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An Application of the Residue Calculus:
The Distribution of the Sum of Nonhomogeneous Gamma Variates

Charles HAGWOOD

The calculus of residues is one of the many beautiful tools

that comes out of the field of complex variables. The calculus

of residues is applied, together with the inversion formula for

characteristic functions, to compute the non-gamma probability

density function for the sum of gamma variates with different

shape parameters. The distribution of the sum of gamma

variates is needed in problems in statistical inference, as well

as stochastic processes. This derivation seems more elegant

than previous methods for deriving the density function of such

a sum. Furthermore, the numerical computation is straightfor-

ward, especially in any symbolic computer language.

KEY WORDS: Calculus of residues; Convolution of gamma

variates; Gamma distribution; Quadratic form of normals.

1. INTRODUCTION

A random variable with a gamma (λ, r) distribution has prob-
ability density function

f (x) = λr

�(r)
xr−1e−λx x > 0, (1)

where r is called the shape parameter and λ is called

the scale parameter. Let Y1, . . . , Yn be independent

gamma random variables with shape and scale parameters,

(r1, λ1), (r2, λ2), . . . , (rn, λn), respectively, and let

Sn = Y1 + · · · + Yn .
It is assumed that each ri is a positive integer. Several important
statistics are distributed like Sn . For example, quadratic forms
in normal random variables, such as the− log�, where� is the
Wilk’s �. Robbins and Pitman (1949), Kabe (1962), Gupta and
Richards (1979), and others sought the distribution of Wilk’s

�, each using their special technique. A second application oc-
curs as the arrival process of a point process where the inter-

arrival times are nonhomogeneous gamma; Sim (1990, 1992)

studied such applications. Another application occurs in analy-

sis of baseball home run statistics under the Poisson sampling

model. The posterior home run rates will be nonhomogeneous

gamma and the average rate over career will be distributed like

Sn ; see Albert (1992). Also, Johnson, Kotz, and Balakrishnan
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(1994) devoted a section to the distribution of the convolution

of gamma distributions.

When λ1 = λ2 = · · · = λn = λ, the probability density
of Sn , fn(x), is gamma with shape parameter, r1 + · · · + rn
and scale parameter, λ. This is easily derived by considering the
characteristic function of Sn . The distribution of Sn when the
λi differ is not gamma and is more difficult to determine. Sev-
eral authors have derived ways to compute the distribution of

Sn using primarily brute-force integration. Coelho (1998) per-
formed the n-fold convolution integration, and Kabe (1962) per-
formed integration in the inversion formula. Sims (1992) gave

a formula which he claimed follows via induction. Also, see

the work by Waller, Turnbull, and Hardin (1995), Gil-Pelaez

(1951), and Imhof (1961).

Kabe’s formula is in terms of a generalized multiple hyper-

geometric function, Exon (1976), sometimes called a Lauicella

function

fn(x) =
[ n∏
i=1

λ
ri
i /(2

∑
ri�(
∑

ri )

]
e−r1x/2x

∑n
i=1 ri−1 (2)

×F (n−1)1

[
r1, . . . , rn ;

∑
ri ;

1

2
(λ1 − λ2)x,

1

2
(λ1 − λ3)x, . . . ,

1

2
(λ1 − λn)x

]
(3)

where the hypergeometric function, F (n−1)1 , is given by

∞∑
q2=0

· · ·
∞∑
qn=0

∏n
i=2(ri )qi

(
∑
ri )q2+···+qn

( 1
2
(λ1 − λ2)x)q2

q2!

· · · (
1
2
(λ1 − λn)x)qn

qn!
. (4)

Unfortunately, the multiple hypergeometric is not included as a

built-in function in most software. The expression Sim (1992)

gave involves an infinite series expansion

fn(x) = 1

�(an)

( n∏
i=1

λ
ri
i

)
xan−1

× exp(−λnx)
∞∑
r=0

bn(r)(an−1)r
(an)r r !

[(λn − λn−1)x]r , (5)

where

ak =r1 + · · · + rk

bi (r) =

⎧⎪⎨
⎪⎩
1 i = 2
r∑
j=0

bi−1( j)(ai−2) j (−r) j
(ai−1) j j!

c ji i = 3, . . . , n
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for r = 0, 1, 2, . . ., and
ci = (λi−2 − λi−1)/(λi − λi−1). (6)

The method used here involves the inversion formula, but the

integration is carried out using the calculus of residues, which

provides the power to carry out this integration in a simple man-

ner.

2. RESULTS

The characteristic function of the gamma(λ j , r j ) probability
density is

φ j (t) =
( λ j

λ j − i t
)r j −∞ < t <∞ (7)

and for r j ≥ 2, φ j (t) ∈ L1(−∞,∞). Therefore, its probability
density function can be recovered from its characteristic func-

tion via the inversion formula. By independence and a change

of variables

fn(x)= 1

2π

∫ ∞
−∞

e−i t x
n∏
j=1

φ j (t)dt

=
∏n
j=1 i−r jλ

r j
j

2π

∫ ∞
−∞

eitx
n∏
j=1
(t − iλ j )−r j dt x > 0 (8)

=
∏n
j=1 i−r jλ

r j
j

2π
In(x). (9)

The integrand as a function of t = z,

hn(z) = eizx
n∏
j=1
(z − iλ j )−r j (10)

is analytic in the upper half plane, except for poles at iλ j of
order r j , j = 1, . . . , n. Therefore, the residue calculus may be
applied to evaluate the integral in (8).

Here is a brief summary of the residue calculus. The Cauchy

Goursat Theorem states, for a simple closed curve γ and a func-
tion h(z) analytic within γ that is continuous on the boundary
of γ ∫

γ
h(z)dz = 0.

An extension states, if γ is a contour containing z1, z2, . . . , zn ,
as well as, disks centered at z1, z2, . . . , zn and h(z) is analytic
in the region between γ and the disks, then

∫
γ
h(z)dz =

n∑
j=1

∫
CR j

h(z)dz, (11)

where the CRj ’s are the boundaries of the disks, no matter if
h(z) is not analytic at the z j ’s.
Let γ be the contour which consists of the segment −R ≤

x ≤ R on the real axis connected to the semi-circle CR , in
the upper half plane, with center at the origin and of radius R.
Make R large enough so that disks centered at the poles z j =

iλ j , j = 1, . . . , n of hn(z) are enclosed by γ . By the extension
of the Cauchy–Goursat Theorem

∫
γ
hn(z)dz =

∫ R
−R
hn(t)dt+

∫
CR
hn(z)dz =

n∑
j=1

∫
CR j

hn(z)dz.

(12)

At each z j = iλ j , hn(z) has a Laurent expansion

hn(z)=
br j

(z − z j )r j +
br j−1

(z − z j )r j−1

+ · · · + b1
(z − z j )1 +

∞∑
k=0
an(z − z j )k, (13)

where

bm = 1

2π i

∫
CR j

hn(z)
(z − z j )−m+1 dz (14)

b1 = 1
2π i
∫
CR j

hn(z)dz is called the residue of hn(z) at z j , writ-
ten as Residue(z j ). Therefore, substituting in (12) gives

∫ R
−R
hn(t)dt +

∫
CR
hn(z)dz =

n∑
j=1
2π i Residue(z j ). (15)

Therefore evaluating the integral in (8) reduces to showing (i)

hn(z) is such that the integral over CR goes to zero as R goes to
infinity, and (ii) finding the residues. It has already been proved

that (i) holds; see Curtis (1978). Therefore, letting R → ∞ in

(15)

In(x) =
∫ ∞
−∞

hn(t)dt =
n∑
j=1
2π i Residue(z j ). (16)

The residue for the pole of order r j at z j is given by

D(r j−1)
[
eixz

n∏
k �= j

(z − iλk)−rk
]
/(r j − 1)!, (17)

where D(k) denotes the kth derivative operator, see Churchill
(1974). So,

In(x) =
n∑
j=1
2π i D(r j−1)

[
eixz

n∏
k �= j

(z− iλk)−rk
]
/(r j −1)! (18)

Most symbolic languages like Mathematica and Maple (see dis-

claimer) allow symbolic differentiation and can be used to com-

pute In(x) from (17), from which one can evaluate

fn(x) =
∏n
j=1 i−r jλ

r j
j

2π
In(x) (19)

without resorting to a recusive formula. Figure 1 plots the den-

sity of a nonhomogeneous gamma, using both the recursive

method of Sim and by using symbolic features of Mathemat-

ica (see disclaimer) to compute In(x).
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Figure 1. Plots of the nonhomogeneous gamma density with shape �λ = {0.1, 0.2, 0.3, 0.4} and scale �r = 1, 2, 3, 4. The infinite series in Sim’s formula was

truncated at 100.

A closed form formula does exist for the derivative of a prod-

uct of functions

D(r j−1)
[
eixz

n∏
k �= j

(z − iλk)−rk
]

=
∑

m1,m2,··· ,mn

(r j − 1)!
m1!m2! · · ·mn!D

m j eixz
n∏
k �= j

Dmk (z − iλk)−rk ,

(20)

where the derivatives are evaluated at z = iλ j and the multino-
mial expansion is used in (20)( m1+· · ·+mn = r j − 1). These
derivatives are given by

Dp(eixz)= (i x)peixz (21)

Dp(z − iλk)−rk = (−rk)p(z − iλk)−rk−p. (22)

Disclaimer: The National Institute of Standards and Technol-

ogy does not endorse any commerical software product men-

tioned in this article.

[Received March 2008. Revised June 2008.]
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