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A detailed first principles analysis of the transport properties of different magnetic electrode
materials for MgO tunnel junctions is performed to elucidate the microscopic origin of the TMR
effect. The spin-dependent transport properties of the magnetic materials are analyzed separately
from the particular interface geometry with the tunneling barrier. We use the bulk properties of
the barrier to identify the important tunneling states. For MgO these are ∆1-like states. From the
analysis of this effective spin polarization we can predict the potential of certain magnetic materials
to create a high TMR ratio in a tunnel junction.This polarization is as high as 98 % and 86 % for Fe
and Co, respectively for only a few monolayers, but very small and negative, -7 %, for amorphous Fe.
This explains the finding that for crystalline Co and Fe one monolayer next to the MgO barrier is
sufficient to reach TMR ratios higher than 500 % independent of whether the crystalline monolayer
is coupled to a non-magnetic or to an amorphous lead. However, in direct contact with MgO
amorphous Fe reduces the TMR ratio drastically to 44 %.

PACS numbers: 73.63.-b,72.15.Cz,71.23.-k,85.30.Mn

The effect of tunneling magnetoresistance (TMR) has
been a focus of research since its rediscovery by Mood-
era et al.1 and Miyazaki et al.2 in 1995. Julliere3, who
analyzed this effect in 1975, observed that the tunneling
current through a layered system consisting of two fer-
romagnetic electrodes separated by an insulating barrier
depends on the relative orientation of the magnetization
of the ferromagnetic layers to each other. Different cur-
rents are measured for parallel (P) and for antiparallel
(AP) alignment of the lead magnetizations. To quantify
this effect different TMR ratios are defined in the litera-
ture. The most common one is the optimistic TMR ratio
given by

RAP −RP

RP
=

gP − gAP

gAP
, (1)

where gP (RP ) and gAP (RAP ) are the conductances (re-
sistances) in the parallel and antiparallel configuration.
Typical applications exploiting the TMR effect are hard
disk read heads4,5 and magnetic random access memo-
ries (MRAM).6,7 Three properties of a tunnel junction
are important for industrial usage. First, a high TMR
ratio is necessary. Second, the tunnel junction has to
have a practicable signal to noise ratio and third, the
device design has to allow for a large-scale production
at low costs. In the last decade the TMR ratio of tun-
nel junctions with crystalline MgO barriers was increased
remarkably and reached values above 300 %8–11 at room
temperature. In contrast, the values for systems with
amorphous aluminum oxide (Al2O3) barriers are still less
than 100 %.12,13 In theoretical investigations of systems
with crystalline MgO barriers TMR ratios beyond 1000 %
were predicted.14,15 The discrepancy between experimen-
tal and theoretical results could be explained in terms of
structural imperfections in the experimental systems in

contrast to the ideal systems of the theoretical investi-
gations. Further structural analysis9,16,17 of tunnel junc-
tions showed that even with partial structural disorder
in the magnetic layers consisting of CoFeB, a TMR ra-
tio of 230 %16 is realizable. In addition, a crystalline
magnetic CoFe layer forms between the MgO barrier and
the otherwise amorphous electrode under the influence
of annealing.9 Recent ab initio calculations used semi-
infinite ideal leads but do not consider partial struc-
tural disorder and finite thickness of the ferromagnetic
electrode layers.14,15,18–23 Only disorder at the Fe/MgO
interface18,23 or in the MgO barrier24 was analyzed. The
aim of this article is to present a detailed discussion of
the microscopic origin of tunneling under the influence of
structural disorder and finite thickness of the ferromag-
netic electrodes. In the present paper we expand on our
earlier analysis25 and consider additional lead materials.

In this work three important experimental results con-
cerning the structure of a tunnel junction are taken into
account as sketched in Fig. 1. First, the tunnel junction
is embedded between semi-infinite non-magnetic reser-
voirs to account for the finite thicknesses of the magnetic
layers. Second, we include a layer with structural disor-
der represented by amorphous iron (a-Fe). Third, there
is a crystalline magnetic layer of finite thickness next to
the barrier represented by a finite number of Fe or Co
monolayers in a bcc structure.

The paper is organized as follows. After a short intro-
duction of our theoretical methods, the following sections
are separated in two parts. The first part (Sec. II) cov-
ers the results of the amorphous iron. In particular, the
atomic structure simulation, the electronic and magnetic
structure calculation, and the analysis of the transport
properties of amorphous iron is discussed in this part.

The second part of the article includes all sections con-
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FIG. 1: Schematic structure of the investigated tunnel junc-
tions

cerning the TMR effect. In Sec. III we review the basic
principles of the microscopic origin of the TMR effect.
We extend this part by the introduction of special spin
polarizations of the current (P∆1 and Peff) to discuss the
potential of different magnetic materials to lead to high
TMR ratios in a tunnel junction with crystalline MgO
in the following section. In addition we present results
of conductance calculations of different magnetic mate-
rials embedded between non-magnetic reservoirs to an-
alyze the different current polarizations. As magnetic
materials we consider crystalline iron (bcc-Fe), cystalline
cobalt in a iron structure (bcc-Co) and amorphous iron
(a-Fe). In section V we compare these results to our ab
initio calculations of tunnel junctions using these mag-
netic materials.

I. METHODS

The theoretical method used for the electronic struc-
ture calculation is a screened Kohn-Korringa-Rostoker
(KKR) Green’s function method.26,27 It is based on den-
sity functional theory (DFT) in the local spin density ap-
proximation (LSDA). The magnetic moments are forced
to be collinear. For the conductance calculations the
Baranger-Stone formalism28 in the KKR Green’s func-
tion expression29 was used. This formalism is equivalent
to the Landauer approach30 and the conductance is ex-
pressed in the zero bias limit as

g = g0

∑
σ

Tσ = g0

∑
σ

∫
d2k‖T σ(k‖),

gP (AP ) = g↑↑(↑↓) + g↓↓(↓↑), (2)

where Tσ is the spin-dependent transmission probability,
g0 = e2/h denotes the universal conductance quantum,
and σ is the spin index. The in-plane wave vector k‖ is
used because of the translational invariance parallel to
the interface. The integration has to be performed over
the surface Brillouin zone. The transmission, which is
energy dependent in general, has to be taken at the com-
mon Fermi level. The spin-dependent conductance in the
parallel magnetic configuration of the tunnel junction is
labeled by g↑↑ and g↓↓ for the majority and minority
spin channel, respectively. For the antiparallel config-
uration the conductances are labeled g↑↓ and g↓↑. For
the conductance calculations the structure was embed-
ded between non-magnetic semi-infinite leads to account

for the open boundary conditions. This is done by the
decimation technique implemented in the KKR code.31,32

II. AMORPHOUS IRON

In this section we present the results of the structural
simulation and the corresponding electronic properties
of amorphous Fe (a-Fe). In addition, we show that a-
Fe is an ohmic conductor on the analyzed lengthscale.
There have been a number of experimental investigations
of amorphous Fe.33–40 Since the structure is not stable as
bulk phase it was investigated as a thin film34,35, or sta-
bilized by Co and B impurities33,40, or as a substitutional
alloy with B.39 Therefore, the experimental results dif-
fer strongly. For example, the average magnetic moment
ranges between 1.0 µB and 1.5 µB . ab initio electronic
structure calculations of a-Fe are rare41–45 since typical
ab initio methods are well suited for crystalline systems
but not for the description of amorphous materials. A
possible way to treat amorphous systems is the supercell
method. The numerical expense of this procedure is high
and restricts the size of the supercells.

To describe the atomic short range order of a-Fe the
pair correlation function

G(r) =
1
N

N(r)
4πr2∆r

(3)

is used34,35,40, where N is the average particle density,
and N(r) the number of atoms in the spherical shell be-
tween r and r + ∆r, if one atom is situated in the center
of the sphere. For comparison we use the experimen-
tally obtained pair correlation function from the analysis
of a thin film34 with a density similar to the crystalline
system (7.9 g cm−3). The calculated pair correlation
function of large periodic systems containing 16 to 108
atoms per unit cell was fitted to the experimental one by
a Monte-Carlo algorithm. Fig. 2 shows G(r) of a super-
cell of 16, 27, and 108 atoms in comparison to the ex-
perimental result given by Ichikawa.34 We conclude that
a supercell with 16 atoms is well suited to describe the
structural properties of the amorphous system up to the
third-nearest neighbor shell in agreement with other the-
oretical investigations.41 Therefore, we use this supercell
in our electronic structure calculations.

Fig. 3 compares the calculated density of states (DOS)
of the supercell with 16 atoms with the DOS of crys-
talline bulk Fe. The main features of the DOS of bulk Fe
are broadened because of the structural disorder and the
weights at the Fermi level are changed. These results are
in very good agreement with the calculations of Turek et
al.42 who used a larger supercell with 64 atoms. The con-
ductance is determined by the states at the Fermi level
and it can be concluded from the DOS that the transport
properties of a-Fe will be different from that of crystalline
Fe.

The average magnetic moment of a-Fe is 1.7 µB which
is in fairly good agreement with the experimental results
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FIG. 2: Calculated pair correlation function G(r) for super-
cells with 16, 27, and 108 atoms in comparison with an ex-
perimental one34
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FIG. 3: Calculated spin-dependent DOS for amorphous Fe
(a-Fe) simulated by a supercell with 16 atoms in comparison
with bcc-bulk Fe

and the calculations by Turek et al.42 who found 1.3
µB . In Fig. 4 the distribution of the local magnetic mo-
ments is presented. The collinear magnetic ground state
is characterized by moments around 2 µB and only a few
negative magnetic moments which agrees with the re-
sults of Turek et al.42 and is comparable to non-collinear
calculations.41,43,44 Although the averaged magnetic mo-
ments in collinear and non-collinear configurations are
quite similar41,43,44 the transport properties can differ
significantly46 and have to be investigated separately.
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FIG. 4: Histogram of the local magnetic moments of amor-
phous Fe (a-Fe) within a supercell of 16 atoms

For the calculations of the electronic transport through
amorphous Fe, the potential of an amorphous layer with
5 aFe thickness was calculated self-consistently in a su-
percell where aFe=2.87 Å is the lattice constant of crys-
talline Fe. First of all, the conductance through this cell
embedded between semi-infinite crystalline Fe electrodes
was computed. The insertion of the amorphous layer de-
creases the conductance of pure crystalline Fe. Fig. 5
shows the conductance map T (k‖) of both spin channels
for the crystalline Fe in comparison to the system with
one and seven amorphous layers. The Brillouin zone (BZ)
in this representation is determined by the in-plane di-
mension of the supercell (2 aFe × 2 aFe). The existence of
an in-plane BZ is an artifact of the supercell description
and does not exist for a real amorphous system. Never-
theless, the analysis of this artificial BZ reveals the un-
derlying physics. The arguments of Sec. V will be even
stronger for a real amorphous system which has a van-
ishing BZ. The structural disorder of the supercell leads
to a broadening of the well defined integer transmission
values of the crystalline system given by the number of
Bloch states at a certain k‖-point. For the amorphous
structure the contributions are non-integer values which
is expected since the matching is disturbed with respect
to the crystalline system by structural disorder.

In a next step we calculate the thickness dependence of
the resistance given by the inverse conductance (R=1/g).
No thickness dependence exists for a pure crystalline sys-
tem without interfaces since the number of Bloch states
is conserved and only the Sharvin resistance (R0) is
obtained.30 Structural disorder should, however, cause
a thickness dependence of the resistance. To reduce the
numerical effort n cells of the self consistent potential of
the amorphous supercell were embedded between semi-
infinite crystalline Fe electrodes. The results presented
in Fig. 6 show that the resistance area product for both
spin channels increases nearly linear with increasing num-
ber of amorphous layers on this length scale. The same
behavior is obtained for the total resistance area prod-
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FIG. 5: Spin-dependent conductance maps T σ(k‖) of crys-
talline Fe (a), with one (b), and seven (c) layers of amorphous
iron embedded between crystalline Fe

uct. Fitting a linear function to the calculated values
the resistivity ρ is given by 0.6 µΩ m, which is in good
agreement with experimental values of 1 µΩ m.35–37

The conclusion of this section is that a small supercell
of 16 atoms is large enough to describe the main proper-
ties of amorphous Fe. Within this length scale this ma-
terial represents an ohmic conductor with a calculated
resistivity comparable to experimental results. The con-
tributions Tσ(k‖) in the conductance map are broadened
with respect to crystalline Fe by structural disorder. In
the following we will use this material to introduce struc-
tural disorder in magnetic tunnel junctions.

III. BASIC PRINCIPLES

In this section we review the current understanding of
the TMR effect. For this purpose we summarize briefly
two different approaches to describe the TMR effect.
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FIG. 6: Thickness dependence of the resistance area product
(RA) of amorphous Fe embedded between semi-infinite bcc-
Fe electrodes (thickness of one amorphous cell l0 = 5 aFe, R0

the Sharvin resistance30, and ρ the resistivity)

The first approach is the Julliere model3 which is only
valid in the diffusive limit of transport. In this model the
spin polarization (P = n↑−n↓

n↑+n↓
) of the density of tunneling

states in the electrodes is used to estimate the TMR ratio,
where n↑ and n↓ are usually approximated by the density
of states at the Fermi level for majority and minority
electrons, respectively. Using Eq. (1) the TMR ratio is
given by

2P 2

1− P 2
(4)

assuming identical leads. Typical spin polarizations of
tunneling currents for ferromagnetic materials through
an Al203 barrier into a superconducting electrode are lim-
ited to values of 44 %47,48 which causes a TMR ratio of
less than 50 %. This is the case for tunnel junctions with
amorphous barriers. However, the MgO barrier can be
grown epitaxially and in this case the spin polarizations
of Fe only can not be used. The important states for
the tunneling current through crystalline MgO have to
be selected. Parkin et al. have performed measurements
for the polarizations of tunneling currents through crys-
talline MgO into a superconducting electrode and have
found polarizations as high as 74 % and 85 % for Fe
and CoFe as the magnetic electrode, respectively.17 From
these values a quiet high TMR ratio up to 520 % is de-
rived within the Julliere model.

In contrast, theoretical predictions for systems
with crystalline MgO barriers are even higher than
1000 %.14,15 For the explanation of such high values co-
herent tunneling through the MgO barrier has to be con-
sidered. As Butler et al.15 and Heiliger et al.49 dis-
cussed the complex band structure of MgO leads to a
symmetry selection of the barrier. Only ∆1-like states
(states with ∆1 symmetry at the Γ̄ point) around the
center of the BZ can tunnel effectively through the bar-
rier while states with other symmetry character experi-
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ence a stronger damping by the MgO. A high TMR effect
is expected if the electrodes transform the symmetry se-
lection of the barrier via their exchange splitting into
a spin-filtering effect. The ideal case would be to have
∆1-like states around the center of the BZ for one spin
channel only. Therefore, it is illustrative to analyze the
k‖-resolved transmission probability Tσ(k‖) through the
magnetic materials for this property.

The details of the conductance maps Tσ(k‖) for a real
tunnel junction depend on the interface between the mag-
netic electrodes and the barrier. Even relatively small
changes of the interface structure can influence the cor-
responding tunneling states strongly.21

However, to prove the ability of a magnetic system to
serve as a lead material in combination with the MgO
barrier in a tunnel junction, an analysis that combines
the Julliere model with the symmetry selection of the
barrier is useful. This means first, to restrict the po-
larization in the Julliere model to the current-carrying
∆1-like states (P∆1) and second, to restrict the analysis
to states close to the center of the BZ (Peff). The latter
point takes into account that only states around the cen-
ter of the BZ contribute to the tunneling current through
a MgO barrier.

To estimate the size of the effective tunneling region
around the BZ center, one has to analyze the complex
band structure of MgO as done by Butler et al.15 and
Heiliger et al. .49 The transmission probability T (d) at
a thickness d is determined by the imaginary part of the
complex wave vector in the transport direction Im(k⊥).
The band with the smallest imaginary part is the ∆1-like
band. In combination with the well known expression

T (d) ∝ e−2Im(k⊥)d (5)

for the transmission probability through a tunneling bar-
rier the area contributing to the tunneling current can be
estimated.

Fig. 7 shows the k‖ dependence of the transmission
probability through 6 monolayers of MgO for the ∆1-like
band. The black ring indicates the region were 94 % of
the transmission occurs and has the radius of 0.1 2π

aFe
. The

effective polarization Peff is calculated in this region.
Both polarizations P∆1 and Peff can be used to esti-

mate the TMR ratio in the Julliere model and the best
magnetic material can be selected. This analysis may be
applied to any crystalline barrier material provided that
the important tunneling states are known.

IV. TRANSPORT PROPERTIES OF POSSIBLE
ELECTRODE MATERIALS

In the following we apply the analysis described in
the last section to estimate the ability of three differ-
ent magnetic materials to create a high TMR ratio in
FM/MgO/FM tunnel junctions. One is crystalline bcc
iron (bcc-Fe) which will be compared with amorphous

FIG. 7: Transmission probability for 6 monolayers of MgO
calculated from the ∆1-like band of the complex band struc-
ture of MgO via Eq. (5); the black circle marks the region
with

∣∣k‖
∣∣ < 0.1 2π

aFe
where 94 % of the transmission takes place
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FIG. 8: a) Density of states of bcc-Cu with the lattice con-
stant aFe of bcc-Fe b) band structure of bcc-Cu along ΓH
(current direction)

iron (a-Fe) and bcc cobalt (bcc-Co) with the lattice struc-
ture of bcc-Fe (aFe = 2.87 Å). To estimate the polariza-
tion of the ∆1-like states (P∆1) and to investigate the
influence of the finite thickness of the magnetic material
we attach an effective non-magnetic material to the mag-
netic electrodes. This material has to serve as an electron
reservoir with ∆1-like states. For simplicity bcc-Cu is
used with a lattice constant of bcc-Fe. The correspond-
ing DOS shown in Fig. 8 (a) indicates that the d-states
are occupied and the band structure in the current direc-
tion (see Fig. 8 (b)) shows a ∆1 state at the Fermi level.
Therefore, bcc-Cu is well suited to serve as a non - mag-
netic free electron like reservoir with ∆1-like states close
to the center of the BZ which causes optimal matching
to the ∆1-like states of the MgO barrier. Tunneling via
∆1-like states is also important with respect to future ap-
plications since it guarantees a reasonably low resistance
area product.

In addition to our previous article25 where we ana-
lyzed bcc-Fe and a-Fe we also embed bcc-Co between
bcc-Cu (see Fig. 9) to compare the transport properties.
The results for the conductance calculations depending
on the thickness of the magnetic layers are presented in
Fig. 10. The thickness of the magnetic layer is measured
in aFe/2 which is the monolayer spacing in crystalline Fe.
Both crystalline magnets show a similar decay of the con-
ductance with the thickness of the magnetic layer which
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FIG. 9: Junction geometry for the calculations of the trans-
port properties through different magnetic electrode materials

is different from that of amorphous Fe. While the con-
ductance density remains nearly constant for the major-
ity spin channel for bcc-Fe and bcc-Co the values for the
minority spin decrease drastically with increasing num-
ber of crystalline monolayers.

This results in a spin polarization of the currents P∆1

through bcc-Fe and bcc-Co as high as 70 % (see Table
I) with 4 magnetic monolayers only. The index ∆1 in-
dicates that the current carrying states are ∆1-like trig-
gered by the bcc-Cu reservoir. The value for P∆1 is in
good agreement with the experimentally found polariza-
tion Pexp(MgO)17 for the tunneling current from bcc-Fe
through MgO into a superconductor. In the amorphous
Fe system the conductance values in the majority and
the minority spin channel are comparable to each other
and lie in between the values of the spin channels for
the crystalline magnetic materials. The corresponding
polarization P∆1 is as small as 14 %.

The TMR ratios calculated from P∆1 by the Julliere
model (Eq. 4) are presented in Table I. For a-Fe the
TMR ratio is negligible but with bcc-Fe and bcc-Co the
TMR ratio reaches nearly 200 % with only 4 magnetic
monolayers. This estimated TMR ratio is higher than
the one obtained from the polarization based on the to-
tal DOS at the Fermi level47,48 (Pexp(Al2O3)), but is
still drastically smaller than the predicted ratios for bcc-
Fe14,15 and bcc-Co20 electrodes. The shortcoming of the
estimation is that all k‖ states in the BZ contribute with
equal weight since g is not in the tunneling regime. To
account for the decay of the tunneling currents with in-
creasing k‖ due to the complex band structure of the
MgO barrier, the estimation is further reduced to the
states close to the center of the BZ. In particular, we use
the effective polarization (Peff) introduced in Sec. III and
Fig. 7.

To illustrate these regions where Peff is calculated
Fig. 11 shows the transmission maps of the crystalline
junctions with 4 magnetic monolayers of bcc-Fe and
bcc-Co in comparison to bcc-Cu for the BZ of the size
(2π/aFe) × (2π/aFe) which corresponds to the bcc(001)
surface. The conductance map for bcc-Cu is identical in
both spin channels since Cu is non-magnetic. The results
for bcc-Fe and bcc-Co are similar to each other. The con-
tributions of the majority spin direction are comparable
to the values of bcc-Cu. In contrast, the contributions of
the minority spin direction are very small and indicate
especially around the center of the Brillouin zone, a low
transmission probability like in a tunneling regime. This
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FIG. 10: Conductance densities for the analyzed magnetic
materials embedded between semi-infinite bcc-Cu

is consistent with the band structure of bcc-Fe and bcc-
Co in a bulk structure as discussed by Zhang et al.20 and
Yuasa et al..10

For a quantitative analysis, the effective spin polariza-
tion Peff of the current is presented in Table I. With 4
monolayers, the calculated polarization is as high as 98 %
and 86 % for bcc-Fe and bcc-Co, respectively. Applying
Eq. (4) TMR ratios of 4850 % and 568 % are expected
already for thin magnetic layers of bcc-Fe and bcc-Co.
These ratios are significantly higher than the values based
on the spin polarization of all ∆1-like states (P∆1) and
are comparable to the ab initio calculated TMR ratios of
systems with semi-infinite magnetic electrodes.14,15,20

For a comparison of these results to a system with a-Fe
as magnetic electrode it is important to consider the dif-
ferent size of the BZ. As mentioned before the BZ of the
amorphous system has a size of (π/aFe)×(π/aFe) because
of the larger unit cell. In principle, the calculations for
the crystalline system can be performed with a unit cell
of larger size to enable comparison of the conductance
maps Tσ(k‖) in the reduced BZ of the amorphous sys-
tem. Fig. 12 (a) illustrates the down-folding of the larger
BZ (left) into the smaller one (π/aFe)×(π/aFe) where two
additional points of the BZ boundary are folded into the
BZ center. This procedure is mathematically correct but
information concerning the transmission, in particular,
the symmetry selection got lost. Obviously, one can no
longer distinguish between the states originally occurring
at the BZ center Γ and the ones down-folded from the
BZ boundary. But in a crystalline tunnel junction with a
MgO barrier only those states which are originally at the
Γ̄-point can match to the states with the lowest decay
rates of the MgO. For a-Fe (see Fig. 12 (b)) the symme-
try is reduced and all states at the BZ center can match
to the MgO states with the lowest decay rate.

As a result of the structural disorder the transmission
of all k‖ states is comparable for both spin directions.



7

FIG. 11: Transmission maps T σ(k‖) for different crystalline
magnetic electrode materials (thickness of the magnetic layer:
2 aFe):
(a) bcc-Cu/bcc-Cu
(b) bcc-Cu/bcc-Fe/bcc-Cu
(c) bcc-Cu/bcc-Co/bcc-Cu
Red circles indicate the region where the effective spin polar-
ization Peff is calculated.

The TMR ratio deduced from the effective spin polariza-
tion Peff is 1 %. The effective spin polarization of -7 % of
the lead material (see Table I) leads to a larger conduc-
tance for the minority spin channel in comparison with
the majority spin channel in the parallel configuration of
the real tunnel junction. (see Table I).

Our calculations predict that sub-nanometer bcc-Fe
and bcc-Co layers are efficient spin-filters for ∆1-like
states and promising candidates to yield a high TMR
ratio in contact with a MgO barrier. In the next section
we compare our predictions based on the spin polariza-
tions of currents through different magnetic materials to
our results of ab initio calculations of special tunnel junc-
tions.

FIG. 12: Comparison of the transmission maps of bcc-Fe and
a-Fe for the analysis as magnetic electrode materials (thick-
ness of the magnetic layer: 2 aFe):
(a) bcc-Cu/bcc-Fe/bcc-Cu
(b) bcc-Cu/a-Fe/bcc-Cu
White circles indicate the region where the effective spin po-
larization Peff is calculated (see Table I).

. . . . . . (1)

. . . . . . (2)

. . . . . . (3)

. . . . . . (4)

FIG. 13: model tunnel junctions:
(1) bcc-Cu/a-Fe/MgO/a-Fe/bcc-Cu
(2) bcc-Cu/a-Fe/bcc-Fe/MgO/bcc-Fe/a-Fe/bcc-Cu
(3) bcc-Cu/bcc-Fe/MgO/bcc-Fe/bcc-Cu
(4) bcc-Cu/bcc-Co/MgO/bcc-Co/bcc-Cu

V. TUNNEL JUNCTIONS WITH FINITE
FERROMAGNETIC LAYERS

In this section we investigate different tunnel junc-
tions to quantify the conclusions from the properties of
the electrode materials in the last section. This means
that now the role of the interface between magnetic layer
and barrier and the whole complex band structure of
the barrier is included in ab initio calculations. To take
the finite thickness of the magnetic layer into account,
the reservoirs are again semi-infinite bcc-Cu electrodes
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TABLE I: Transport properties of bcc-Fe, bcc-Co, and amorphous Fe with a thickness of 2 aFe embedded between semi-infinite
bcc-Cu, and corresponding TMR ratios. The following different polarizations are used to estimate the TMR ratio in the Julliere
model using Eq. (4).
Pexp (Al2O3): spin polarization of a ferromagnet (FM) measured in a (FM/amorphous Al2O3/superconductor) tunnel
junction47,48

Pexp (MgO): spin polarization of a ferromagnet (FM) measured in a (FM/MgO/superconductor) tunnel junction17

P∆1 : spin polarization of ∆1-like states (this article) by using a reservoir which provides only ∆1-like states
Peff: effective spin polarization of ∆1-like states in a region of the BZ with |k‖| < 0.1 2π

aFe
(marked with circles in Fig. 11) where

the main contribution to the total tunneling current is expected (see Fig. 7)
tunnel junctions (ab initio): ab initio calculation of the TMR ratio of the full tunnel junctions (see Sec. V). The geometries
used are (3) and (4) in Fig. 13 for bcc-Fe and bcc-Co with 4 monolayers. For the amorphous Fe the junction geometry (1) is
used without any crystalline magnetic layer

Julliere model tunnel junctions
ab initio

Pexp
47 TMR Pexp

17 TMR P∆1 TMR Peff TMR TMR
(Al2O3) ratio (MgO) ratio ratio ratio ratio

bcc-Fe 44 % 48 % 74 % 242 % 70 % 192 % 98 % 4850 % 8800 %
bcc-Co 34 % 26 % 68 % 172 % 86 % 568 % 900 %
a-Fe 14 % 4 % -7 % 1 % 44 %

as sketched in Fig. 13. The barrier consists of 6 mono-
layers MgO which acts as a symmetry filter for ∆1-like
states as mentioned above. The junction geometry (1) is
given by amorphous ferromagnetic layers with the thick-
ness of 2 aFe adjacent to the barrier. In a second step,
a finite number of bcc-Fe monolayers is inserted between
the barrier and the amorphous Fe denoted as junction
(2) in Fig. 13. The influence of the amorphous Fe in a
junction with relatively many bcc-Fe monolayers is dis-
cussed by omitting the amorphous layer getting the junc-
tion geometry (3). This junction will be compared to a
junction with bcc-Co instead of bcc-Fe sketched as (4).
The effective Kohn-Sham potentials of all structures are
calculated self-consistently.

As expected from the transport properties of amor-
phous Fe (see Table I ), the TMR effect is very small
with only amorphous iron as magnetic electrode mate-
rial. In the Julliere model we estimate about 1 %. In the
ab initio calculation we calculate a TMR ratio of 44 %.
The small TMR ratio is due to the very low spin polariza-
tion (P∆1=14 %) and the similar behavior for both spin
channels around the center of the BZ. Obviously, the self-
consistent treatment of the interface structure leads to a
higher TMR ratio but the lack of a high Peff drastically
restricts the achievable TMR ratio.

As discussed in our previous article25 it turned out that
inserting two monolayers of crystalline Fe between the
MgO (see Fig. 13 (2)) and the amorphous layers is suffi-
cient to recreate a TMR ratio as high as 2900 %, which is
comparable to the system with semi-infinite crystalline Fe
electrodes (see Fig. 14). In such a system the crystalline
Fe causes a high effective spin polarization Peff for the
∆1-like states close to the center of the BZ as discussed
in the previous section. There we estimate the TMR ratio
with 4 crystalline magnetic layers to be 4850 %. Now
we calculate 8800 % (see Table I) for the real tunnel

T
M

R
 (

%
)

number of crystalline monolayers
0 1 2 3 4 5 6

bcc-Co (4)

bcc-Fe (3)

a-Fe and bcc-Fe (2)

semi-infinite bcc-Fe

semi-infinite bcc-Co

1

10

100

1000

10000

FIG. 14: TMR ratio in dependence on the number of crys-
talline Fe layers next to the barrier for the model tunnel junc-
tions sketched in Fig. 13

junction which shows that the estimation works well.
The increase of the polarization from a-Fe to bcc-Fe

gives rise to these high TMR ratios. Therefore, the ques-
tion of the influence of a-Fe arises when there are a cou-
ple of bcc-Fe monolayers between the barrier and a-Fe.
For this purpose we compare in Fig. 14 the junctions
with and without an a-Fe layer. The influence of the
amorphous Fe is negligible if more than 2 crystalline Fe
monolayers are inserted.

For a system with bcc-Co electrodes structural disorder
is not considered and the results are similar to the case of
crystalline Fe. For both systems a high TMR ratio has
been found with magnetic electrodes of only one crys-
talline monolayer thickness and with 3 monolayers the
TMR ratio is comparable to the results of semi-infinite
electrodes. The stronger oscillations with the thickness of
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the ferromagnetic layer in the bcc-Co system result from
sharp resonance effects in the minority spin channel of
the parallel configuration.

In contrast to other theoretical results20 we found
lower values for the TMR ratio (2000 %) for semi-infinite
bcc-Co electrodes than in a system with bcc-Fe (6000 %).
The reason can be attributed to different structural data
of the interface. In the present paper the experimentally
obtained bcc-Fe/MgO/bcc-Fe structure50,51 was used for
both the bcc-Fe and the bcc-Co system. The explana-
tion for the high TMR ratio given by Zhang et al.20
is restricted to the Γ̄ point only. There the majority
spin channel of bcc-Co has only ∆1 symmetry and no
other states occur, whereas in bcc-Fe states with ∆5 and
∆2 symmetry exist. This leads for bcc-Co to a total re-
flection of all states in the antiparallel configuration at
the Γ̄ point. This behavior occurs also in the present
calculation where no contributions in both spin chan-
nels of the antiparallel configuration at the Γ̄ point exist.
But around the Γ̄ point non-negligible contributions have
been found, which leads to a finite, quite high TMR ratio.

VI. CONCLUSION

The results of this paper demonstrate that the magni-
tude of the TMR effect can strongly be manipulated by
structure and geometry of the ferromagnetic electrode.
We showed that a detailed analysis of the spin-dependent
transport properties of the magnetic layers considering

the symmetry selection properties of MgO is sufficient
to estimate the expected TMR ratio of a tunnel junc-
tion. If the symmetry selection of the barrier, following
from the complex band structure of the bulk material,
is known, a similar procedure can be used for other tun-
nel junctions with different crystalline barriers. We es-
timate the TMR ratio of a MgO based tunnel junction
by calculating the spin-dependent transport properties
through different magnetic layers (a-Fe, bcc-Fe, bcc-Co)
embedded between non-magnetic bcc-Cu reservoirs. In
particular, we analyze the spin filter effect of the mag-
netic layers by calculating an effective polarization. We
verify these estimations by ab initio calculations of the
complete tunnel junctions. It turned out that bcc-Co and
bcc-Fe as thin magnetic layers show similar behavior and
even 1 monolayer is sufficient to create a high TMR ra-
tio. The influence of an amorphous layer in addition to a
crystalline ferromagnetic layer is negligible. In contrast,
with an electrode of amorphous-Fe in direct contact with
MgO the TMR effect is suppressed.
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