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Abstract. We consider the security of Damg̊ard-Merkle variants which
compute linear-XOR or additive checksums over message blocks, inter-
mediate hash values, or both, and process these checksums in computing
the final hash value. We show that these Damg̊ard-Merkle variants gain
almost no security against generic attacks such as the long-message sec-
ond preimage attacks of [10,21] and the herding attack of [9].

1 Introduction

The Damg̊ard-Merkle construction [3, 14] (DM construction in the rest
of this article) provides a blueprint for building a cryptographic hash
function, given a fixed-length input compression function; this blueprint
is followed for nearly all widely-used hash functions. However, the past
few years have seen two kinds of surprising results on hash functions, that
have led to a flurry of research:

1. Generic attacks apply to the DM construction directly, and make
few or no assumptions about the compression function. These attacks
involve attacking a t-bit hash function with more than 2t/2 work, in
order to violate some property other than collision resistance. Exam-
ples of generic attacks are Joux multicollision [8], long-message second
preimage attacks [10,21] and herding attack [9].

2. Cryptanalytic attacks apply to the compression function of the hash
function. However, turning an attack on the compression function
into an attack on the whole hash function requires properties of the
DM construction. Examples of cryptanalytic attacks that involve the
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construction as well as the compression function include multi-block
collisions on MD5, SHA-0 and SHA-1 [24–26].

These results have stimulated interest in new constructions for hash
functions, that prevent the generic attacks, provide some additional pro-
tection against cryptanalytic attacks or both. The recent call for submis-
sions for a new hash function standard by NIST [18] has further stimu-
lated interest in alternatives to DM.

In this paper, we consider a family of variants of DM, in which a
linear-XOR checksum or additive checksum is computed over the message
blocks, intermediate states of the hash function, or both, and is then
included in the computation of the final hash value. In a linear-XOR
checksum, each checksum bit is the result of XORing together some subset
of the bits of the message, intermediate hash states, or both. In an additive
checksum, the full checksum is the result of adding together some or all of
the message blocks, intermediate hash values, or both, modulo some N .
In both cases, the final checksum value is processed as a final, additional
block in computing the hash value.

Such DM variants can be seen as a special case of a cascade hash.
Generic attacks such as the long-message second preimage attack or the
herding attack appear at first to be blocked by the existence of this check-
sum. (For example, see [6] for the analysis of 3C and MAELSTROM-0
against second preimage and herding attacks.)

Unfortunately, these DM variants turn out to provide very little pro-
tection against such generic attacks. We develop techniques, based on the
multicollision result of Joux [8], which allow us to carry out the generic
attacks described above, despite the existence of the checksum. More
generally, our techniques permit the construction of a checksum control
sequence, or CCS, which can be used to control the value of the checksum
without altering the rest of the hash computation.

To summarize our results:

1. The generic multicollision, second preimage and herding attacks on
DM hash functions can be applied to linear-XOR/additive checksum
variants of DM at very little additional cost, using our techniques.

2. Our techniques are flexible enough to be used in many other situa-
tions. Some cryptanalytic attacks on the compression function of a
hash, which the linear-XOR/additive checksum appears to stop from
becoming attacks on the full hash function, can be carried out on the
full hash function at a relatively little additional cost using our tech-
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niques. Future generic attacks will almost certainly be able to use our
techniques to control checksums at very low cost

1.1 Related Work

In unpublished work, Mironov and Narayan [15] developed a different
technique to defeat linear-XOR checksums in hash functions; this tech-
nique is less flexible than ours, and does not work for long-message second
preimage attacks. However, it is quite powerful, and can be combined with
our technique in attacking hash functions with complicated checksums.
In [8], Joux provides a technique for finding 2k collisions for a DM hash
function for only about k times as much work as is required for a single
collision, and uses this technique to attack cascade hashes. The linear-
XOR and additive checksum variants of DM we consider in this paper
can be seen as a special (weak) case of a cascade hash.

Multi-block collisions are an example of a cryptanalytic attack on a
compression function, which must deal with the surrounding hash con-
struction. Lucks [13] and Tuma and Joscak [22] have independently found
that if there is a multi-block collision for a hash function with structured
differences, concatenation of such a collision will produce a collision on
3C, a specific hash construction which computes checksum using XOR
operation as the mixing function. (3C does not prevent Joux multicolli-
sion attack over 1-block messages [6, 20].)

Nandi and Stinson [17] have shown the applicability of multicollision
attacks to a variant of DM in which each message block is processed
multiple times; Hoch and Shamir [7] extended the results of [17] showing
that generalized sequential hash functions with any fixed repetition of
message blocks do not resist multicollision attacks. The MD2 hash func-
tion which uses a non-linear checksum was shown to not satisfy preimage
and collision resistance properties [11, 16]. Coppersmith [2] has shown a
collision attack on a DES based hash function which uses two supple-
mentary checksum blocks computed using XOR and modular addition of
the message blocks. Dunkelman and Preneel [4] applied herding attack
of [9] to cascade hashes; their technique can be seen as an upper bound
on the difficulty of herding DM variants with checksums no longer than
the hash outputs.

1.2 Impact

The main impact of our result is that new hash function constructions
that incorporate linear-XOR/additive checksums as a defense against
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generic attacks do not provide much additional security. Designers who
wish to thwart these attacks need to look elsewhere for defenses. We can
apply our techniques to specific hash functions and hashing constructions
that have been proposed in the literature or are in practical use. They
include 3C, GOST, MAELSTROM-0 and F-Hash. Both our techniques
and the generic attacks which they make possible require the ability to
(at least) find many collisions for the underlying compression function
of the hash, and so probably represent only an academic threat on most
hash functions at present.

1.3 Guide to the Paper

This paper is organised as follows: First, we provide the descriptions of
hash functions with linear checksums analysed in this paper. Next, we
demonstrate new cryptanlytical techniques to defeat linear-XOR/additive
checksums in these designs. We then provide a generic algorithm to carry
out second preimage and herding attacks on these designs with an illus-
tration on 3C. We then demonstrate multi-block collision attacks on these
designs. We then compare our cryptanalysis with that of [15]. Finally, we
conclude the paper with some open problems.

2 The DM construction and DM with linear checksums

2.1 The DM Construction

The DM iterative structure [3,14] shown in Figure 1 has been a popular
framework used in the design of standard hash functions MD5, SHA-1,
SHA-224/256 and SHA-384/512.

M1 M2 M3 ML−1

H1 H2 H3 HL−1

ML

H(M) = Hv
ffff fH0

Fig. 1. The Damg̊ard-Merkle construction

The message M , with |M | ≤ 2l − 1 bits, to be processed using a DM
hash function H is always padded by appending it with a 1 bit followed by
0 bits until the padded message is l bits short of a full block of b bits. The
last l bits are filled in with the binary encoded representation of the length
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of true message M . This compound message is an integer multiple of b bits
and is represented with b-bit data blocks as M = M1,M2, . . . ML. Each
block Mi is processed using a fixed-length input compression function f
as given by Hi = f(Hi−1,Mi) where Hi from i = 1 to L − 1 are the
intermediate states and H0 is the fixed initial state of H. The final state
Hv = f(HL−1,ML) is the hash value of M .

2.2 Linear-XOR/additive checksum variants of DM

A number of variant constructions have been proposed, that augment
the DM construction by computing some kind of linear-XOR/additive
checksum on the message bits and/or intermediate states, and providing
the linear-XOR/additive checksum as a final block for the hash function
as shown in Figure 2.

CHECKSUM

M1 M2 ML−1

ffff f

ML

H0 Hv

Fig. 2. Hash function structure with a linear-XOR/additive checksum

3C hash function and its variants The 3C construction maintains
twice the size of the hash value for its intermediate states using iterative
and accumulation chains as shown in Figure 3. In its iterative chain, a
compression function f with a block size b is iterated in the DM mode.
In its accumulation chain, the checksum Z is computed by XORing all
the intermediate states each of size t bits. The construction assumes that
b > t. At any iteration i, the checksum value is

⊕i
j=1 Hj. The hash value

Hv is computed by processing Z padded with 0 bits to make the final
data block Z using the last compression function.

A 3-chain variant of 3C called 3CM is used as a chaining scheme
in the MAELSTROM-0 hash function [5]. At every iteration of f in the
iterative chain of 3CM, the t-bit value in the third chain is updated
using an LFSR. This result is then XORed with the data in the iterative
chain at that iteration. All the intermediate states in the iterative chain of
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M1 M2 ML−1

ffff f

ML

H0

0 Z
Z

Hv

Fig. 3. The 3C-hash function

3CM are XORed in the second chain. Finally, the hash value is obtained
by concatenating the data in the second and third chains and processing
it using the last f function. F-Hash [12], another variant of 3C, computes
the hash value by XORing part of the output of the compression function
at every iteration and then processes it as a checksum block using the
last compression function.

GOST hash function GOST is a 256-bit hash function specified in
the Russian standard GOST R 34.11 [19]. The compression function f of
GOST is iterated in the DM mode and a mod 2256 additive checksum is
computed by adding all the 256-bit message blocks in an accumulation
chain. We generalise our analysis of GOST by assuming that its f function
has a block length of b bits and hash value of t bits.

ffff fff

M1 M2 M3 ML−2 ML−1

H0

ML

Hv

Z

Fig. 4. GOST hash function

An arbitrary length message M to be processed using GOST is split
into b-bit blocks M1, . . . ,ML−1. If the last block ML−1 is incomplete, it
is padded by prepending it with 0 bits to make it a b-bit block. The
binary encoded representation of the length of the true message M is
processed in a separate block ML as shown in Figure 4. At any iteration
i, the intermediate state in the iterative and accumulation chains is Hi =
f(Hi−1,Mi) where 1 ≤ i ≤ L and M1 + M2 . . . + Mi mod 2b where
1 ≤ i ≤ L − 1. The hash value of M is Hv = f(Z,HL) where Z =
M1 + M2 . . . + ML−1 mod 2b.
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3 New techniques to defeat linear-XOR checksums

3.1 Extending Joux multicollisions on DM to multiple blocks

Let C(s, n) be a collision finding algorithm on the compression function,
where s denotes the state at which the collision attack is applied and n,
the number of message blocks present in each of the colliding messages.
On a t-bit hash function, a brute force C(s, n) requires about 2t/2 hash
function computations to find a collision with 0.5 probability whereas a
cryptanalytic C(s, n) requires less work than that. The Joux multicollision
attack [8] finds a sequence of k collisions on a t-bit DM hash, to produce
a 2k collision with work only k times the work of a single collision search.
For a brute-force collision search, this requires k× 2t/2 evaluations of the
compression function. While it is natural to think of constructing such a
multicollision from a sequence of single-message-block collisions, it is no
more expensive to use the brute-force collision search to find a sequence
of multi-message-block collisions.

3.2 Checksum control sequences

We define checksum control sequence (CCS) as a data structure which
lets us to control the checksum value of the DM variant, without altering
the rest of the hash computation. We construct the CCS by building a
Joux multicollision of the correct size using a brute-force collision search.
It is important to note that the CCS is not itself a single string which
is hashed; instead, it is a data structure which permits us to construct
one of a very large number of possible strings, each of which has some
effect on the checksum, but leaves the remainder of the hash computation
unchanged. That is, the choice of a piece of the message from the CCS
affects the checksum chain, but not the iterative chain, of the DM variant
hash.

For example, a 2k collision on the underlying DM construction of 3C,
in which the sequence of individual collisions is each two message blocks
long, is shown in Figure 3. This multicollision gives us a choice of 2k

different sequences of message blocks that might appear at the beginning
of this message. When we want a particular k-bit checksum value, we can
turn the problem of finding which choices to make from the CCS into
the problem of solving a system of k linear equations in k unknowns,
which can be done very efficiently using existing tools such as Gaussian
elimination [1, Appendix A], [23]. This is shown in Figure 5 for k = 2
where we compute the CCS by finding a 22 collision using random 2-block
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messages. Then we have a choice to choose either H0
1 ⊕ H2 or H1

1 ⊕ H2

from the first 2-block collision and either H0
3 ⊕ H4 or H1

3 ⊕ H4 from the
second 2-block collision of the CCS to control 2 bits of the checksum
without changing the hash value after the CCS.

Checksum

Message blocks where generic attack happens: 
controls 2 bits of xor!linear checksum

Checksum control sequence
second preimage, herding

(M1, N1) (M2, N2) (M3, N3) (M4, N4) M5 M6 M7

(H0
1 , H1

1 ) H2 (H0
3 , H1

3 ) H4 H5

f fffffff

H6 H7
H0

0

Fig. 5. Using CCS to control 2 bits of the checksum

3.3 Defeating linear-XOR checksum in hash functions

ALGORITHM: Defeat linear-XOR checksum on 3C
Variables:

1. (e0
i ,e1

i ) : a pair of independent choices of random values after every
2-block collision in the 2t 2-block collision on 3C for i = 1, 2, . . . , t.

2. a = a[1], a[2], . . . , a[t] : any t-bit string.
3. D = D[1],D[2], . . . ,D[t] : the desired t-bit checksum to be imposed.
4. i, j : temporary variables.

Steps:

1. Build a CCS for 3C by constructing a 2t 2-block collision on its un-
derlying DM using a brute force C(s, 2).

2. Each of the parts of the CCS gives one choice e0
i or e1

i for i = 1, 2, . . . , t
to determine some random t-bit value that either is or is not XORed
into the final checksum value at the end of the CCS. Now e0

i = H0
2i−1⊕

H0
2i and e1

i = H1
2i−1 ⊕ H1

2i for i = 1, 2, . . . , t.
3. For any t-bit string a = a[1], a[2], . . . , a[t], let ea = ea[1]

1 , . . . , ea[t]
t .

4. Find a such that ea[1]
1 ⊕ea[2]

2 ⊕. . .⊕. . . ea[t]
t = D. We solve the equation:⊕t

i=1 e1
i × a[i] ⊕ e0

i × (1 − a[i]) = D.
5. Each bit position of ea[i]

i gives one equation and turn the above into t
equations, one for each bit. Let a[i] = 1 − a[i].
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6. The resulting system is:
⊕t

i=1 e1
i [j] × a[i] ⊕ e0

i [j] × a[i] = D[j] (j =
1, . . . , t). Here, there are t linear equations in t unknowns that need
to be solved for the solution a[1], a[2], . . . , a[t] which lets us determine
the blocks in the CCS that form the prefix giving the checksum D.

Work: It requires t(2t/2 + 1) evaluations of the compression function
to construct the CCS and at most t3 + t2 bit-XOR operations to solve a
system of t×t equations using Gaussian elimination [1, Appendix A], [23].

Remark 1. Similarly, linear-XOR checksums can be defeated in F-Hash
and 3CM. If a linear-XOR checksum is computed using both the mes-
sage blocks and intermediate states, linear equations due to XOR of the
intermediate states and that of message blocks need to be solved.

4 New techniques to defeat additive checksums

Consider an additive checksum mod 2k computed using messages for a
DM hash function. It is possible to build a checksum control sequence
as above, but both its construction and its use require some different
techniques.

4.1 Building a CCS with Control of Message Blocks

When the collision finding algorithm is simply brute-force collision search,
we can build a CCS for the work required to construct a 2k Joux multi-
collision. Using the CCS to control the checksum then requires negligible
work.

In this algorithm, we construct a 2k Joux multicollision, in which
each successive collision is two message blocks long. We choose the two-
block messages in the collisions in such a way that the additive difference
between the pair of two-block messages in each collision is a different
power of two. The result is a CCS in which the first collision allows us
the power to add 1 to the checksum, the next allows us to add 2, the next
4, and so on until the checksum is entirely controlled1.
ALGORITHM: Defeat additive checksum on GOST
Steps for Constructing the CCS:

1. Let h = the initial value of the hash function
2. For i = 0 to k − 1:
1 A variant of this algorithm could be applied to many other checksums based on

group operations.
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(a) Let A,B be random blocks.
(b) For j = 0 to 2t/2 − 1:

i. X[j] = A + j,B − j
ii. X∗[j] = A + j + 2i, B − j
iii. Y [j] = hash of X[j] starting from h
iv. Y ∗[j] = hash of X∗[j] starting from h

3. Search for a collision between list Y and Y ∗. Let u, v = values satis-
fying Y [u] = Y ∗[v].

4. CCS[i] = X[u],X∗[u]
5. h = Y [u]

Steps for Using the CCS:
Using the CCS is very simple; we determine the checksum we would

get by choosing X[0],X[1],X[2], ..., and then determine what we would
need to add to that value to get the desired checksum value. We then use
our control over the CCS to add the desired value.

1. Let T = the checksum that is desired.
2. Let Q = the checksum obtained by choosing X[0],X[1],X[2], ...,X[k−

1] as the message blocks of the CCS.
3. Let D = T − Q.
4. M = an empty message (which will end up with the message blocks

chosen from the CCS for this desired checksum).
5. For i = k − 1 down to 0:

(a) If D > 2i Then:
i. M = M ||X∗[i]
ii. D = D − 2i

(b) Else:
i. M = M ||X[i]

At the end of this process, M contains a sequence of k message blocks
which, when put in the place of the CCS, will force the checksum to the
desired value.
Work: Constructing the CCS requires k successive brute-force collision
searches, each requiring 2t/2 work. For the specific parameters of the
GOST hash, this is 256 successive 2129 collision searches, and so requires
about 2137 work total. (The same CCS could be used for many different
messages.) Controlling the checksum with the CCS requires negligible
work.
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4.2 Building a CCS with Random Message Blocks

If the message blocks are not under our control, or if hash chaining values
or other values not under our direct control are used as inputs for the
additive checksum, then our attack becomes much less efficient. However,
we can still construct a CCS which will be efficient to use, by carrying out
an algorithm which is based loosely on Joux’s collision attack on cascade
hashes.

The idea behind this algorithm is to construct k successive Joux mul-
ticollisions, each of 2k/2 possible message strings. Then, we carry out a
collision search on the first 2k/2-multicollision for a pair of strings that
will cause a difference of 1 in the additive checksum, a search on the sec-
ond 2k/2-multicollision for a pair that will cause a difference of 2, and so
on, until we have the ability to completely control the checksum without
affecting the rest of the hash computation.

An algorithm to defeat additive checksum on a t-bit GOST hash func-
tion structure H shown in Figure 4 is given below:
ALGORITHM: Defeating checksum in GOST
Variables:

1. i, j, k : integers.
2. chunk[i] : a pair of (b/2) + 1-block sequences denoted by (e0

i , e1
i ).

3. H0 : initial state.
4. H i

j : the intermediate state on the iterative chain.
5. (M i

j , N
i
j) : a pair of message blocks each of b bits.

6. T : Table with three columns: a (b/2) + 1-collision path, addition
modulo 2b of message blocks in that path and a value of 0 or 1.

Steps:

1. For i = 1 to b:
– For j = 1 to (b/2) + 1:

• Find M i
j and N i

j such that f(H i
j−1,M

i
j) = f(H i

j−1, N
i
j) = H i

j

where H1
0 = H0. That is, build a (b/2) + 1-block multicolli-

sion where each block yields a collision on the iterative chain
and there are 2(b/2)+1 different (b/2) + 1-block sequences of
blocks all hashing to the same intermediate state H i

(b/2)+1 on
the iterative chain.

– Find a pair of paths from the different (b/2) + 1-block sequences
whose additive checksum differs by 2i−1 as follows:
• T = empty table.
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• for j = 1 to 2(b/2)+1

∗ Ci
j ≡

∑(b/2)+1
k=1 Xi

k mod 2b where Xi
k can be M i

k or N i
k.

∗ Add to T : (Ci
j, 0, Xi

1||Xi
2|| . . . Xi

(b/2)+1)
∗ Add to T : (Ci

j + 2i−1, 1, Xi
1||Xi

2|| . . . Xi
(b/2)+1).

• Search T to find colliding paths between the entries with 0
and 1 in the second column of T . Let these paths of (b/2) + 1
sequence of blocks be e1

i and e0
i where e1

i ≡ e0
i + 2i−1 mod 2b.

– chunk[i] = (e0
i , e

1
i ).

2. Construct CCS by concatenating individual chunks each containing a
pair of (b/2) + 1 blocks that hash to the same intermediate state on
the iterative chain. The CCS is chunk[1] || chunk[2] . . . || chunk[b].

3. The checksum at the end of the 2b (b/2) + 1-block collision can be
forced to the desired checksum by choosing either of the sequences e0

i
or e1

i from the CCS which is practically free to use and adding blocks
in each sequence over modulo 2b.

Work: Defeating additive checksum in GOST equals the work to con-
struct b 2(b/2)+1 1-block collisions plus the work to find a chunk in each
2(b/2)+1 1-block collision. It is b × ((b/2) + 1) × 2t/2 evaluations of f and
a time and space of b × 2b/2+1 for a collision search to find b chunks. For
GOST, it is 2143 evaluations of f and a time and space of about 2137.

Similarly, additive checksum mod 2k for a DM hash using intermedi-
ate states can be defeated by constructing a CCS with a 2k Joux multi-
collision over 2-block messages. For a DM hash with additive checksum
mod 2k computed using both the message blocks and intermediate states,
a 2(k/2)+1 Joux multicollision using 2-block messages is performed to find
a pair of messages (resp. intermediate states) within the multicollision
whose additive checksum differs by any desired value. This can be done
by generating all possible 2(k/2)+1 checksum values due to messages (resp.
intermediate states) from the multicollision, and doing a modified collision
search for a pair of messages (resp. intermediate states) whose additive
difference is the desired value.

5 Generic attacks

The fundamental approach used to perform the generic attacks on all the
hash functions with linear checksums is similar. Hence, we discuss it here
only for 3C. Broadly, it consists of the following steps:

1. Construct a CCS and combine it with whatever other structures such
as expandable message, diamond structure (or vice versa for some
attacks) for the generic attack to work.
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2. Perform the generic attack, ignoring its impact on the linear checksum.
3. Use the CCS to control the linear checksum, forcing it to a value that

permits the generic attack to work on the full hash function.

To find a 2k-2-block collision on 3C, first find a 2k-2-block collision on
the iterative chain of 3C and construct CCS from this end. By defeating
each possible 2k checksum value to a fixed checksum, we can get a 2k-
collision for 3C. Constructing and using the CCS does not imply random
gibberish in the messages produced; using Yuval’s trick [27], a brute-force
search for the multicollision used in the CCS can produce collision pairs
in which each possible message is a plausible-looking one. This is possible
when the CCSs to defeat the checksums are constructed from individual
collisions as in (Dear Fred/Freddie,)(Enclosed please find/I have sent you)
(a check for $100.00/a little something) and so on, where we can choose
either side of the slash for the next part of the sentence. In that case,
any choice for the CCS used to defeat the checksum will be a meaningful
message.

5.1 Long-message second preimage attack on 3C

Long message second preimage attack on a t-bit 3C hash function H:
ALGORITHM: LongMessageAttack(Mtarget) on H
Find the second preimage for a message of 2d + d + 2t + 1 blocks.
Variables:

1. Mtarget : the target long message.
2. Mlink : linking block connecting the intermediate state at the end of

the expandable message to an intermediate state of the target message.
3. Hexp : the intermediate state at the end of the expandable message.
4. Ht : the intermediate hash value at the end of the CCS.
5. Msec : the second preimage for H of the same length as Mtarget.
6. Mpref : the checksum control prefix obtained from the CCS.

Steps:

1. Compute the intermediate hash values for Mtarget using H:
– H0 and h0 are the initial states of the iterative and accumulation

chains respectively.
– Mi is the ith message block of Mtarget.
– Hi = f(Hi−1,Mi) and hi = Hi ⊕ hi−1 are the ith intermediate

states on the iterative and accumulation chains respectively.
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– The intermediate states on the iterative and accumulation chains
are organised in some searchable structure for the attack, such as
hash table. The hash values H1, . . . ,Hd and those obtained in the
processing of t 2-block messages are excluded from the hash table.

2. Build a CCS for H by constructing a 2t 2-block collision starting from
H0. Let Ht be the multicollision value and ht be the corresponding
checksum value which is random.

3. Construct a (d, d + 2d − 1)-expandable message Mexp with Ht as the
starting state using either of the expandable message construction
methods [10]. Append Mexp to the CCS and process it to obtain Hexp.

4. Find Mlink such that f(Hexp,Mlink) collides with one of the inter-
mediate states on the iterative chain stored in the hash table while
processing Mtarget. Let this matching value of the target message be
Hu and the corresponding state in the accumulation chain be hu where
d + 2t + 1 ≤ u ≤ 2d + d + 2t + 1.

5. Use the CCS built in step 2 to find the checksum control prefix Mpref

which adjusts the state in the accumulation chain at that point to
the desired value hu of Mtarget. This is equivalent to adjusting the
checksum value at the end of the CCS.

6. Expand the expandable message to a message M∗ of u−1 blocks long.
7. Return the second preimage Msec = Mpref ||M∗||Mlink||Mu+1 . . .

M2d+d+1+2t of the same length as Mtarget such that H(Msec) = H(Mtarget).

Work: The work to find a second preimage on 3C equals the work to
construct the CCS plus the work to solve a system of t × t linear equa-
tions plus the work to do the second preimage attack on DM. Note that
constructing and using the CCS is very fast compared to the rest of the
attack.
Illustration: Using generic-expandable message algorithm [10], the work
to find a second preimage for 3C-SHA-256 for a target message of 254 +
54+512+1 blocks is 2136 +54×2129 +2203 SHA-256 compression function
evaluations and 224+216 bit-XOR operations assuming abundant memory.

5.2 Herding attack on 3C

The herding attack on a t-bit 3C hash function H is outlined below:

1. Construct a 2d hash value wide diamond structure for H and output
the hash value Hv as the chosen target which is computed using any
of the possible 2d−1 checksum values or some value chosen arbitrarily.
Let hc be that checksum value.
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2. Build a CCS for H using a 2t collision over 2-block messages. Let Ht

be the intermediate state due to this multicollision on H.
3. When challenged with the prefix message P , process P using Ht. Let

H(Ht, P ) = Hp.
4. Find a linking message block Mlink such that H(Hp,Mlink) collides

with one of the 2d outermost intermediate states on the iterative chain
in the diamond structure. If it is matched against all of the 2d+1−2 in-
termediate states in the diamond structure then a (1, d+1)-expandable
message must be produced at the end of the diamond structure to en-
sure that the final herded message is always a fixed length.

5. Use the CCS computed in step 2 to force the checksum of the herded
message P to hc. Let Mpref be the checksum control prefix.

6. Finally, output the message M = Mpref ||P ||Mlink||Md where Md are
the message blocks in the diamond structure that connect H(Hp,Mlink)
to the chosen target Hv. Now Hv = H(M).

Work: The work to herd 3C equals the work to build the CCS plus the
work to solve the system of equations plus the work to herd DM [9].
This equals about t × 2t/2 + 2t/2+d/2+2 + d × 2t/2+1 + 2t−d−1 evaluations
of f and t3 + t2 bit-XOR operations assuming that all of the 2d+1 − 2
intermediate states are used for searching in the diamond structure. Note
that the work to build and use the CCS is negligible compared to the rest
of the attack.
Illustration: Herding 3C-SHA-256 with d = 84 requires 2136 + 2172 +
84×2129+2171 evaluations of SHA-256 compression function and 224+216

bit-XOR operations.

6 On carrying out generic attacks using collision attacks

We note that it is difficult to construct the CCSs using cryptanalytic
C(s, n) such as the ones built on MD5 and SHA-1 [25,26] in order to defeat
linear checksums to carry out generic attacks. For example, consider two
2-block colliding messages of format (M2.i−1,M2.i),(N2.i−1, N2.i) for i =
1, . . . , t on the underlying MD of 3C based on near collisions due to the
first blocks in each pair of the messages. Usually, the XOR differences
of the nearly collided intermediate states are either fixed or very tightly
constrained as in the collision attacks on MD5 and SHA-1 [25, 26]. It is
difficult to construct a CCS due to the inability to control these fixed
or constrained bits. Similarly, it is also difficult to build the CCSs using
colliding blocks of format (M2.i−1,M2.i),(N2.i−1,M2.i). It is not possible to
control the checksum due to 2-block collisions of the format (M2.i−1,M2.i),
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(M2.i−1, N2.i) [24] as this format produces a zero XOR difference in the
checksum after every 2-block collision.

Though we cannot perform generic attacks on this class of hash func-
tions using structured collisions, we can find multi-block collisions by
concatenating two structured collisions. Consider a collision finding al-
gorithm C(s, 1) with s = H0 for the GOST hash function H. A call
to C(s, 1) results in a pair of b-bit message blocks (M1, N1) such that
M1 ≡ N1 + ∆ mod 2b and f(H0,M1) = f(H0, N1) = H1. Now call
C(s, 1) with s = H1 which results in a pair of blocks (M2, N2) such
that N2 ≡ M2 + ∆ mod 2b and f(H1,M2) = f(H1, N2) = H2. That is,
H(H0,M1||M2) = H(H0, N1||N2). Consider M1 +M2 mod 2b = ∆+N1 +
N2−∆ mod 2b = N1+N2 mod 2b, a collision in the chain which computes
additive checksum.

7 Comparison of our techniques with that of [15]

Independent to our work, Mironov and Narayanan [15] have found an al-
ternative technique to defeat linear-XOR checksum computed using mes-
sage blocks. We call this design GOST-x. While our approach to defeat
the XOR checksum in GOST-x requires finding a 2b collision using b ran-
dom 1-block messages (Mi, Ni) for i = 1 to b, their technique considers
repetition of the same message block twice for a collision. In contrast to
the methods presented in this paper for solving system of linear equations
for the whole message, their approach solves the system of linear equa-
tions once after processing every few message blocks. We note that this
constrained choice of messages would result in a zero checksum at the
end of the 2b multicollision on this structure and thwarts the attempts to
perform the second preimage attack on GOST-x. The reason is that the
attacker loses the ability to control the checksum after finding the linking
message block from the end of the expandable message which matches
some intermediate state obtained in the long target message.

However, we note that their technique with a twist can be used to per-
form the herding attack on GOST-x. In this variant, the attacker chooses
the messages for the diamond structure that all have the same effect on
the linear-XOR checksum. These messages would result in a zero check-
sum at every level in the diamond structure. Once the attacker is forced
with a prefix, processing the prefix gives a zero checksum to start with and
then solving a system of equations will find a set of possible linking mes-
sages that will all combine with the prefix to give a zero checksum value.
When the approach of [15] is applied to defeat checksums in 3C, 3CM
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and F-Hash, the 2t 2-block collision finding algorithm used to construct
the CCS must output the same pair of message blocks on the either side
of the collision whenever it is called. This constraint is not there in our
technique, and the approach of [15] is not quite as powerful. However,
it could be quite capable of defeating linear-XOR checksums in many
generic attacks. Because it is so different from our technique, some vari-
ant of this technique might be useful in cryptanalytic attacks for which
our techniques do not work.

8 Concluding remarks

Our research leaves a number of questions open. Among these, the most
interesting is, how much security can be added by adding a checksum
to DM hashes? Our work provides a lower bound; for linear-XOR and
additive checksums, very little security is added. Joux’s results on cascade
hashes [8] and more recent results of [4] provide an upper bound, since a
checksum of this kind can be seen as a kind of cascade hash.

The other open question is on the properties that would ensure that
a checksum would thwart generic attacks, and thus be no weaker than a
cascade hash with a strong second hash function. The inability to con-
struct a CCS for the checksum with less work than the generic attack
is necessary but apparently not sufficient to achieve this goal, since we
cannot rule out the possibility of other attacks on checksums of this kind,
even without a CCS. The final open question is on how our techniques
might be combined with cryptanalytic attacks on compression functions.
It appears to be possible to combine the construction and use of a CCS
with some kinds of cryptanalytic attacks, but this depends on fine details
of the cryptanalysis and the checksum used.
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