinations of  (iS 1,...,i k= ). The third estimator is a 
weighted root-mean-square (RMSE) estimator of σ  given by 
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 and . This estimator was also discussed in Winkel and Zhang (2007), 

pp. 70-76. Montgomery (2001) pp. 245 - 246 used a fourth estimator, 
1

1
k

i
i

H n k
=

= − +∑

4 ( )i

S
c n  to 

estimate the process standard deviation for the ith subgroup and to construct the 
corresponding control charts.  
 

3. Comparisons of the Estimators Comparisons of the Estimators 

Assuming X  follows a normal distribution it follows from (1) and (3) that 
4[ ]i iE S c ( )n σ= (Ryan (1989), p. 143). Thus DFσ̂  and  MVLUEσ̂  are unbiased estimators of 

σ . We show that RMSEσ̂  is also an unbiased estimator of σ . Since             
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it follows from (6) that 
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where 2

mχ  is a Chi-square statistic with degrees of freedom. Thus, m
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From Lancaster (1982), p. 439, we have 
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where p  and ν  are positive integers. From (9), (10), and (2) it follows that 
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Thus, from (5) RMSEσ̂  is an unbiased estimator of σ . From (11), we obtain 
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Since iH n>  for any , i 4 4( ) ( )ic H c n≠ . In addition, from Montgomery (2001), p.761, 

. Thus, it is clear that 4 4 ( ic n>( ) )c H
4 ( )i

S
c n  proposed in Montgomery (2001) is a 

biased estimator of σ , which tends to overestimate σ .  
 
Now we need to compare the variances of these estimators. From (1) we have 
 

  
2

1 4
DF 2

Var[ ]
( )ˆVar[ ]

k
i

i i

S
c n
k

σ ==
∑

.                                                                       (13) 

 
The variance of  is given by (see Ryan (1989), p. 143) iS
 
  2

4Var[ ] [1 ( )]i iS c n 2σ= − .                                                                      (14) 
 
Inserting this result in equation (13) we obtain 
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Similarly, from (14) and (3) we obtain the variance of MVLUEσ̂  
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To obtain the variance of RMSEσ̂ , we first note from (10) that  
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From (9) and (17) it follows that 
 

Section on Quality and Productivity – JSM 2010

1237



 

1

2

1

2 1

2

1

1 2 1

Var[ ] Var[ ]

1

2

2

2

k

i
i

k
n k

i
i

k

i
i

k

ik k
i

i i
i i

S
n k

n k

n k
n k n k

σ χ

σ

=

−

=

=

=

= =

=
∑−

⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟

⎢ ⎥⎜ ⎟Γ
⎢ ⎥⎜

⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥= − −
⎛ ⎞⎢ ⎥− −⎜ ⎟⎢ ⎥
⎜ ⎟Γ⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑

∑
∑ ∑

⎟   .                              (18) 

 
By (5), we obtain 
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Because MVLUEσ̂  is unbiased and has minimum variance among all the estimators that are 
linear combinations of  ( ),  iS 1,...,i k=
 
  .                                                                (20) DF MVLUEˆ ˆVar[ ] Var[ ]σ σ≥
 
The equality in (20) holds, i.e.,  when DF MVLUEˆ ˆVar[ ] Var[ ]σ σ= in n=  for . We 
now need to compare 

1,...,i = k

RMSˆVar[ E ]σ  with  and . We are not able to 
do this analytically. However, for given  

DFˆVar[ ]σ Va

in ( 1,..., )i k
MVLˆr[σ UE ]

= k , and σ , the variances of the 
three estimators in (15), (16), and (19) may be calculated.  They may then be compared 
numerically. Without loss of generality, we assume that 2 1σ = . For equal subgroup size 

 and  subgroups we have  n k
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For all combinations where n  varied from 2 to 20 and k  varied from 2 to 10, we found 
that   and  are always larger than DFˆVar[ ]σ MVLUEˆVar[ ]σ RMSEˆVar[ ]σ . Table 1 shows for 
selected values of n  and , the relative differences k

DFr[ ] Va− RMSE RMSEˆ ˆ ˆ{Va r[ ]} Va ]σ σ σr[ .  
 
Table 1 DF RMSE RMSEˆ ˆ ˆ{Var[ ] Var[ ]} Var[ ]σ σ σ−  calculated for selected values of subgroup 
size  and number of subgroups  when the subgroup size is constant. n k
 
 k=2 3 4 5 6 7 8 9 10 
n=2 0.044 0.068 0.083 0.093 0.100 0.105 0.109 0.113 0.115  
4 0.030 0.041 0.048 0.052 0.054 0.056 0.058 0.059 0.060 
6 0.021 0.028 0.032 0.035 0.036 0.037 0.038 0.039 0.040 
8 0.016 0.021 0.024 0.026 0.027 0.028 0.029 0.029 0.029 
 
Table 2  DF RMSE RMSEˆ ˆ ˆ{Var[ ] Var[ ]} Var[ ]σ σ σ−  (denoted ) and  1d

MVLUE RMSE RMSEˆ ˆ ˆ{Var[ ] Var[ ]} Var[ ]σ σ σ−  (denoted ) for various combinations of 
subgroup sizes as shown in row 1. 

2d

 
N [2 3] [2 3 4] [2 3 4 5] [2 3 4 5 

6] 
[2 3 4 5 
6 7] 

[2 3 4 5 
6 7 8] 

[2 3 4 5 
6 7 8 9] 

1d  0.18 0.31 0.41 0.49 0.55 0.61 0.66 

2d  0.04 0.05 0.05 0.05 0.04 0.04 0.04 

 
Table 2 shows the relative difference DF RMSE RMSEˆ ˆ ˆ{Var[ ] Var[ ]} Var[ ]σ σ σ−  (denoted ) 
and the relative difference 

1d

MVLUE RMSE RMSEˆ ˆ ˆ{Var[ ] Var[ ]} Var[ ]σ σ σ−  (denoted ) for 
various combinations of subgroup sizes. The combinations examined are shown in row 1 
of Table 2. For example, the vector [2 3 4 5] indicates that the ’s are 2, 3, 4, and 5 and 

 = 4.  

2d

in
k
 
It is seen in Table 2 that the “default” estimator DFσ̂  has the largest variance. Using DFσ̂  
in place of RMSEσ̂  may increase the variance by as much as 66 %. Thus, for the 
combinations examined, RMSEσ̂  has the minimum variance followed by MVLUEσ̂ . Since 
these three estimators are unbiased, RMSEσ̂  also has the minimum mean square error 
(MSE) for the combinations examined.  
 
As pointed earlier . Therefore from (5) we obtain 4 4( ) ( )ic H c n>
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for all i . From this result and the fact that 

4 ( )i

S
c n is a biased estimator, it follows that 

the MSE of RMSEσ̂  is smaller than that of 
4 ( )i

S
c n  for all . Based on the discussion 

above we recommend to using 

i

RMSEσ̂  as the estimator of the process standard deviation. 
In the following we derive the equations for control charts with unequal subgroup sizes 
using this estimator. 
 
 

4. X  and S Control Charts with Unequal Subgroup Sizes Using RMSEσ̂  

For the X  chart, we plot the sample statistic iX   for 1,2,....i = .For subgroup  i, with the 
subgroup size , in iX   has mean μ  and variance 2

inσ .  Assuming that the process 
variable is normally distributed and the parameters of this distribution are known, the 3σ  
control limits at the ith point would be 
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and σ  by  RMSEσ̂  in (5). Thus the control limits of the X  chart when the distribution 
parameters are known are defined by 
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where .  
1

1
k

i
i

H n k
=
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For the S chart, we plot the statistic . As for the iS X  chart, similar to (24) when the 
parameters of the distribution are known, the control limits are given by 
 
                               [ ] 3 Var[ ]i iE S ± S .                                                                    (27)                                               
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It is known that 4[ ] ( )i iE S c n σ=   and 2
4Var[ ] (1 ( ))i iS c n 2σ= − . Since [ ]iE S  depends on 

, the chart does not have a common, central straight line. It follows from (5) that the 
central point for the ith subgroup (

in S
[ i ]E S ) is estimated by  [ ]4 4( ) (c H S)ic n . 

 
From (27) and (14), using RMSEσ̂ , the upper control limit for the ith subgroup is given by 
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Similarly, the lower control limit of the chart for the ith subgroup is given by S
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5. Conclusions 
 

To build X  and control charts when subgroup sizes vary, an appropriate estimator of 
the process standard deviation has to be determined. Three unbiased and one biased 
estimators have been proposed in the literature. We studied their properties and showed 
that the weighted root-mean–square estimator has a minimum variance as well as the 
minimum MSE. The corresponding 

S

X  and  control charts based on that estimator were 
also derived. 

S
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