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Summary. Nonlinear time delay differential equations are well known to have
arisen in models in physiology, biology and population dynamics. These delay differ-
ential equations usually have parameters in their formulation. How the nature of the
solutions change as the parameters vary is crucial to understanding the underlying
physical processes. When the delay differential equation is reduced, at an equilibrium
point, to leading linear terms and the remaining nonlinear terms, the eigenvalues of
the leading coefficients indicate the nature of the solutions in the neighborhood of
the equilibrium point. If there are any eigenvalues with zero real parts, periodic so-
lutions can arise. One way in which this can happen is through a bifurcation process
called a Hopf bifurcation in which a parameter passes through a critical value and
the solutions change from equilibrium solutions to periodic solutions. This chap-
ter describes a method of decomposing the delay differential equation into a form
that isolates the study of the periodic solutions arising from a Hopf bifurcation to
the study of a reduced size differential equation on a surface, called a center man-
ifold. The method will be illustrated by a Hopf bifurcation that arises in machine
tool dynamics, which leads to a machining instability called regenerative chatter.
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1 Background

With the advent of new technologies for measurement instrumentation, it
has become possible to detect time delays in feedback signals that affect a
physical system’s performance. System models in a number of fields have been
investigated in which time delays have been introduced in order to have the
output of the models more closely reflect the measured performance. These
fields have included physiology, biology, and population dynamics (see an der
Heiden [2], Kuang [23], and MacDonald [24]).

In recent years, time delays have arisen in models of machine tool dynam-
ics. In particular, a phenomenon, called regenerative chatter, is being heavily
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studied. Regenerative chatter can be recognized on a manufacturing plant
floor by a characteristic high pitched squeeling sound, distinctive marks on
the workpiece, and by undulated or dissected chips (see Tlusty [32]). It is a
self-excited oscillation of the cutting tool relative to the workpiece during ma-
chining. Self-excited oscillations, mathematically called limit cycles or isolated
periodic solutions, reflect the fact that there are non-linearities in the physical
system being modeled that have to be taken into account. For further read-
ing on delay differential equations in turning or numerically controlled lathe
operations the reader is referred to Kalmár-Nagy et al. in [20] and [21]. For
problems in drilling see Stone and Askari [29] and Stone and Campbell [30].
Finally for problems in milling operations see Balachandran [5] and Balachan-
dran and Zhao [6]. The modeling of regenerative chatter arose in work at the
National Institute of Standards and Technology (NIST) in conjunction work
related to error control and measurement for numeric control machining.

Along with the nonlinearities, the differential equations, from ordinary,
partial, and delay equations, that model the physical processes, usually depend
on parameters that have physical significance, such as mass, fundamental
system frequency, nonlinear gains, and levels of external excitation. Changes,
even small ones, in many of these system parameters can drastically change the
qualitative nature of the the system model solutions. In this chapter we will
examine the effect that variations of these parameters have on the nature and
number of solutions to a class of nonlinear delay differential equations. The
changing nature of solutions to a differential equation is often referred to as a
bifurcation, although formally the concept of bifurcation refers to parameter
space analysis. The term bifurcation means a qualitative change in the number
and types of solutions of a system depending on the variation of one or more
parameters on which the system depends. In this chapter we will be concerned
with bifurcations in the nature of solutions to a delay differential equation
(DDE) that occur at certain points in the space of parameters, called Hopf
bifurcation points. The bifurcations that arise will be called Hopf bifurcations.

From an assumed earlier course in differential equations, it should be clear
to the reader that the eigenvalues of the linear portion of the state equations
are an indicator of the nature of the solutions. For example, if all of the eigen-
values have negative real parts then we can expect the solutions to be stable
in some sense and if any of them have positive real parts then we can expect
some instabilities in the system. What happens if any of the eigenvalues have
zero real parts? This is where, one might say, the mathematical fun begins,
because these eigenvalues indicate that there is likely to be some oscillatory
affects showing up in the solutions. The game then is to first determine those
system parameters that lead to eigenvalues with zero real parts. The next step
in analyzing a system of differential equations, that depends on parameters,
is to write the system in terms of its linear part and the remaining nonlinear
part and then to decompose it in order to isolate those equation components
most directly affected by the eigenvalues with zero real parts and those equa-
tions affected by the eigenvalues with nonzero real parts. This same approach
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applies to problems both in ordinary differential equations as well as in delay
differential equations. Once this decomposition has been developed we can
then concentrate our effort on studying the component equations related to
the eigenvalues with zero real parts and apply methods to simplify them.

We will assume at this point that a time delay differential equation model-
ing a physical phenomenon has been written with linear and nonlinear terms.
Although delay differential equations come in many forms, in this chapter we
will only consider delay equations of the form

dz

dt
(t, μ) = U(μ)z(t, μ) + V (μ)z(t − σ, μ) + f(z(t, μ), z(t − σ), μ), (1)

where z ∈ Rn, the space of n-dimensional real numbers, U and V , the coeffi-
cient matrices of the linear terms, are n × n matrices, f ∈ Rn, f(0, 0, μ) = 0,
is a nonlinear function, μ is a system parameter, and σ, s ∈ R. For most prac-
tical problems we can assume the f function in equation (1) is sufficiently
differentiable with respect to the first and second variables and with respect
to the parameter μ. Let C0 be the class of continuous functions on [−σ, 0] and
let z(0) = z0 ∈ Rn. Then, there exists, at least locally, a unique solution to
(1) that is not only continuous but differentiable with respect to μ. For a full
discussion of the existence, uniqueness, and continuity questions for delay dif-
ferential equations the reader is referred to Hale and Lunel [15]. For ordinary
differential equations see the comparable results in Cronin [10]. For the rest
of this chapter we will assume that, for both ordinary and delay differential
equations, unique solutions exist and that they are continuous with respect
to parameters.

Although the results discussed in this chapter can be extended to higher
dimension spaces we will mainly be interested in problems with n = 2 that
dependent on a single parameter. We will also concentrate on bifurcations in
the neighborhood of the z(t) ≡ 0 solution. This is clearly an equilibrium point
of (1) and is referred to as a local bifurcation point. For a discussion of various
classes of bifurcations see Nayfeh and Balachandran [26]. Since machine tool
chatter occurs when self oscillating solutions emanate from equilibrium points,
i. e. stable cutting, we will concentrate in this chapter on a class of bifurcations
called Hopf (more properly referenced as Poincaré-Andronov-Hopf in Wiggins
[34]) bifurcations. These are bifurcations in which a family of isolated periodic
solutions arises as the system parameters change and the eigenvalues cross
the imaginary axis. As earlier noted, the equilibrium points at which Hopf
bifurcations occur are sometimes referred to as Hopf points. The occurrence
of Hopf bifurcations depend on the eigenvalues of the linear portion of (1),
given by

dz

dt
(t, μ) = U(μ)z(t, μ) + V (μ)z(t − σ, μ), (2)

in which at least one of the eigenvalues of this problem has a zero real part.
As in ordinary differential equations the eigenvalues of the linear system

tell the nature of the stability of solutions of both (1) and (2). Whereas in
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ordinary differential equations the eigenvalues are computed from the charac-
teristic polynomial, in delay differential equations the eigenvalues arise from
an equation called the characteristic equation associated with the linear equa-
tion (2). This equation is a transcendental equation with an infinite number
of solutions called the eigenvalues of (2). We will assume that z(t) ≡ 0 is
an equilibrium point of (1) and that, in the neighborhood of this equilibrium
point, (2) has a family of pairs of eigenvalues, λ(μ), λ(μ), of (2) such that
λ(μ) = α(μ) + iω(μ), where α, ω are real, α(0) = 0, ω(μ) > 0, α′(0) �= 0.
This last condition is called a transversality condition and implies that the
family of eigenvalues λ(μ) = α(μ) + iω(μ) is passing across the imaginary
axis. Under these conditions a Hopf bifurcation occurs, where periodic solu-
tions arise from the equilibrium point. These conditions also apply in the case
of ordinary differential equations.

In both ordinary and delay differential equations, the nature of the stability
of these bifurcating periodic solutions at Hopf points can be more easily stud-
ied if equation (1), in the case of delay differential equations, can be reduced
to a simpler form in the vicinity of the bifurcation point. We will develop a
simplification technique comparable to that used in ordinary differential equa-
tions. It reduces the study of the stability of the bifurcating periodic solutions
to the study of periodic solutions of a simplified system, called a normal form,
on a surface, called a center manifold. Center manifolds arise when the real
parts of some eigenvalues are zero. A center manifold is an invariant manifold
in that, if solutions to equation (1) begin on the manifold, they remain on
the manifold. This manifold is usually of lower dimension than the space and
the nature of the stability of the equilibrium point depends on the projected
form of equation (1) on the manifold. The projection of equation (1) onto the
center manifold usually leads to a lower order system and the conversion of
that system to a normal form provides a means of studying the stability of the
bifurcating periodic solutions. In fact we will see that, for the example ma-
chining problem, the analysis will reduce to a problem of solving a simplified
approximate ordinary differential equation on a center manifold of dimension
two. The reduction process is carried out in a number of steps based on the
approaches of Hassard et al. [17] and Wiggins [34].

The bifurcation analysis developed in this chapter depends on three sim-
plification steps. In the first step we will show how the delay differential equa-
tion (1) can be transformed into three equations, where the eigenvalues of the
first two have zero real parts and the eigenvalues of the third have negative
real parts. In the process of developing these equations we will show how the
transformations involved are analogous to those used in ordinary differential
equations. In the second simplification step we will show the form that (1)
takes on the center manifold and finally, in the third step, we will see what
the normal form looks like and, from this, how the bifurcating periodic solu-
tions are developed. We will develop the first decomposition more thoroughly
because it exemplifies the analogies between ordinary and delay differential
equations. The other simplifications will be given as formulas, but an exam-
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ple will be given at the end in which the details of the transformations in a
particular case are developed and used to predict stability of the bifurcating
solutions. For a more automated approach to computing a center manifold,
using a symbolic manipulation program, the reader is referred to Campbell
[8].

This is a note to the reader. In this chapter we will be dealing with differ-
ential equations, both ordinary and delay, that have complex eigenvalues and
eigenvectors. Although the differential equations associated with real world
models are most often formulated in the real space Rn, these differential equa-
tions can be viewed as being embedded in the complex space Cn. This process
is called complexification and allows the differential equation to be studied or
solved in the complex space. At the end, appropriate parts of the complex
solution are identified with solutions to the original differential equation in
the real domain. A thorough discussion of this process is given in Hirsch and
Smale [19]. We will not be concerned with the formal embedding of the real
differential equations in the complex domain, but just to note that it is possible
and causes no difficulties with what we will be talking about in this chapter.
We only bring this up so that the reader may understand why we seem to flip
back and forth between real and complex equations. We are simply working
with this complexification process behind the scenes without writing out the
complete details. As we work through the examples the reader will see that it
is quite natural to exist in both domains and see that the final result leads to
the desired approximate solution of the original delay differential equation.

The chapter is divided as follows. In Section 2 we will show how the adjoint
to a linear ordinary differential equation can be used to naturally generate a
bilinear form that acts as an inner product substitute and introduces geometry
to a function space. This bilinear form is then used to define an orthogonality
property that is used to decompose the differential equations into those equa-
tions that have eigenvalues with zero real parts and those that have non-zero
real parts. We first introduce these ideas for ordinary differential equations
in order to show that the ideas are models for the analogous ideas for delay
differential equations. In Section 3 we will show how this decomposition works
for an ordinary differential equation example. In Section 4 we will show how a
delay differential equation can be formulated as an operator equation that has
a form similar to an ordinary differential equation. Within that section we will
also introduce a bilinear form by way of an adjoint equation that is analogous
to the one in ordinary differential equations and is used in a similar manner
to decompose the delay differential equation into a system of operator equa-
tions that have components dependent on the eigenvalues of the characteristic
equation with zero real parts and those with non-zero real parts. In Section
5 we will start introducing the main example of a delay differential equation
that we will consider in this chapter. We will show how it is reduced to an
operator equation and decomposed into components dependent on eigenvalues
with zero real parts and those dependent on non-zero real parts. In Section
6 we will introduce the general formulas needed in order to compute the cen-
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ter manifold, the normal form of the delay differential equation on the center
manifold, and the bifurcated periodic solution for the delay differential equa-
tion on the manifold. In Section 7 we will continue with the main example and
develop the form of the center manifold, the normal form for the example on
the center manifold, and finally the resulting periodic solution on the center
manifold. In the last Section 8 we show the results of numerical simulations
of the example delay differential equation in the vicinity of the bifurcation
points and show that there is a possibility of unstable behavior for values of
system parameters that extend into parameter regions that would otherwise
be considered stable.

2 Decomposing Ordinary Differential Equations Using
Adjoints

Many results for delay differential equations are direct analogies of results in
ordinary differential equations. In this section we will review some properties
of ordinary differential equations that motivate analogous properties in delay
differential equations. We will break the decomposition process down into
five basic steps. Later we will show that analogous five steps can be used to
decompose a delay differential equation.

Step 1: Form the Vector Equation

We begin by considering the differential equation

dz

dt
(t) = Az(t) + f(z(t), μ), (3)

z ∈ Rn, A an n × n real matrix, f ∈ Rn with locally bounded derivatives,
−∞ < t <∞. The homogeneous part is given by

dz

dt
(t) = Az(t). (4)

We will stay as much as we can with real variables since many of the problems
leading to delay differential equations are formulated with real variables.

The solution of the linear system (4) with constant coefficients can be
represented as a parametric operator of the form

T (t)q = zt(q) = eAtq, (5)

acting on a vector q ∈ Rn. T (t) is said to be a group of operators since T (t1 +
t2) = T (t1)T (t2) and T (t)T (−t) = I, the identity. The family of operators
would be called a semigroup if an identity exists but there are no inverse
elements. In Figure 1 we show two points of view about solutions to differential
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Fig. 1. The solution operator maps functions in Rn to functions in Rn.

equations. Traditionally we look at solutions to ordinary differential equations
as trajectories begining with an initial vector q and taking on the value z(t)
at some time t > 0, say. There is a sense of physical meaning here such as the
trajectory of a ball. However, the solutions can also be viewed as t dependent
maps T (t) in Rn of initial vectors q. They can then be thought of as a flow
in Rn space. This is a point of view taken by Arnold [3]. It will be this point
of view that will turn out more fruitful when we get to delay differential
equations.

In most ordinary differential equation textbooks a linear transformation is
used to write the matrix A in a form that separates it into blocks with eigen-
values having positive, zero, or negative real parts, called a Jordan normal
form. However, in this section we will introduce a change of coordinates pro-
cedure that accomplishes the decomposition by way of the adjoint equation
since this translates to an analogous method for delay differential equations.
This process allows us to introduce a geometric point of view to the decom-
position of equation (3). In particular, we can use the geometric property of
orthogonality as a tool to decompose equation (3).

Step 2: Define the Adjoint Equation

The adjoint equation to equation (23) is given by

dy

dt
(t) = −AT y(t). (6)

Step 3: Define a Natural Inner Product by way of an Adjoint

Equations (4) and (6) are related by the Lagrange identity

yTΘz +ΩyT z =
d

dt

(
yT z

)
, (7)
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where Θz = ż − Az, Ωy = ẏ + AT y. If z and y are solutions of (4) and
(6), respectively, then it is clear that (d/dt)

(
yT z

)
= 0 which implies yT z is

constant and is the natural inner product of Rn. We note here that in the case
that the inner product is taken, where y and z are complex, then the inner
product would be yT z. Thus, the use of an adjoint equation leads naturally to
an inner product definition. It might then seem reasonable that using adjoint
properties could geometrically lead to some form of orthogonal decomposition
of a system of differential equations in a similar manner to the process of
orthogonal decomposition of a vector in Rn. In fact this is what we will show
in this section and in Section 4 we will show the same idea extends to delay
differential equations.

We begin by stating some results on eigenvalues and eigenvectors from
linear algebra that have direct analogs in the delay case. To be general, we
will state them in the complex case. Let A be an n× n matrix with elements
in Cn and A∗ the usual conjugate transpose matrix. Let (·, ·) be the ordinary
inner product in Cn. Then the following hold.

1.
(
ψ, Aφ

)
=

(
A∗ψ, φ

)
.

2. λ is an eigenvalue of A if and only if λ is and eigenvalue of A∗.
3. The dimensions of the eigenspaces of A and A∗ are equal.
4. Let φ1, · · · , φd be a basis for the right eigenspace of A associated with

eigenvalues λ1, · · · , λd and let ψ1, · · · , ψd be a basis for the right eigenspace
of A∗ asociated with the eigenvalues λ1, · · · , λd. Construct the matrices
Φ = (φ1, · · · , φd) , Ψ = (ψ1, · · · , ψd). The matrices Φ and Ψ are n× d. If
we define the bilinear form

〈Ψ, Φ〉 =

⎛
⎝ (ψ1, φ1) · · · (ψ1, φd)

. . . . . . . . . . . . . . . . . . . .
(ψd, φ1) · · · (ψd, φd)

⎞
⎠ , (8)

then 〈Ψ, Φ〉 is non-singular and can be chosen so that 〈Ψ, Φ〉 = I.

Although the 〈·, ·〉 is defined in terms of Ψ and Φ, the definition is general and
can be applied to any two matrices U and Z. Thus, 〈U, Z〉, where U and Z
are matrices, is a bilinear form that satisfies properties of an inner product.
In particular

〈U, αZ1 + βZ2〉 = α〈U, Z1〉 + β〈U, Z2〉,
〈αU1 + βU2, Z〉 = α〈U1, Z〉 + β〈U2, Z〉,

〈UM,Z〉 = M∗〈U, Z〉, (9)
〈U, ZM〉 = 〈U, Z〉M,

where α, β are complex constants and M is a compatible matrix.

Step 4: Get the critical Eigenvalues

Although A in equation (3) is real, it can have multiple real and complex
eigenvalues. The complex ones will appear in pairs. To reduce computational
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complexity, we will assume that A has two eigenvalues iω, −iω with associated
eigenvectors φ, φ. We will assume that all other eigenvalues are distinct from
these and have negative real parts. The associated eigenvalues with zero real
parts of A∗ are −iω, iω with right eigenvectors ψ, ψ. We will use properties
of the adjoint to decompose (3) into three equations in which the first two
will have eigenvalues with zero real parts.

Step 5: Apply Orthogonal Decomposition

We begin by defining the matrices

Φ = (φ, φ), Ψ =
(
ψ, ψ

)T
. (10)

Here we take d = 2 in equation (8) and note that Φ and Ψ are n× 2 matrices.
Let z(t, μ) be the unique family of solutions of equation (3). This is possible

due to the standard existence, uniqueness, and continuity theorems. Define

Y (t, μ) = 〈Ψ, z(t, μ)〉 =
((

ψ, z(t, μ)
)

(ψ, z(t, μ))

)
, (11)

where Y (t, μ) ∈ C2. Set Y (t, μ) = (y1(t, μ), y2(t, μ))T , where y1(t, μ) =(
ψ, z(t, μ)

)
and y2(t, μ) = (ψ, z(t, μ)).

Define the matrices

B =
(
iω 0
0 −iω

)
, B∗ =

(−iω 0
0 iω

)
. (12)

They satisfy AΦ = ΦB, A∗Ψ = ΨB∗. If we join equations (9), (11), and (12)
with the fact that B∗∗ = B then we have

dY

dt
(t, μ) = BY (t, μ) + 〈Ψ, f(z(t, μ), μ)〉. (13)

This can be written as

dy

dt
(t, μ) = iωy(t, μ) + F (t, μ),

dy

dt
(t, μ) = −iωy(t, μ) + F (t, μ), (14)

where F (t, μ) =
(
ψ, f(z(t, μ), μ)

)
. These are the first two of the three equa-

tions.
In order to develop the third equation we will use a notion involved with

decomposing a vector into two orthogonal components. Here is where ge-
ometry enters the picture. This decomposition process arises, for example,
when one applies the Gramm-Schmidt orthogonalization method numerically
to vectors. The general idea is that the difference between a vector and its
orthogonal projection on a linear space, formed from previous orthogonalized
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vectors, generates an orthogonal decomposition of the original vector. This
idea will be generalized here to function spaces, but the basic methodology
holds true.

Begin by defining the difference between z(t, μ) and its projection onto the
linear space formed by the columns of Φ as

w(t, μ) = z(t, μ) − ΦY (t, μ), (15)

which makes sense in terms of dimensionality, since Φ is an n × 2 matrix,
Y (t, μ) ∈ C2, and z ∈ Rn. This is a vector orthogonal to ΦY (t, μ) in func-
tion space. We note that w(t, μ) is real because ΦY (t, μ) =

(
ψ, z(t, μ)

)
φ +

(ψ, z(t, μ))φ = 2Re{(ψ, z(t, μ)
)
φ}.

To show that this function is orthogonal to the space formed by the
columns of Φ we note that

w(t, μ) = z(t, μ) − Φ〈Ψ, z(t, μ)〉,
〈Ψ, w(t, μ)〉 = 〈Ψ, z(t, μ)〉 − 〈Ψ, Φ〈Ψ, z(t, μ)〉〉, (16)

= 〈Ψ, z(t, μ)〉 − 〈Ψ, Φ〉〈Ψ, z(t, μ)〉,
= 〈Ψ, z(t, μ)〉 − 〈Ψ, z(t, μ)〉 = 0,

where we have used a property from equation (9) and the fact that 〈Ψ, Φ〉 = I.
Now let f(z, μ) = f(z(t, μ), μ), and use equations (3), (11), and (13) to

show

dw

dt
(t, μ) =

dz

dt
(t, μ) − Φ

dY

dt
(t, μ),

= Az(t, μ) + f(z, μ) − ΦBY (t, μ) − Φ〈Ψ, f(z, μ)〉, (17)

Substitute z(t, μ) = w(t, μ) + ΦY (t, μ) into equation (17) and use AΦ = ΦB
to get

dw

dt
(t, μ) = Aw(t, μ) + f(z, μ) − Φ〈Ψ, f(z, μ)〉. (18)

Therefore we have the final decomposition as

dy

dt
(t, μ) = iωy(t, μ) + F (t, μ),

dy

dt
(t, μ) = −iωy(t, μ) + F (t, μ), (19)

dw

dt
(t, μ) = Aw(t, μ)− Φ〈Ψ, f(z, μ)〉 + f(z, μ).

After defining some operators in Section 4, that will take the place of the
matrices used here, we will see that there is an analogous decomposition for
delay differential equations.
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3 An Example Application in Ordinary Differential
Equations

In this example we will consider a simple ordinary differential equation and
work through the details of the decomposition described in this section. In
Section 4 we will begin working out a more extensive example in delay dif-
ferential equations and show how the decomposition in the time delay case is
analogous to the decomposition in the ordinary differential equations case. In
this section we will follow the decomposition steps give in Section 2.

Start with the equation
ẍ+ x = μx2. (20)

From the existence and uniqueness theorem we know there exists a unique
solution x(t, μ), given the initial conditions x(0, μ) = x0, ẋ(0, μ) = x1, that is
continuous with respect to μ.

Step 1: Form the Vector Equation

If we let z1 = x, z2 = ẋ then equation (20) can be written in vector form as

ż(t, μ) = Az(t, μ) + f(z(t, μ), μ), (21)

where z(t, μ) = (z1(t, μ), z2(t, μ))T , f(z(t, μ), μ) = μ
(
0, z1(t, μ)2

)T , and

A =
(

0 1
−1 0

)
. (22)

The linear part of equation (21) is

ż(t, μ) = Az(t, μ). (23)

Step 2: Define the Adjoint Equation

The adjoint equation of (23) is given by

ẏ(t, μ) = −AT z(t, μ). (24)

Step 3: Define a Natural Inner Product by way of an Adjoint

The inner product is developed, as in Section 2, as the natural inner product
of vectors. We will go directly to forming the basis vectors.

A basis for the right eigenspace of A can easily be computed as

φ =

(
1√
2
i√
2

)
, φ =

(
1√
2
i

−√
2

)
, (25)
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These are associated, respectively, with the eigenvalues λ = i and λ = −i.
The related eigenvalues and eigenvectors for AT are λ = −i and λ = i with
the respective eigenvectors φ, φ. The factor 1/

√
2 is a normalization factor.

Now define

Φ =
(
φ, φ

)
=

(
1√
2

1√
2

i√
2
− i√

2

)
, (26)

and

Ψ =
(
φ, φ

)T
=

(
1√
2
− 1√

2
i√
2

i√
2

)
. (27)

Then 〈Ψ, Φ〉 = ΨΦ = I.

Step 4: Get the Critical Eigenvalues

The eigenvalues of A are ±i.

Step 5: Apply Orthogonal Decomposition

Let z(t, μ) be a unique family of solutions of equation(21), where we will write
z(t, μ) = (z1(t, μ), z2(t, μ))T . Now define

Y (t, μ) = 〈Ψ, z(t, μ)〉 =

(
z1(t,μ)√

2
− iz2(t,μ)√

2
z1(t,μ)√

2
+ iz2(t,μ)√

2

)
. (28)

If we let

B =
(
i 0
0 −i

)
, B∗ =

(−i 0
0 i

)
, (29)

then
dY

dt
(t, μ) = BY (t, μ) + 〈Ψ, f(z(t, μ), μ))〉, (30)

or in an equivalent form

dy

dt
(t, μ) = iy(t, μ) +

(
φ, f(z(t, μ), μ)

)
,

dy

dt
(t, μ) = −iy(t, μ) + (φ, f(z(t, μ), μ)) , (31)

where f(z(t, μ), μ) =
(
0, z1(t, μ)2

)T .
We now develop the orthogonal function w(t, μ) as

w(t, μ) = z(t, μ) − ΦY (t, μ). (32)

However, if we form ΦY (t, μ) from equations (26) and (28) it is clear that
ΦY (t, μ) = (z1(t, μ), z2(t, μ))T = z(t, μ) and therefore from equation (32)
that w(t, μ) = 0 as expected, since there are no other eigenvalues of A than i
and −i. Thus equation (31) is the decomposed form of equation (21).
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4 Delay Differential Equations as Operator Equations

As discussed earlier, the solutions to differential equations can be thought of
in terms of trajectories or in terms of mappings of initial conditions. This
same dichotomous point of view can be applied to delay differential equa-
tions. But, in the case of delay differential equations, the mapping or operator
approach provides very fruitful qualitative results and, therefore, will remain
that approach for this chapter.

Step 1: Form the Operator Equation

The principal difference between ordinary and delay differential equations is
that, in ordinary differential equations, the initial condition space is finite
dimensional and in delay differential equations it is infinite dimensional. The
delay differential equations (1) and (2) can be thought of as maps of entire
functions. In particular, we will start with the class of continuous functions
defined on the interval [−σ, 0] with values in Rn and refer to this as class C0.
The maps are constructed by defining a family of solution operators for the
linear delay differential equation (2) by

(T (t)φ) (θ) = (zt(φ)) (θ) = z(t+ θ) (33)

for φ ∈ C0, θ ∈ [−σ, 0], s≥ 0. This is a mapping of a function in C0 to another
function in C0. Then equations (1) and (2) can be thought of as maps from
C0 to C0. The norm on the space is taken as

‖ φ ‖= max
−σ≤t≤0

|φ(t)|, (34)

where | · | is the ordinary Euclidean 2-norm.

Fig. 2. The solution operator maps functions in C0 to functions in C0
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Figure 2 shows the mapping between an initial function inC0, φ, to another
function, zt(φ) in C0. zt(φ) is the projection of the portion of the trajectory
z(t) from t−σ to t back to C0. This figure exhibits two approaches to looking
at solutions of delay differential equations. One way is to consider a solution
as a trajectory of z as a function of t with an initial condition function in C0.
The value of the solution at t on the trajectory graph depends on the values
of the function on the trajectory from t− σ to t. Another way to look at the
solutions of a delay differential equation is to consider them as parameterized
mappings T (t)φ of functions φ in C0. From Figure 2 this would be the portion
of the trajectory from t − σ to t projected back to C0. In the figure it is
represented as zt(φ), which is the function in C0 to which φ is mapped under
T (t). The mapped function relates to the trajectory as follows. The value of
zt(φ)(θ) for θ ∈ [−σ, 0] is given as the trajectory value z(t + θ). This idea is
not new, in that, in ordinary differential equations solutions can be thought
of in terms of either trajectories or maps of initial condition vectors in Rn,
say. Traditionally, we usually think of solving ordinary differential equations
in terms of trajectories. For some qualitative analyses, however, the mapping
approach is useful.

To determine what properties this operator must satisfy we look at what
basic properties equation (5) satisfies. In particular, for each t, T (t) is a
bounded linear transformation for φ ∈ Rn. The boundedness comes from
‖T (t)φ‖ ≤ ‖eAt‖|φ|. For t > 0, T (0)φ = φ, i.e. T (0) = I. Finally,

lim
t→t0

‖ T (t)φ− T (t0)φ ‖= 0, (35)

since ‖ T (t)φ− T (t0)φ ‖≤ ‖eA(t−t0)‖|φ|.
Based on these properties we formulate the following definition for a family

of operators. A Strongly Continuous Semigroup satisfies

T (t)is bounded and linear for t ≥ 0,
T (0)φ = φ or T (0) = I, (36)
lim
t→t0

‖ T (t)φ− T (t0)φ ‖= 0.

where ‖ · ‖ is an appropriate operator norm and φ ∈ C0. The family of oper-
ators, T (t), t ≥ 0, is called a semigroup since the inverse property does not
hold (see [18] and [35]).

If we take the derivative with respect to t in equation (5) we see that T (t)φ
satisfies equation (4). It is also easy to see that

A = lim
t→0

1
t

(
eAt − I

)
. (37)

We can call the matrix A the infinitesimal generator of the family T (t) in
equation (5). The term infinitesimal generator can be thought of as arising
from the formulation
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dz = Az dt, (38)

where for each infinitesimal increment, dt, in t, A produces an infinitesimal
increment, dz, in z at the point z.

In terms of operators we define an operator called the infinitesimal gener-
ator. An infinitesimal generator of a semigroup T (t) is defined by

Aφ = lim
t→0+

1
t

[T (t)φ− φ] , (39)

for φ ∈ C0.
We will state properties of the family of operators (33) without proofs,

since the proofs require extensive knowledge of operator theory and they are
not essential for the developments in this chapter. To begin with, the mapping
(33) satisfies the semigroup properties on C0. In the case of the linear system
(2) the infinitesimal generator can be constructed as

(A(μ)φ) =
{

dφ
dθ (θ) −σ ≤ θ < 0,

U(μ)φ(0) + V (μ)φ(−σ) θ = 0,
(40)

where the parameter μ is included in the definition of A. Then T(t)φ satisfies

d

dt
T(t)φ = A(μ)T(t)φ, (41)

where
d

dt
T(t)φ = lim

h→0

1
h

(T(t + h) − T(t))φ. (42)

Finally, the operator form for the nonlinear delay differential equation (1)
can be written as

d

dt
zt(φ) = A(μ)zt(φ) + F(zt(φ), μ) (43)

where

(F(φ, μ)) (θ) =
{

0 −σ ≤ θ < 0,
f(φ, μ) θ = 0. (44)

For μ = 0, write f(φ) = f(φ, 0), F (φ) = F (φ, 0). We note the analogy between
the ordinary differential equation notation and the operator notation for the
delay differential equation.

Step 2: Define an Adjoint Operator

We can now construct a formal adjoint operator associated with equation
(40). Let C∗

0 = C ([0, σ], Rn) be the space of continuous functions from [0, σ]
to Rn with ‖ ψ ‖= max0≤θ≤σ |ψ(θ)| for ψ ∈ C∗

0 . The formal adjoint equation
associated with the linear delay differential equation (2) is given by
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du

dt
(t, μ) = −U(μ)T u(t, μ) − V (μ)Tu(t+ σ, μ). (45)

If we define
(T ∗(t)ψ) (θ) = (ut(ψ)) (θ) = u(t + θ), (46)

for θ ∈ [0, σ], t ≤ 0, and ut ∈ C∗
0 , ut(ψ) the image of T ∗(t)ψ, then (46) defines

a strongly continuous semigroup with infinitesimal generator

(A∗(μ)ψ) =
{ −dψ

dθ
(θ) 0 < θ ≤ σ,

−dψ
dθ (0) = U(μ)Tψ(0) + V (μ)Tψ(σ) θ = 0.

(47)

Note that, although the formal infinitesimal generator for (46) is defined as

A∗
0ψ = lim

t→0−

1
t

[T ∗(t)ψ − ψ] , (48)

Hale [12], for convenience, takes A∗ = −A∗
0 in (47) as the formal adjoint to

(40). This family of operators (46) satisfies

d

ds
T∗(t)ψ = −A∗T∗(t)ψ. (49)

Step 3: Define a Natural Inner Product by way of an Adjoint
Operator

In contrast to Rn, the space C0 does not have a natural inner product associ-
ated with its norm. However, following Hale [12], one can introduce a substi-
tute device that acts like an inner product in C0. This is an approach that is
often taken when a function space does not have a natural inner product asso-
ciated with its norm. Spaces of functions that have natural inner products are
called Hilbert spaces. Throughout we will be assuming the complexification
of the spaces so that we can work with complex eignvalues and eigenvectors.

In analogy to equation (7) we start by constructing a Lagrange identity as
follows. If

Θz(t) = z′(t) − U(μ)z(t) − V (μ)z(t − σ),
Ωu(t) = u′(t) + U(μ)Tu(t) + V (μ)Tu(t+ σ), (50)

then
uT (t)Θz(t) +Ωu

T
(t)z(t) =

d

dt
〈u, z〉(t), (51)

where

〈u, z〉(t) = uT (t)z(t) +
∫ t

t−σ
uT (s+ σ)V (μ)z(s)ds. (52)

Deriving the natural inner product for Rn from the Lagrange identity (7)
motivates the derivation of equation (52). Again, if z and u satisfy Θz(t) = 0
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and Ωu(t) = 0 then, from equation (52), (d/dt)〈u, z〉(t) = 0, which implies
〈u, z〉(t) is constant and one can set t = 0 in equation (52) and define the form

〈u, z〉 = uT (0)z(0) +
∫ 0

−σ
uT (s+ σ)V (μ)z(s)ds. (53)

One can now state some properties of equations (40), (47), and (53) that
are analogs of the properties given in Section 2 for ordinary differential equa-
tions.

1. For φ ∈ C0, ψ ∈ C∗
0 ,

〈ψ,A(μ)φ〉 = 〈A∗(μ)ψ, φ〉. (54)

2. λ is an eigenvalue of A(μ) if and only if λ is an eigenvalue of A∗(μ).
3. The dimensions of the eigenspaces of A(μ) and A∗(μ) are finite and equal.
4. If ψ1, · · · , ψd is a basis for the right eigenspace of A∗(μ) and the associated
φ1, · · · , φd is a basis for the right eigenspace of A(μ), construct the matrices
Ψ = (ψ1, · · · , ψd) and Φ = (φ1, · · · , φd). Define the bilinear form between
Ψ and Φ by

〈Ψ, Φ〉 =

⎛
⎜⎝

〈ψ1, φ1〉 . . . 〈ψ1, φd〉
...

. . .
...

〈ψd, φ1〉 . . . 〈ψd, φd〉

⎞
⎟⎠ . (55)

This matrix is nonsingular and can be chosen so that 〈Ψ, Φ〉 = I. Note that
if (55) is not the identity then a change of coordinates can be performed by
setting K = 〈Ψ, Φ〉−1 and Φ′ = ΦK. Then 〈Ψ, Φ′〉 = 〈Ψ, ΦK〉 = 〈Ψ, Φ〉K = I.
(55) also satisfies the inner product properties (9).

Step 4: Get the Critical Eigenvalues

The eigenvalues for equation (40) are given by the λ solutions of the transcen-
dental equation

det
(
λI − U(μ) − e−λσV(μ)

)
= 0. (56)

This form of characteristic equation, sometimes called an exponential poly-
nomial, has been studied in Avellar and Hale [4], Bellman and Cooke [7],
Hale and Lunel [15], Kuang [23], and Pinney [27]. The solutions are called the
eigenvalues of equation (2) and, in general, there are an infinite number of
them. For a discussion of the general expansion of solutions of equation (2) in
terms of the eigenvalues see Bellman and Cooke [7] or Pinney [27]. The actual
computation of these eigenvalues can become very involved as the reader will
see in the example that will be considered later in this chapter. Here, though,
we will only be concerned with conditions for the existence of eigenvalues of
the form iω and −iω and we further limit ourselves to the case in which there
are only two eigenvalues iω and −iω and all other eigenvalues have negative
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real parts. The significance of this is that we will be looking for conditions for
which the family of eigenvalues, as a function of the parameter μ, passes across
the imaginary axis. These conditions will be the Hopf conditions referred to
earlier in this chapter. The value of ω is related to the natural frequency of
oscillation of the linear part of the delay differential equation system.

Step 5: Apply Orthogonal Decomposition

For the sake of notation, let A = A(μ), A∗ = A∗(μ), U = U(μ), V =
V (μ), ω = ω(μ). The basis eigenvectors for A and A∗ associated with the
eigenvectors λ = iω, λ = −iω will be denoted as φC , φC and φD, φD,
respectively, where the subscripts C and D refer to parameters defining the
basis vectors and depend on U and V .

We define the matrix
Φ = (φC, φC). (57)

The two eigenvectors for A, associated with the eigenvalues λ = iω, λ = −iω,
are given by

φC(θ) = eiωθC,
φC(θ) = e−iωθC, (58)

where C is a 2 × 1 vector. With these functions defined, it is clear that Φ
is a function of θ and should formally be written as Φ(θ). Note that Φ(0) =
(C,C). However, in order to simplify notation we will write Φ = Φ(θ) but
we will sometimes refer to Φ(0). These functions follow from equation (40).
If −σ ≤ θ < 0 then dφ/dθ = iωφ implies φ(θ) = exp(iωθ)C where C =
(c1, c2)

T . For θ = 0, equation (40) implies (U + V exp(−iωσ))C = iωC or
(U − iωI + V exp(−iωσ))C = 0. Since iω is an eigenvalue, equation (56)
implies that there is a nonzero solution C.

Similarly, the eigenvectors for A∗ associated with the eigenvalues −iω, iω
are also given by

φD(θ) = eiωθD,
φD(θ) = e−iωθD, (59)

where D = (d1, d2)
T . Again, this follows from (47) since, from 0 < θ ≤ σ,

−dφ
dθ

= −iωφ, (60)

we can compute the solutions given in equation (59). Define the matrix

Ψ = (φD, φD) (61)

where D is computed as follows. At θ = 0 we have from (47) that
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UT + V T eiωσ + iωI

)
D = 0. (62)

The determinant of the matrix on the left is the characteristic equation so
that there is a nonzero D.

From equations (57), (58), (59), and (61) one seeks to solve for D so that

〈Ψ, Φ〉 =
( 〈φD, φC〉 〈φD, φC〉
〈φD, φC〉 〈φD, φC〉

)
=

(
1 0
0 1

)
. (63)

Due to symmetry we only need to satisfy 〈φD, φD〉 = 1 and 〈φD, φD〉 = 0.
On eigenspaces, the infinitesimal generators can be represented by matri-

ces. In fact A and A∗ satisfy AQ = QB, A∗Ψ = ΨB∗ where Φ, Ψ are given
by (57) and (61) and the matrices B,B∗ are also given by (12).

Now that we have constructed the adjoint and given some of its properties
we can decompose the nonlinear operator equation (43) into a two dimen-
sional system with eigenvalues iω and −iω and another operator equation
with eigenvalues having negative real parts. The procedure is based on Hale
[12] and is similar to Step 5 of Section 2.

We will decompose the nonlinear system (43) for the case μ = 0, since
we will not need to develop approximations for μ �= 0 in this chapter. High
order approximations have been developed in Hassard and Wan [16], but these
will not be needed in order to develop the approximate bifurcating periodic
solution studied here.

Based on standard existence and uniqueness theorems for delay differential
equations, let zt ∈ C0 be the unique family of solutions of (43), where the μ
notation has been dropped since we are only working with μ = 0. Define

Y (t) = 〈Ψ, zt〉 =
( 〈φD, zt〉
〈φD, zt〉

)
, (64)

where Y (t) ∈ C2 for t ≥ 0, and set Y (t) = (y(t), y(t))T where y(t) = 〈φD, zt〉
and y(t) = 〈φD, zt〉. The reader should note the similarity to equation (11).

By differentiating (53), and using zt(0) = z(t), zt(θ) = z(t + θ), we have

d

dt
〈Ψ, zt〉 = 〈Ψ, dzt

dt
〉. (65)

Use (9), (43), (54), (65), and A∗Ψ = ΨB∗ to write

d

dt
Y (t) = BY (t) + 〈Ψ, F (zt)〉. (66)

Using (44) and (53), compute 〈φD, F (zt)〉 = φD
T
(0)(F (zt))(0) = D

T
f(zt).

Similarly 〈φD, F (zt)〉 = DT f(zt). Then

〈Ψ, F (zt)〉 =
( 〈φD, F (zt)〉
〈φD, F (zt)〉

)
=

(
D
T
f(zt)

DT f(zt)

)
, (67)
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which yields the first two equations in (83) below. They can be written as

d

dt
y(t) = iωy(t) +D

T
f(zt),

d

dt
y(t) = −iωy(t) +DT f(zt). (68)

If one defines the orthogonal family of functions

wt = zt − ΦY (t), (69)

where Q is given by (57) and Y (t) is given by (64), then 〈Ψ, wt〉 = 0, where
Ψ is given by (61). Now apply the infinitesimal generator (40) to

zt = wt + ΦY (t), (70)

to get

(Azt)(θ) = (Awt)(θ) + (AΦ)(θ)Y (t) = (Awt)(θ) + ΦBY (t). (71)

We will need this relation below.
One can now construct the third equation. There are two cases: θ = 0 and

θ ∈ [−σ, 0). From (69), for the case with θ = 0,

w(t) = wt(0) = zt(0) − Φ(0)Y (t) = z(t) − Φ(0)Y (t). (72)

The reader is reminded here of the notation wt(θ) = w(t + θ). It is easy to
show that w(t) ∈ R2, since x(t) ∈ R2 and Φ(0)Y (t) = 〈φD, zt〉C+〈φD, zt〉C =
2Re{〈φD, zt〉C} ∈ R2.

From (40) and (43)

d

dt
z(t) =

dzt
dt

(0) = (Azt)(0) + (F (zt))(0) = Uz(t) + V z(t − σ) + f(zt). (73)

Differentiate (72) and combine it with (66) and (73) to give

d

dt
w(t) = {Uz(t) + V z(t− σ) + f(zt)} − Φ(0) {BY (t) − 〈Ψ, F (zt)〉} . (74)

If θ = 0 in (71) then, from (40),

Uz(t) + V z(t− σ) = Uw(t) + V w(t − σ) + Φ(0)BY (t). (75)

Now substitute (75) into (74) to get

d

dt
w(t) = Uw(t) + V w(t− σ) + f(zt) − Φ(0)〈Ψ, F (zt)〉,

= Uw(t) + V w(t− σ) + f(zt) − 2Re {〈φD, zt〉C} . (76)

For the case with θ �= 0 we can apply a similar argument to that used to
create (76). We start by differentiating (69) to get
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dwt
dt

=
dzt
dt

− ΦY ′(t),

=
dzt
dt

− Φ{BY (t) + 〈Ψ, F (zt)〉}, (77)

=
dzt
dt

− ΦBY (t) − Φ〈Ψ, F (zt)〉}.
For θ �= 0 in (43) and (44)

dzt
dt

= Azt. (78)

Then, using (71) and (78), we have

dwt
dt

= Azt − ΦBY (t) − Φ〈Ψ, F (zt)〉},
= Awt + ΦBY (t) − ΦBY (t) − Φ〈Ψ, F (zt)〉}, (79)
= Awt − Φ〈Ψ, F (zt)〉}. (80)

This can then be written as
dwt
ds

= Awt − 2Re{〈φD, zt〉φC}. (81)

Use (44) to finally write the equation

dwt
dt

= Awt − 2Re{〈φD, zt〉φC} + F (zt). (82)

Equation (43) has now been decomposed as

d

dt
y(t) = iωy(t) +D

T
f(zt),

d

dt
y(t) = −iωy(t) +DT f(zt), (83)

d

dt
wt(θ) =

{
(Awt)(θ) − 2Re{〈φD, zt〉φC(θ)} −σ ≤ θ < 0,
(Awt)(0) − 2Re{〈φD, zt〉φC(0)} + f(zt) θ = 0.

In order to simplify the notation write (83) in the form

dy

dt
(t) = iωy(t) + F1(Y, wt),

dy

dt
(t) = −iωy(t) + F 1(Y, wt), (84)

dwt
dt

= Awt + F2(Y, wt),

where

F1(Y, wt) = D
T
f(zt),

F2(Y, wt) =
{−2Re{〈φD, zt〉φC(θ)} −σ ≤ θ < 0,
−2Re{〈φD, zt〉φC(0)} + f(zt) θ = 0. (85)

Note that (84) is a coupled system. The center manifold and normal forms
will be used as a tool to partially decouple this system.
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5 A Machine Tool DDE Example: Part 1

This example will be discussed in multiple parts. In the first part we will
formulate the operator form for the example delay differential equation, de-
scribe a process of determining the critical eigenvalues for the problem, and
formulate the adjoint operator equation.

Step 1: Form the Operator Equation

The example we will consider involves a turning center and workpiece com-
bination. For readers unfamiliar with turning centers they can be thought
of as numerically controlled lathes. The machining tool model, used only for
illustration in this paper, is taken from Kalmár-Nagy et al. [20] and can be
written as

ẍ+ 2ξωnẋ+ ω2
nx =

kf0
mα

(
1 −

(
f

f0

)α)
, (86)

where ωn =
√
r/m is the natural frequency of the undamped free oscillating

system and ξ = c/2mωn is the relative damping factor and k is the cutting
force coefficient that is related to the slope of the power-law curve used to
define the right hand side of (86). The parameters m, r, c and α are taken as
m = 10 kg, r = 3.35 MN/m, c = 156 kg/s, and α = 0.41 and were obtained
from measurements of the machine-tool response function (see Kalmár-Nagy
et al. [20]). The parameter α was obtained from a cutting force model in
Taylor [31]. These then imply that ωn = 578.791/s, ξ = 0.0135. The nominal
chip width is taken as f0 and the time varyin chip width is

f = f0 + x(t) − x(t− τ ), (87)

where the delay τ = 2π/Ωτ is the time for one revolution of the turning center
spindle. The cutting force parameter k will be taken as the bifurcation param-
eter since we will be interested in the qualitative change in the displacement,
x(t), as the cutting force changes. The parameters m, r, c and f are shown in
Figure 3. The displacement x(t) is directed positively into the workpiece and
the tool is assumed not to leave the workpiece.

The model is simplified by introducing a nondimensional time s and dis-
placement z by

s = ωnt,

z =
x

A
(88)

where the length scale is computed as
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Fig. 3. One Degree-of-Freedom-Model for Single-Point Turning

A =
3f0

2 − α
, (89)

a new bifurcation parameter p is set to

p =
k

mω2
n

, (90)

and the delay parameter becomes

σ = ωnτ. (91)

The dimensionless model then becomes, after expanding the right hand side
of (86) to the third order,

d2x

ds2
+ 2ξ

dx

ds
+ x = p

(
Δx+E(Δx2 +Δx3)

)
, (92)

where

Δx = x(s− σ) − x(s),

E =
3(1− α)
2(2− α)

. (93)

We will now consider x as a function of the dimensionless s instead of t. The
linear part of the model is given by

d2x

ds2
+ 2ξ

dx

ds
+ x = pΔx, (94)

Since the Hopf bifurcation studied in this paper is local, the bifurcation pa-
rameter will be written as
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p = μ + pc, (95)

where pc is a critical value at which bifurcation occurs. Then (92) can be put
into vector form (1) by letting z1(s) = x(s), z2(s) = x′(s). Then

dz

ds
(s) = U(μ)z(s) + V (μ)z(s− σ) + f(z(s), z(s − σ), μ), (96)

where

z(s) =
(
z1(s)
z2(s)

)
,

U(μ) =
(

0 1
−1 − (μ + pc) −2ξ

)
, (97)

V (μ) =
(

0 0
μ+ pc 0

)
,

and

f(z(s) , z(s− σ), μ) = (98)(
0

(μ+ pc)E (z1(s− σ) − z1(s))
2 + (μ + pc)E (z1(s− σ) − z1(s))

3

)
.

The linear portion of this equation is given by

dz

ds
(s) = U(μ)z(s) + V (μ)z(s− σ). (99)

and the infinitesimal generator is given by

(A(μ)φ) =
{

dφ
dθ

(θ) −σ ≤ θ < 0
U(μ)φ(0) + V (μ)φ(−σ) θ = 0

. (100)

Then (96) can easily be put into the operator form (43).

Step 2: Define the Adjoint Operator

Here we can follow the lead of Step 2 of Section 4 and define the formal adjoint
as

dz

ds
(s, μ) = −U(μ)T z(s, μ) − V (μ)T z(s+ σ, μ). (101)

As in Section 4, if we define

(T ∗(s)ψ) (θ) = (zs(ψ)) (θ) = z(s+ θ) (102)

for θ ∈ [0, σ], s ≤ 0, us ∈ C∗
0 , and zs(ψ) as the image of T ∗(s)ψ, then (102)

defines a strongly continuous semigroup with infinitesimal generator
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(A∗(μ)ψ) =
{ −dψ

dθ
(θ) 0 < θ ≤ σ,

−dψ
dθ (0) = U(μ)Tψ(0) + V (μ)Tψ(σ) θ = 0.

(103)

Note that, although, as before, the formal infinitesimal generator for (102) is
defined as

A∗
0ψ = lim

s→0−

1
s

[T ∗(s)ψ − ψ] . (104)

Hale [12], for convenience, takes A∗ = −A∗
0 in (103) as the formal adjoint to

(100).

Step 3: Define a Natural Inner Product by way of an Adjoint

This step follows simply by defining the inner product in the same manner as
in equation (53).

Step 4: Get the Critical Eigenvalues

In this step the reader will begin to see some of the complexity of dealing
with the transcendental characteristic equation. The eigenvalues will depend
on the parameters in equation (94) and only certain parameter combinations
will lead to eigenvalues of the form iω and −iω. We will also establish the
connection of the critical eigenvalues with the Hopf bifurcation conditions.

Following Hale [14], introduce the trial solution

z(s) = ceλs, (105)

where c ∈ C2, and U(μ), and V (μ) are given by (97), into the linear system
(94) and set the determinant of the resulting system to zero. This yields the
transcendental characteristic equation

χ(λ) = λ2 + 2ξλ+ (1 + p) − pe−λσ = 0. (106)

Before developing the families of conjugate eigenvalues, we wish to charac-
terize certain critical eigenvalues of (106) of the form λ = iω. However, the
eigenvalues for (106) of the form λ = iω exist only for special combinations
of p and σ. We will say that a triple (ω, σ, p), where ω, σ, p are real, will
be called a critical eigen triple of (106) if λ = iω, σ, p simultaneously satisfy
(106). The discussion below points out the significant computational difficul-
ties involved with estimating the eigenvalues for a characteristic equation or
exponential polynomial related to a linear delay differential equation.

The following properties characterize the critical eigen triples for linear
delay equations of the form (2) with coefficients from (97).

1. (ω, σ, p) is a critical eigen triple of (106) if and only if (−ω, σ, p) also is
a critical eigen triple of (106).
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2. For ω > 1 there is a uniquely defined sequence σr = σr(ω), r = 0, 1, 2, . . .,
and a uniquely defined p = p(ω) such that (ω, σr, p), r = 0, 1, 2, . . .,
are critical eigen triples.

3. If (ω, σ, p) is a critical eigen triple, with ω > 1, then p ≥ 2ξ(1 + ξ). That
is, no critical eigen triple for (106) exists for p < 2ξ(1 + ξ).

4. For
pm = 2ξ(1 + ξ), (107)

the minimum p value, there is a unique ω > 1 and a unique sequence
σr, r = 0, 1, 2, . . ., such that (ωm, σr, pm) is a critical eigen triple for
(106) for r = 0, 1, 2, . . .. The frequency at the minimum is

ωm =
√

1 + 2ξ. (108)

5. For p > 2ξ(1 + ξ) there exist two ω’s, ω > 1, designated ω+, ω−
and uniquely associated sequences σ+

r = σr(ω+), σ−
r = σr(ω−), r =

0, 1, 2, . . . such that (ω+, σ
+
r , p), (ω−, σ−

r , p) are critical eigen triples
for (106) for r = 0, 1, 2, . . .. ω+, ω− are given by

ω2
+ = (1 + p− 2ξ2) +

√
p2 − 4ξ2p+ (4ξ4 − 4ξ2), (109)

ω2
− = (1 + p− 2ξ2) −

√
p2 − 4ξ2p+ (4ξ4 − 4ξ2). (110)

σ+
r , σ

−
r are given by

σ+
r =

2(ψ+ + rπ) + 3π
ω+

(111)

σ−
r =

2(ψ− + rπ) + 3π
ω−

(112)

where

ψ+ = −π + tan−1

(
2ξω+

ω2
+ − 1

)
, (113)

ψ− = −π + tan−1

(
2ξω−
ω2− − 1

)
, (114)

6. There do not exist critical eigen triples for 0 ≤ ω ≤ 1

We will not prove these results (for proofs see Gilsinn [11]) but we briefly
discuss their significance graphically by examining Figure 4 where the plots
are based on the value of ξ = 0.0135. The entire development of the periodic
solutions on the center manifold depends on knowing the critical bifurcation
parameter p in (92). This parameter is linked to the rotation rate, Ωr, of the
turning center spindle. One can plot p against Ωr = 1/σr, where Ωr is the
rotation rate of the turning center spindle, for r = 0, 1, 2, . . . where each r
indexes a lobe in Figure 4 moving from right to left in the figure. Call the right
most lobe, lobe 0, the next on the left lobe 1, etc. For each r the pairs (Ωr , p)
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Fig. 4. Stability Chart with Sample Critical Eigen Triples Identified

are computed for a vector of ω values. When these families of pairs are plotted
they form a family of N lobes. Each lobe is parameterized by the same vector
of ω’s so that each point on a lobe boundary represents an eigenvalue of (106)
for a given p and σr = 1/Ωr. The minimum of each lobe is asymptotic to a
line often called the stability limit. Te second property above states that for
a given ω there is associated a unique value on the vertical axis, called p(ω),
but an infinite number of σr(ω)’s, one for each lobe, depicted graphically on
the horizontal axis as 1/ωr, for rotation rate. The minimum value on each
lobe occurs at p = 2ξ(1 + ξ) with an associated unique ω =

√
1 + 2ξ. Finally,

for each lobe there are two ω’s associated with each p, denoted by ω− and
ω+, where ω− is the parameter associated with the left side of the lobe and
ω+ with the right side of the lobe. At the minimum ω− = ω+.

The significance of the stability chart is that the lobe boundaries divide the
plane into regions of stable and unstable machining. In particular, the regions
below the lobes are considered stable and those above are considered unstable
in the manufacturing sense. This will be a result of the Hopf bifurcation at the
lobe boundaries. Since the parameter p is proportional to material removal,
the regions between lobes represent areas that can be exploited for material
removal above the stability limit line. This figure, called a stability chart,
graphically shows the meanings of properties two through five above and was
introduced by Tobias and Fishwick [33]. The structure of stability charts for
delay differential equation can be very complex. The current machine tool
example exhibits one of the simpler ones. To see some examples of different
stability charts the reader is referred to the book by Stépán [28].

We will use an argument modeled after Altintas and Budak [1] to develop
necessary conditions for σr and p and show how they relate to ω. These
conditions are in fact used to graphically display the stability lobes. Set
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Φ(λ) =
1

λ2 + 2ξλ+ 1
(115)

Then (106) becomes
1 + p(1 − e−λσ)Φ(λ) = 0. (116)

Set λ = iω and write
Φ(iω) = G(ω) + iH(ω), (117)

where

G(ω) =
1 − ω2

(1 − ω2)2 + (2ξω)2
, (118)

H(ω) =
−2ξω

(1 − ω2)2 + (2ξω)2
. (119)

Substitute (117) into (116) and separate real and imaginary parts to get

1 + p[(1 − cosωσ)G(ω) − (sinωσ)H(ω)] = 0, (120)
p[G(ω) sinωσ +H(ω)(1 − cosωσ)] = 0. (121)

From (118) and (119)
H(ω)
G(ω)

= − sinωσ
1 − cosωσ

. (122)

From the definition of G, H and the fact that ω > 1, (122) falls in the third
quadrant so that one can introduce the phase angle for (117), using (118) and
(119), as

ψ = tan−1

(
H(ω)
G(ω)

)
= −π + tan−1

(
2ξω
ω2 − 1

)
. (123)

Clearly, −π ≤ ψ ≤ π. Using half-angle formulas,

tanψ = − sinωσ
1 − cosωσ

,

= −cos
(
ωσ
2

)
sin

(
ωσ
2

) ,
= − cot

(ωσ
2

)
, (124)

= tan
(π

2
+
ωσ

2
± nπ

)
,

for n = 0, 1, 2, . . .. Therefore

ψ =
π

2
+
ωσ

2
± nπ, (125)

where ωσ > 0 must be satisfied for all n. In order to satisfy this and the
condition that −π ≤ ψ ≤ π, select the negative sign and
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n = 2 + r, (126)

for r = 0, 1, 2, . . .. Therefore, from (125), the necessary sequence, σr, is given
by

σr =
ω

2(ψ + rπ) + 3π
, (127)

where ψ is given by (123). Finally, substituting (122) into (120), one has the
necessary condition for p as

p = − 1
2G(ω)

, (128)

where, p > 0 since ω > 1. Therefore (127) and (128) are the necessary con-
ditions for (ω, σr, p), r = 0, 1, 2, . . ., to be critical eigen triples for (106).
Note that this also implies uniqueness. Equations (127) and (128) show how
p = p(ω) and 1/σr uniquely relate in Figure 4.

The lobes in Figure 4 are plotted by the following algorithm. Since p must
be positive, select any set of values ω > 1 such that G(ω) < 0. Given a set of
ω > 1 values, pick r = 0, 1, 2, · · · for as many lobes as desired. Compute 1

σr

from (127) and p from (128), then plot the pairs
(

1
σr
, p

)
.

The following is a consequence of properties one through six for critical
eigen triples. If (ω0, σ, p) is a critical eigen triple, ω0 > 0, then there cannot
be another critical eigen triple (ω1, σ, p), ω1 > 0, ω1 �= ω0. Furthermore,
since (−ω0, σ, p) is also a critical eigen triple, there can be no critical eigen
triple (ω2, σ, p), ω2 < 0, ω2 �= −ω0. This does not preclude two or more
lobes crossing. It only refers to a fixed lobe.

Finally we can state the Hopf criteria. That is, there is a family of simple,
conjugate eigenvalues λ(μ), λ̄(μ), of (106), such that

λ(μ) = α(μ) + iω0(μ), (129)

where α, ω0 are real, ω0(μ) = ω(μ) + ωc where ω(μ) is a perturbation of a
critical frequency ωc, and

α(0) = 0,
ω0(0) > 0, (130)
α′(0) > 0,

The proof of this result depends on the Implicit Function Theorem and is
given in Gilsinn [11]. As a consequence of the Implicit Function Theorem
the conditions α(0) = 0 and ω(0) = 0 and thus ω0(0) > 0 follow. The last
condition, that α′(0) > 0, follows from following relations, valid for the current
machine tool model, that are also shown in Gilsinn [11]

α′(0) =
[2ξ − σω2

c + σ(1 + pc)][1− ω2
c ] + [2ωc(1 + σξ)][2ξωc]

pc[2ξ − σω2
c + σ(1 + pc)]2 + pc[2ωc(1 + σξ)]2

,

ω′(0) =
[2ξ − σω2

c + σ(1 + pc)][2ξωc] − [1− ω2
c ][2ωc(1 + σξ)]

pc[2ξ − σω2
c + σ(1 + pc)]2 + pc[2ωc(1 + σξ)]2

, (131)
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The numerator of α′(0), divided by pc, can be expanded to give

2ξ(1 + ω2
c) + σ(1 − ω2

c )
2 + 4σω2

cξ
2 + σpc(1 − ω2

c ) (132)

The only term in (132) that can potentially cause (132) to become negative
is the last one. However, pc and ωc are related by (128) which implies that

pc =
(1 − ω2

c )2 + (2ξωc)2

2(ω2
c − 1)

(133)

If we substitute (133) into (132) one gets

2ξ(1 + ω2
c ) +

σ

2
(1 − ω2

c )
2 + 2σω2

cξ
2 (134)

which is clearly positive so that α′(0) > 0. To compute the bifurcating periodic
solutions and determine their periods later we will need to use both α′(0) and
ω′(0). Finally, the last Hopf condition is also shown in Gilsinn [11] and that is
that all other eigenvalues than the two critical ones have negative real parts.
The proof of this part of the Hopf result involves a contour integration.

We are now in a position to determine the nature of the Hopf bifurcation
that occurs at a critical eigen triple for the machine tool model. To simplify
the calculations only the bifurcation at the minimum points of the lobes, pm
and ωm, given by (107) and (108), will be examined. Any other point on a
lobe would involve more complicated expressions for any p greater than pm
and obscure the essential arguments. We will see that a bifurcation, called a
subcritical bifurcation occurs at this point, which implies that, depending on
the initial amplitude used to integrate (92), the solution can become unstable
in a region that otherwise might be considered a stable region.

The rotation rate, Ωm, at pm can be computed from (108) and (123) as

ψm = −π + tan−1
(√

1 + 2ξ
)
,

Ωm =
1
σm

=
ωm

2(ψm + rπ) + 3π
, (135)

for r = 0, 1, 2, · · ·. When ξ = 0.0135, as computed for the current machining
model, one has that ψm = −2.3495. When r = 0, Ωm = 0.2144 (σm = 4.6642),
which is the dimensionless rotation rate at the minimum of the first lobe to
the right in Figure 4. This point is selected purely in order to illustrate the
calculations. The stability limit in Figure 4 is given by (107) as

pm = 2ξ(ξ + 1) = 0.027365 (136)

The frequency at this limit is given by (108) as

ωm =
√

1 + 2ξ = 1.01341 (137)
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Then from (131)

α′(0) =
1

2(1 + ξ)2(1 + ξσm)
,

ω′(0) =
√

1 + 2ξ
2(1 + ξ)2(1 + ξσm)

. (138)

Step 5: Apply Orthogonal Decomposition

We will now follow the steps needed to compute the bifurcating periodic so-
lutions on the center manifold. The first step is to compute the eigenvec-
tors for the infinitesimal generators A and A∗. The general forms for these
eigenvectors are given by (58) and (59). We wish to compute the constant
vectors C and D. To compute C we note that for θ = 0, (40) implies
(U + V exp(−iωσ))C = iωC or (U − iωI + V exp(−iωσ))C = 0. Since iω
is an eigenvalue, (56), (97), and (106) imply that there is a nonzero solution
C. If we set c1 = 1 it is easy to compute c2 = iω. The eigenvectors of A are
then given by

φC(θ) = eiωθ
(

1
iω

)
,

φC(θ) = e−iωθ
(

1
−iω

)
. (139)

To compute D we have, at θ = 0, from (47), that
(
UT + VT eiωσ + iωI

)
D = 0.

The determinant of the matrix on the left is the characteristic equation so that
there is a nonzero D. From (58), (59), (10), and (140) one seeks to solve for
D so that

〈Ψ, Φ〉 =
( 〈φD, φC〉 〈φD, φC〉
〈φD, φC〉 〈φD, φC〉

)
=

(
1 0
0 1

)
. (140)

Due to symmetry one only needs to satisfy 〈φD, φC〉 = 1 and 〈φD, φC〉 = 0.
From (53), (58), and (59) compute d1 and d2 to satisfy

1 = d1 + [σpc cosωσ + i (ω − σpc sinωσ)] d2,

0 = d1 +
[pc
ω

sinωσ − iω
]
d2, (141)

from which the eigenvectors of A∗ associated with the eigenvalues −iω, iω
can be computed as

φD(θ) = eiωθD,
φD(θ) = e−iωθD, (142)

where D = (d1, d2)
T and
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d1 = −
(pc
ω

sinωσ + iω
)
d2,

d2 =

(
σpcω

2 cosωσ − pcω sinωσ
)

+ i
(
2ω3 − σpcω

2 sinωσ
)

(σpcω cosωσ − pc sinωσ)2 + (2ω2 − σpcω sinωσ)2
, (143)

From (143) the value of d2 can be calculated as

d2 =
−ξ − i

√
1 + 2ξ

2(1 + ξσc)(1 + ξ)2
, (144)

where σ = σm, pc = pm, ω = ωm in (143).
Once these eigenvectors have been computed the decomposition then can

be written by a straightforward use of (98), (84) and (85).

6 Computing the Bifurcated Periodic Solution on the
Center Manifold

This section will be written in such a manner that it could apply to both
ordinary and delay differential equations. We know from ordinary differential
equations that in the case of the homogeneous portion having two eigenval-
ues with zero real parts and all of the others negative real parts there are
two manifolds of solutions. One manifold, called the stable manifold, is an
invariant manifold of solutions that decay to the equilibrium point. The other
manifold, called the center manifold, is an invariant manifold on which the
essential behavior of the solution in the neighborhood of the equilibrium point
is determined.

Step 6: Compute the Center Manifold Form

To begin the construction of a center manifold we start with the equations
(84)

dy

dt
(t) = iωy(t) + F1(Y, wt),

dy

dt
(t) = −iωy(t) + F 1(Y, wt), (145)

dwt
dt

= Awt + F2(Y, wt),

where

F1(Y, wt) = φD
T
(0)f(zt),

F2(Y, wt) =
{−2Re{〈φD, zt〉C} −σ ≤ θ < 0,
−2Re{〈φD, zt〉C}+ f(zt) θ = 0. (146)
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This system has been decomposed into two equations that have eigenvalues
with zero real parts and one that has eigenvalues with negative real parts. For
notation, let Ec be the subspace formed by the eigenvectors φC , φC . We can
now define a center manifold by a function w = w(y, y) for |y|, |y| sufficiently
small such that w(0, 0) = 0, Dw(0, 0) = 0, where D is the total derivative
operator. Note that w = w(y, y) is only defined locally and the conditions
on w make it tangent to Ec at (0, 0). According to Wiggins [34] the center
manifold for (84) can then be specified as

W c(0) = {(y, y, w) ∈ C3|w = w(y, y), |y|, |y| < δ, w(0, 0) = 0,Dw(0, 0) = 0}.
(147)

for δ sufficiently small.
Since the center manifold is invariant, the dynamics of the first two equa-

tions in (145) must be restricted to the center manifold and satisfy

dy

ds
= iωy + F1(y, w(y, y)),

dy

ds
= −iωy + F 1(y, w(y, y)). (148)

There is also one more condition on the dynamics that must be satisfied by
w = w(y, y) and that is, it must satisfy the last equation in (145). Then, by
taking appropriate partial derivatives we must have

Dyw(y, y){iωy + F1(y, w(y, y))} + Dyw(y, y){−iωy + F 1(y, w(y, y))}
= Aw(y, y) + F2(y, w(y, y)) (149)

where D represents the derivative with respect to the subscripted variable.
The argument of Kazarinoff et al. [22] (see also Carr [9]) can be used to look
for a center manifold w(y, y) that approximately solves (149). We will not
need to reduplicate the argument here but to note that in fact an approximate
center manifold, satisfying (149), can be given as a quadratic form in y and y
with coefficients as functions of θ

w(y, y)(θ) = w20(θ)
y2

2
+w11(θ)yy +w02(θ)

y2

2
. (150)

Then the projected equation (148) on the center manifold takes the form

dy

ds
= iωy + g(y, y),

dy

ds
= −iωy + g(y, y), (151)

where the g(y, y) is given by

g(y, y) = g20
y2

2
+ g11yy + g02

y2

2
+ g21

y2y

2
. (152)
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Since w02 = w20, one only needs to solve for w20 and w11. It can be shown
that w20, w11 take the form

w20(θ) = c1φ(θ) + c2φ(θ) +Me2iωθ,

w11(θ) = c3φ(θ) + c4φ(θ) +N, (153)

where ci, i = 1, . . . , 4 are constants and M, N are vectors. We will show how
the coefficients and the vectors can be computed in a specific example below.

Step 7: Develop the Normal Form on the Center Manifold

The equations on the center manifold can be further simplified. Normal form
theory, following the argument of Wiggins [34] (see also Nayfeh [25]), can be
used to reduce (151) to the simpler form (154) below on the center manifold.
In fact, (148) is reduced to a normal form by a transformation of variables,
y → v, so that the new system takes the form

dv

ds
= iωv + c21v

2v,

dv

ds
= −iωv + c21v

2v, (154)

where the higher order terms have been dropped. The derivation of this for-
mula is complex and is not needed for this chapter. The interested reader
should consult Gilsinn [11] and Wiggins [34] for the essential ideas involved.
The formula needed is one that links (154) with (152) and is given by

c21 =
i

2ω

{
g11g20 − 2|g11|2 − |g02|2

3

}
+
g21

2
. (155)

For a more general discussion of the normal form on the center manifold
when μ �= 0 see Hassard et al. [17]. Up to this point one has only needed
μ = 0. But, to compute the periodic solution we will reintroduce μ �= 0. A
formula for the periodic solutions of (1) can be computed. The argument is
based on that of Hassard et al. [17] and will not be given but the references
Gilsinn [11] and Hassard et al. [17] can be consulted by the interested reader.
What is important here is a formula that can be used in specific examples.

Step 8: Form the Periodic Solution on the Center Manifold

To begin with let ε > 0 and an initial condition for a periodic solution of (154)
be given as

v(0; ε) = ε. (156)

Then, there exists a family of periodic solutions v(s, μ(ε)) of (194) with
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μ(ε) = μ2ε
2 + · · · ,

β(ε) = β2ε
2 + · · · , (157)

T(ε) = T0(1 + τ2ε
2 + · · ·),

where T(ε) is the period of v(s, μ(ε)), β(ε) is the nonzero characteristic ex-
ponent, and

μ2 = −Re {c21}
α′(0)

,

β2 = 2Re {c21(0)} ,
τ2 = − 1

ω
(μ2ω

′(0) + Im {c21}) , (158)

T0 =
2π
ω
.

Furthermore, v(s, μ(ε)) can be transformed into a family of periodic solutions
for (1) given by

z(s) = P(s, μ(ε)) = 2εRe
{
φ(0)eiωs

}
+ ε2Re

{
Me2iωs +N

}
. (159)

with ε = (μ/μ2)1/2. For μ2 > 0 the Hopf bifurcation is called supercritical
and for μ2 < 0 it is called subcritical. Finally, note that since μ ≈ μ2ε

2 one
can take ε = (μ/μ2)1/2 which allows one to associate Z(s) with the parameter
p = μ + pc. From Floquet theory if β(ε) < 0 the periodic solution is stable
and if β(ε) > 0 it is unstable.

7 A Machine Tool DDE Example: Part 2

In this section we will show how the formulas in the previous section are com-
puted for the specific example of the turning center model. We will conclude
this section with a formula approximating the periodic solution of (96)

Step 6: Compute the Center Manifold Form

With the eigenvectors computed we can proceed to approximate the center
manifold and the projected equations on the center manifold. We begin by
assuming that an approximate center manifold, satisfying (149), can be given
as a quadratic form in y and y with coefficients as functions of θ

w(y, y)(θ) = w20(θ)
y2

2
+w11(θ)yy +w02(θ)

y2

2
. (160)

The object of this section is to compute the constants c1, c2, c3, c4, and the
vectors M, N in (153) in order to create the coefficients for (160).

Using (70) we can introduce coordinates on the center manifold by
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z = w + φy + φy. (161)

From (83), (84), (148), and (161) we have on the center manifold

dy

ds
= iωy + φ

∗T
(0)f(w(y, y) + φy + φy). (162)

Define
g(y, y) = φ

∗T
(0)f(w(y, y) + φy + φy), (163)

where φ
∗T

(0) =
(
d1, d2

)
from (142) and

f(w(y, y) + φy + φy) =

⎛
⎜⎜⎜⎜⎜⎝

0
pc

(
E
[
w(y, y)1(−σ) + yφ1(−σ) + yφ1(σ)

−w(y, y)1(0) − yφ1(0) − yφ1(0)
]2

+E
[
w(y, y)1(−σ) + yφ1(−σ) + yφ1(σ)

−w(y, y)1(0) − yφ1(0) − yφ1(0)
]3)

⎞
⎟⎟⎟⎟⎟⎠ .

(164)
From (160)

w(y, y)(0) = w20(0)
y2

2
+w11(0)yy + w02(0)

y2

2
,

w(y, y)(−σ) = w20(−σ)
y2

2
+ w11(−σ)yy +w02(−σ)

y2

2
, (165)

where wij(θ) =
(
w1
ij(θ), w

2
ij(θ)

)T .
Note here that in order to compute μ2, τ2, β2 one need only determine

g(y, y) in the form (152). To find the coefficients for (152) begin by expanding
the nonlinear terms of (164) up to cubic order, keeping only the cubic term
y2y. To help simplify the notation let

γ = e−iωσ − 1. (166)

Then, using (58), (165), and (166),

E
[
w(y, y)1(−σ) + yφ1(−σ) + yφ1(σ) − w(y, y)1(0) − yφ1(0) − yφ1(0)

]2
= Ey2γ2 + 2Eyyγγ
+Ey2γ2 +E

{[
w1

20(−σ) −w1
20(0)

]
γ + 2

[
w1

11(−σ) −w1
11(0)

]
γ
}
y2y, (167)

E
[
w(y, y)1(−σ) + yφ1(−σ) + yφ1(σ) − w(y, y)1(0) − yφ1(0) − yφ1(0)

]3
= 3Eγ2γy2y.

If we define

g20 = 2Eγ2d2pc,

g11 = 2Eγγd2pc, (168)
g02 = 2Eγ2d2pc,
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and

g21 = 2pc
{
E
[
w1

20(−σ) −w1
20(0)

]
γ + 2E

[
w1

11(−σ) −w1
11(0)

]
γ + 3Eγ2γ

}
d2,

(169)
we can use (163) through (169) to write

f(w(y, y) + φy + φy) =
{
g20y

2

2d2

+
g11yy

d2

+
g02y

2

2d2

+
g21y

2y

2d2

}(
0
1

)
. (170)

In order to complete the computation of g21 one needs to compute the center
manifold coefficients w20, w11.

Since we are looking for the center manifold as a quadratic form, we need
only expand functions in terms of y2, yy, y2. From the definition of F2 in
(85), (152), and (163) write F2 as

F2(y, y)(θ) = −{
g20φ(θ) + g02φ(θ)

} y2

2
− {

g11φ(θ) + g11φ(θ)
}
yy (171)

− {
g02φ(θ) + g20φ(θ)

} y2

2
,

for −σ ≤ θ < 0 and for θ = 0

F2(y, y)(0) = −
{
g20φ(0) + g02φ(0) − g20

d2

(
0
1

)}
y2

2

−
{
g11φ(0) + g11φ(0) − g11

d2

(
0
1

)}
yy (172)

−
{
g02φ(0) + g20φ(0) − g02

d2

(
0
1

)}
y2

2
.

Note that, to compute the coefficients of the center manifold, one only needs
to work to the second order.

Since g02/d2 = g20/d2 write the coefficients of F2(y, y) as

F 2
20(θ) =

⎧⎨
⎩

− (
g20φ(θ) + g02φ(θ)

) −σ ≤ θ < 0,

−
(
g20φ(0) + g02φ(0) − g20

d2

(
0
1

))
θ = 0,

F 2
11(θ) =

⎧⎨
⎩

− (
g11φ(θ) + g11φ(θ)

) −σ ≤ θ < 0,

−
(
g11φ(0) + g11φ(0) − g11

d2

(
0
1

))
θ = 0,

(173)

F 2
02(θ) = F

2
20(θ).

One can now set up equation (149) to approximate the center manifold.
On this manifold one must have

W (s) = w(y(s), y(s)). (174)
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By taking derivatives, the equation for the manifold becomes

wy(y, y)y′(s) + wy(y, y)y′(s) = Aw(y(s), y(s)) + F2(y(s), y(s)), (175)

where w(y, y) is given by (160). The partial derivatives are given by

wy(y, y) = w20y + w11y,

wy(y, y) = w11y + w02y. (176)

Using (151) and (176) expand the terms of (175) to second order as

wy(y, y)(θ)y′(s) = iωw20(θ)y2(s) + iωw11(θ)y(s)y(s),
wy(y, y)(θ)y′(s) = −iωw11(θ)y(s)y(s) − iωw02(θ)y2(s),

Aw(y, y)(θ) = (Aw20)(θ)
y2

2
+ (Aw11)(θ)yy + (Aw02)(θ)

y2

2
, (177)

F2(y, y)(θ) = F 2
20(θ)

y2

2
+ F 2

11(θ)yy + F 2
20(θ)

y2

2
.

Substitute (177) into (175) and equate coefficients to get

2iωw20(θ) − Aw20 = F 2
20, (θ)

−Aw11 = F 2
11(θ), (178)

−2iωw02(θ) − Aw02 = F 2
02.(θ)

Since F 2
02 = F

2
20 and w02 = w20, one only needs to solve for w20 and w11.

To compute c3, c4, N , use the second equation in (178), the definition of
A in (40) and (173). Then for −σ ≤ θ < 0

dw11

dθ
(θ) = g11φ(θ) + g11φ(θ). (179)

Integrate (179) and use (58) to get

w11(θ) =
g11

iω
φ(θ) − g11

iω
φ(θ) +N. (180)

Clearly

c3 =
g11

iω
,

c4 = −g11

iω
. (181)

To determine N we will use (40) for θ = 0, μ = 0 and the fact that φ(0), φ(0)
are eigenvectors of A with eigenvalues iω, −iω at θ = 0. The eigenvector
property implies

Uφ(0) + V φ(−σ) = iωφ(0),
Uφ(0) + V φ(−σ) = −iωφ(0). (182)
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If we combine this with (173), then it is straightforward to show that

(U + V)N = −g11

d2

(
0
1

)
, (183)

which can be solved for

N = −g11

d2

(−1
0

)
. (184)

To solve for c1, c2, M , use the definition of A in (40) for −σ ≤ θ < 0,
(173), (178) to get

dw20

dθ
= 2iωw20(θ) + g20φ(θ) + g02φ(θ). (185)

This nonhomogeneous system has the solution

w20(θ) = −g20

iω
φ(θ) − g02

3iω
φ(θ) +Me2iωθ. (186)

Again, clearly

c1 = −g20

iω
,

c2 = − g02

3iω
. (187)

To solve for M use the definition of (40) for θ = 0, μ = 0, (173) and again the
fact that φ(0), φ(0) are eigenvectors of A with eigenvalues iω, −iω at θ = 0
to show that (

2iωI − U − Ve−2iωσ
)
M =

g20

d2

(
0
1

)
, (188)

which can be solved for M as

M =
g20

d2Δ

(
1

2iω

)
, (189)

where
Δ = −4ω2 + 4iξω + pc

(
1 − e2iωσ

)
. (190)

One can now return to (169) and use (180) through (184) and (186)
through (190) to construct g21 in (191), which concludes the construction
of (152) and thus the projected equation (151) on the center manifold. Then
the projected equation (148) on the center manifold takes the form (151) and
(152). The coefficients gij for (152) are given by

g20 = 2Eγ2d2pc,

g11 = 2Eγγd2pc,

g02 = 2Eγ2d2pc, (191)

g21 = 2pc

{
E

[
−g20γ

iω
− g02

3iω
+
g20

(
e−2iωσ − 1

)
d2Δ

]
γ

+2E
[
g11γ

iω
− g11γ

iω

]
γ + 3Eγ2γ

}
d2,
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where

γ = e−iωσ − 1,
Δ = −4ω2 + 4iξω + pc

(
1 − e2iωσ

)
. (192)

Step 7: Develop the Normal Form on the Center Manifold

Once the constants (191) have been developed then the normal form on the
center manifold is computed as (154) using (193). Normal form theory, follow-
ing the argument of Wiggins [34] (see also Nayfeh [25]), can be used to reduce
(151) to the simpler form (154) on the center manifold. In fact, the system
(151) can be reduced by a near identity transformation to (154) where

c21 =
i

2ω

{
g11g20 − 2|g11|2 − |g02|2

3

}
+
g21

2
. (193)

The proof of the result is detailed and the reader is referred to Gilsinn [11]
and Wiggins [34]. As shown in Hassard et al. [17] the general normal form for
the case μ �= 0 is given by

dv

ds
= λ(μ)v + c21(μ)v2, v (194)

where λ(0) = iω and c21(0) is given by (193).
One can now compute g20, g11, g02, and g21 from (191). Then from (193)

one computes c21 and finally, from (158), one can compute μ2, τ2, β2 as

μ2 = −0.09244,
τ2 = 0.002330, (195)
β2 = 0.08466.

This implies that at the lobe boundary the DDE bifurcates into a family of
unstable periodic solutions in a subcritical manner.

Step 8: Form the Periodic Solution on the Center Manifold

Using (159), one can compute the form of the bifurcating solutions for (96) as

z(s) =

⎛
⎜⎜⎝

2ε cos 1.01341s+ ε2 ((−2.5968e− 6) cos 2.02682s
−0.014632 sin2.02682s+ 0.060113)

−2ε sin 1.01341s+ ε2 (−0.02966 cos2.02682s
+(5.2632e− 6) sin 2.02682s)

⎞
⎟⎟⎠ . (196)

As noted at the end of Section 6 one can take as an approximation

ε =
(
μ

μ2

)1/2

. (197)
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It is clear from (195) that μ must be negative. Thus select

ε =
(−μ)1/2

0.3040395
. (198)

The period of the solution can be computed as

T(ε) =
2π
ωm

(
1 + τ2ε

2
)

= 6.2000421
(
1 + 0.002330 ε2

)
, (199)

and the characteristic exponent is given by

β = 0.08466 ε2. (200)

8 Simulation Results

To compare with the theorectical results, simulations were performed by di-
rect integration of (96). The first of two sets of simulations was initialized
at the points A through F in Figure 5 along the vertical line Ω = 0.2144
(selected for ease of calculation only). This line crosses the minimum of the
first lobe in Figure 5. The simulations numerically demonstrate that there
are three branches of periodic solutions emanating from the critical bifurca-
tion point pm = 0.027365. The three branches are shown in Figure 6. The
amplitudes in this figure were computed using (196) with ε given by (197).
Two of the branches are unstable and one is stable in the following sense.
Solutions initialized below the subcritical branch converge to the zero solu-
tion. Those initialized above the subcritical branch grow in amplitude. The
solutions initialized above zero for bifurcation parameter values greater than
the critical value grow in amplitude. Similar results would be obtained along
lines crossing at other critical points on the lobes.

The Hopf bifurcation result is very local around the boundary and only for
very small initial amplitudes is it possible to track the unstable limit cycles
along the branching amplitude curve. This is shown in Figure 7 where initial
simulation locations were selected along the subcritical curve and the delay
differential equation was integrated forward over five delay intervals. Note
that nearer the critical bifurcation point the solution amplitude remains near
the initial value, whereas further along the curve the solution amplitude drops
away significantly from the subcritical curve.

Since the subcritical bifurcation curve in Figure 6 is itself an approximation
to the true subcritical curve, solutions initialized on the curve tend to decay
to zero. This occurs at points A, B, and C in Figure 5.

The decay at point B, when initialized on the subcritical curve is similar
to the result at point A, but with a less rapid decay. However, one can show
the effect of initializing a solution above the curve at point B. That is shown
in Figure 9. Point B is given by (Ω, p) = (0.2144, 0.020365). For p = 0.020365
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Fig. 5. Locations of Sample Simulated Solutions

Fig. 6. Amplitudes of Bifurcating Branches of Solutions at Subcritical Point

the subcritical curve amplitude value is 0.550363. Figures 11 and 12 show the
solution growing when the simulation amplitude is initialized at 0.8.

At point C, when the solution is initialized on the subcritical bifurcation
curve, the phase plot remains very close to a periodic orbit, indicating that
the Hopf results are very local in being able to predict the unstable periodic
solution.

The behavior at points D, E, and F of Figure 5 are similar in that all of
the solutions initialized above zero experience growth and eventually explode
numerically.

The second set of simulations, initialized at points G through M along the
line Ω = 0.15, in Figure 5, shows the stability of solutions for parameters
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Fig. 7. Theoretical and Simulated Subcritical Solution Amplitudes

Fig. 8. Stable Amplitude of Solution at Point A

falling between lobes in that the solutions of the delay differential equation
(92) all decay to zero. The gaps between lobes are significant for machining.
Since the parameter p is proportional to chip width, the larger the p value for
which the system is stable the more material can be removed without chatter,
where chatter can destroy the surface finish of the workpiece. These large
gaps tend to appear between the lobes in high-speed machining with spindle
rotation rates of the order of 2094.4 rad/s (20,000 RPM) or greater. Figure 12
illustrates this stability with one time plot for point M, (Ω, p) = (0.15, 0.08).
The solution for this plot is initialized at amplitude 0.08.
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Fig. 9. Unstable Amplitude of Solution at Point B

Fig. 10. Nearly Stable Amplitude of Solution at Point C
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