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We present a summary of recent calculations of the electron inelastic
mean free paths (IMFPs) of 50-2000 eV electrons in 27 elements and 15
inorganic compounds. These calculations are based in part on experimental
optical data to represent the dependence of the inelastic scattering
probability on energy loss and the theoretical Lindhard dielectric function to
represent the dependence of the scattering probability on momentum transfer.
The calculated IMFPs for the elements were fitted to a modified form of the
Bethe equation for iInelastic electron scattering in matter and the four
parameters in this equation were empirically related to other material
parameters. The resulting formula, designated TPP-2, provides a convenient
means for predicting IMFPs in other materials., We have used two powerful
integral equations or sum rules to evaluate the optical data on which our IMFP
calculations are based. While the optical data fur the elements satisfied
these sum rules to an acceptable degree, there were significant deviations in

the data for the compounds. In addition, differences in IMFPs calculated from




the optical data for the compounds and the values predicted by TPP-2
correlated with the average errors of the optical data as determined by the
sum rules. IMFPs calculated from TPP-2 for these compounds are therefore
believed to be more reliable than IMFPs obtained from the imperfect optical
data.
1. 1Introduction

The surface sensitivity of electron spectroscopies such as Auger-
electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) depends
on the mean free paths for both inelastic and elastic scattering in the
material of interest. Experimental efforts to determine surface sensitivity
have generally involved measurements of a parameter termed the electron
attenuation length (AL) which is currently not well defined [1-4]. For those
few materials for which multiple AL measurements have been made in different
laboratories under similar conditions, there are discrepancies of up te about
a factor of two between the lowest and highest reported AL values at a given

electron enexrgy [5,6]. These discrepancies are believed to be mainly due to

the many scurces of systematic error in AL measurements [1l]. The likelihood
of substantial systematic errors has made it difficult to evaluate the extent
to which measured ALs depend on the experimental configuration, as has been
predicted from transport calculations [2-4,7,8]. It has also been similarly
difficult te determine with a high degree of confidence how ALs wvary with
chemical state or composition and with electron energy [1].

We present here soﬁe results of recent calculations of electron
inelastic mean free paths (IMFPs) of 50-2000 eV electrons in 27 elemental
solids and 15 inorganic compounds {6]. The calculations are based on an

algorithm due to Penn {9] in which experimental optical data for each material




are used to represent the dependence of the inelastic scattering probability
on energy loss and the theoretical Lindhard dielectric function [10] is used
to represent the dependence of the scattering probability on momentum
transfer. Details of these calculations have been reported elsewhere [6].
The IMFP results for the group of 27 elements have been fitted to a modified
form of the.Bethe equation for inelastic electron scattering in matter [11].
It was found that the four parameters in thils equation could be empirically
related to several material parameters (atomic weight, density, and number of
valence electrons per atom). The modified Bethe equation together with the
relations fof its parameters constitute an equation, to be referred to as
TPP-2, for predicting IMFPs in other materials,

We have compared IMFP values calculated for the group of 15 inorganic
compounds with those predicted by TPP-2 for each material [6]. For most of
these compounds, the IMFPs calculated with the Penn algorithm were larger than
the TPP-2 values. This systematic discrepancy was correlated with
inadequacies of the optical data on which the IMFP calculation is based. We
demonstrate here the value of two sum rules for evaluating sets of optical
data of the type we have utilized.

2. IMFP Results

The IMFP is calculated from a model dielectric function e{w,q) which 1is
a function of frequency w and momentum transfer q [9,12]. The cross section
for inelastic scattering involving energy loss fw and momentum transfer q is
proportional to Im{-1/¢(w,q)]. We make use of experimental optical data to
compute Im[-1/e(w,0)] for each material of interest, Since there is little
experimental data available concerning the g-dependence of ¢(w,q), we have

used the theoretical expression of Lindhard et al. [10] to give a physically




reasonable representation of e(w,q). The total inelastic scattering cross
section and thus the IMFP can then be found by a numerical integration over
the kinematically allowed ranges of energy loss and momentum transfer. -

IMFPs for the elements at energies between 50 énd 200 eV were calculated
from Eq. (14) of Ref. [12] which involves a triple integration over q, w, and
an electron density variable in the Lindhard expression. For energies above
200 eV, the IMFPs were calculated from Eq. (16) of Ref, [12] which requires
only a single integration over w [6]. For the compounds, Eq. (14) of Ref.
[12] was used for energies between 50 and 800 eV and Eq. (16) was used for
energies up to 2000 eV. All energies are expressed with respect to the Fermi
level.

The IMFPs were calculated for 27 elements and 15 inorganic compounds for
which experimental optical data were available over most of the photon energy
range 1-10,000 eV [6]}. For over half of the materials, there were gaps in the
data, often in the range 40-100 eV; in such cases, we made interpolations
based on atomic photoabsorption calculations [13]. The consistency of the
optical data was checked with two sum rules that are given below. Based on
this analysis, the root-mean-square (RMS) uncertainty of the optical data for
the elements was found to be about 10% while that for the compounds was
larger, as will be discussed below. There are additional uncertainties in the
calculated IMFPs associated with approximations in our algorithm [6]. These
uncertainties are difficult to estimate reliably but are expected to be larger
at lower energies (50-200 eV) than at higher energies. Nevertheless, since we
are using the same algorithm in a consistent way to calculate IMFPs in a large
number of materials, we believe that we can determine the IMFP variations from

material to material with higher accuracy than with individual IMFP values
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themselves. We can similarly determine the IMFP dependence on electron energy
with high precision.

Plots of IMFP versus energy are shown in Figs. 1-10 for Mg, Cu, Ru, Rh,
Ir, GaP, InP, LiF, NaCf and PbTe as examples of our results. IMFP data are
given elsewhere for C, Mg, Af, Si, Ti, V, Cr, Fe, Ni, Y, Zr, Nb, Mo, Pd, Ag,
HE, W, Re, Os, Pt, Au, Bi, Afp03, GaAs, InAs, InSb, KCZ, PbS, SiC, SigN,
810y, and ZnS [6, 14, 15].

The insets in Figs. 1-10 show IMFP values that were calculated from Eq.
(14) of Ref. 12 for electron energies between 10 and 40 eV; these values are
included to illustrate the IMFP trends for energies below the IMFP minimum but
these values should be regarded only as rough estimates [6]. The insets also
show the qualitative differences in the shapes of the IMFP-energy curves at
energies below 200 eV that was discussed earlier [14). For some of the
materials, such as Mg, GaP, NaC#, and PbTe, the IMFP decreases rapidly with
increasing energy to a minimum in the range 30-55 eV and then increases:; for
other materials, such as Cu, Ru, Rh, Ir, InP, and LiF, the IMFP decreases more
slowly to a broad minimum in the 70-95 eV range,

We have shown earlier [12, 16] that the energy dependence of both IMFPs
and ALs over the 200-2000 eV energy range can be well described by the Bethe

[11] equation for inelastic electron scattering

A - E/[Epzﬁ An(yE) | (1)

where A is the IMFP (in A), E ig the electron energy (in eV), E, = 28.8

P
(va/M)l/2 is the free-electron plasmon energy (in eV), p is the bulk density
(in g cm'3), N, is the number of valence electrons per atom or molecule, M is

the atomic or molecular weight, and 8 and ¥ are parameters to be determined.

The Bethe equation has proven to be useful in the analysis of excitation and




lonization cross sections [18-20], and is expected to be valid if the electron
energy is sufficiently high (as will be discussed further below). In the
energy range of present interest (50-2000 eV), it is necessary to add two
terms to Eq. (1), as proposed by Inokuti [17] and Ashley [21], to account in
an empirical way for exchange effects and for other departures from the first
Born approximation on which Eq. (1) is based [17]. The modified Bethe
equation is:

(8 4n(4E) - G/E + D/E*]) (2)

A = E/{EP
where C and D are two additional parameters.

Our IMFPs for the elements and compounds have been fitted to Eq. (2) and
values of 8, v, C and D determined for each material [6}. The solid lines in
Figs. 1-10 show examples of these fits. We have further analyzed the
parameter values for the group of 27 elements to seek relationships between
the values of 8, vy, € and D and various material parameters (such as number of
valence electrons per atom or molecule, bulk density, and atomic weight); we
were guided in this objective by expressions developed previously [21, 22] and

then examined remaining residuals to find evidence of trends. We obtained the

following empirical relations [6]:

g = -0.0216 + 0.944/(Ep2+ Egz)l/z +7.39 x 1074, (3a)
¥ = 0.191 o 0-30 (3b)
C=1.97 -0.91 U (3¢)
D=53.4 - 20,80 {34d)
U - N_p/M (3e)

where Eg is the band-gap energy (in eV) for non-conductors. Equations (2) and

(3) constitute our formula TPP-2 for predicting IMFPs in other materials.




The dashed lines in Figs. 1-10 show IMFP values obtained from TPP-2,.
For the group of elements, we found that the average RMS difference between
the IMFPs calculated from the optical data and those obtained from TPP-2 was
about 13%. This level of agreement was considered to be satisfactory given
the uncertainties of the optical data used in the IMFP calculation (12} and
the empirical nature of TPP-2. For the group of compounds, however, the
average RMS difference between the calculated IMFPs and the values from TPP-2
was about 23%, almost double the average difference found for the elements.
Furthermore, for most of the compounds, the IMFPs obtained from TPP-? were
systematically lower than those calculated from the optical data (as
illustrated by Figs. 6-9 for GaP, LiF, and NaCf). These results are discussed
further below. |
3. Evaluation of Optical Data

Our IMFP calculation is based on values of the electron energy-loss
function Im{-1/¢(w)] obtained mostly by experiment over typically the 1-
10,000 eV range of photon energies. The optical data were evaluated with two
useful integral equations or sum rules, the oscillator strength or f-sum rule
and a limiting form of the Kramers-Kronig integral [23-26]. The f-sum is the
effective number of electrons per atom or molecule Z gf contributing to the
inelastic scattering:

AE

Zogg = (2/«;&2%2) I,

AE Im[-1/¢(AE)]d(AE) (4

where Qp = (anaez/m)l/z, n, = N;p/M is the density of atoms or molecules,
N, is Avogadro's number, p is the bulk density, M is the atomic or molecular

weight, and AE = #w is the excitation energy in an inelastic scattering event.




When the upper limit in Eq. (4) AEpax = @, Zggg should be equal to Z, the
total number of electrons per atom or molecule.

The Kramers-Kronig (KK) relations [23,24] can be utilized to calculate
Re[l/e(w)] from Im[l/e(w)] if values of the latter quantity are available over
a sufficiently wide frequency vange. It is convenient to define a quantity

Pogs from a simplified form of the KK relations when Re[l/e¢(w)] is calculated

in the limit w -+ 0:

AE ‘
Pope = (2/m) f M8X (1/AE) Im[-1/¢(AE)]d(AE) + Re[1/€(0)] (5a)

For conductors, Re[l/e¢(0)] is zero and, in the limit AE .y =+ =, Eq. (5a)
becomes the perfect-screening sum rule that we applied in our analysis of
optical data for the elements [12]. For nonconductors, the refractive index n
1s much greater than the extinction coefficient k at low frequencies and Eq.

5(a) becomes:

Popp = (2/m) fiEmax (1/AE) Im[-1/¢(AE)]d(AE) + n” 2(0) (5b)
where n(0) is the limiting value of n as w = 0. In the limit AEp o & @,
Pegg = 1. Equation (5b) will be termed the KK-sum.

Our analysis of the optical data for the group of elements indicated
that the average deviations of the values of Zopr and Pogge from the expected
values was about 10% [12]. These deviations were considered small enough to
permit useful IMFP calculations from the optical data and useful analyses of
the IMFP trends from material to material.

For the group of compounds, however, the deviations of Zogs from Z

ranged from -13% to ~12%, and the deviations of P g¢ from unity ranged from




-40% to at least 12% {6], as shown in Table 1. More significantly, the
deviations were negative for most of the compounds, a result which indicates
that the optical values of Im[-1/e(w)] were systematically lower than
expected; the calculated IMFPs were thus generally larger than if the sum
rules had been satisfied,

The calculated IMFP at any electron energy is proportional to an
integral of Im[-1/e(w,q)] and momentum-transfer terms over the allowed ranges
of energy loss and momentum transfer [9]. We use the Lindhard formulation to
describe the g-dependence of Im[-1/¢(w,q)]. The main factor determining the
magnitude of the computed IMFP is the energy-loss function Im[-1/e¢(w)]. The
different dependences of this function on photon energy (or energy loss in an
inelastic scattering event) from material to material lead to the different
dependences of the IMFP on electron energy, particularly for energies less
than 200 eV, as shown in Figs. 1-10.

We show plots of energy-loss functions for ZnS, InP, LiF, and PbTe in
Figs. 11-14 to illustrate the photon energy ranges which have the largest
values of Im[-1/e(w)]. The differential scattering cross section with respect
to energy loss #w is proportional to Im[-1/¢(w)}], and the regions of energy
loss in Figs. 11-14 which have the largest values of Im[-1/e(w)] will
therefore give the greatest contribution to the calculated IMFP. For the four
compounds of Figs. 11-14, the most probable excitation energy is between 10
and 25 eV. Excitations of core electrons with binding energies greater than
about 100 eV (as shown by the insets of Figs. 11-14) give very small
contributions to the loss functions.

We show evaluations in Figs. 15 and 16 of the sum rules, Eqs. (4) and

(5b), as a function of AEy. . for the same four compounds. These evaluations




have been performed up to AEp ¢ = 10% eV. Since Eq. (4) involves a product of
the loss function and excitation energy, the resulting values of Zogg tend to
be dominated for most of the materials considered here by the contributions of
core-electron excitations. For LiF and ZnS, the saturation values of Zoff are
11.4 and 42.6, respectively; these values are lower than the corresponding
values of Z (12 and 46). For InP, the maximum vaiue of Zogg in Fig. 15 is
71.8 which is greater than the value of Z (64); this discrepancy between ZoFf
and Z would be greater if AE .. was increased to include the contributions of
the two In K-shell electrons with binding energies of 27.9 keV [27]. The
maximum value of Z.gr in Fig. 15 for PbTe is 117.6; this value is less than
the value of Z (134) but the discrepancy would be reduced by consideration in

Eq. (4) of the contributions of the two K-shell electrons of Te and the ten K-

and L-shell electrons of Pb which all have binding energies greater than 10

keV [27]. We have chosen not to make adjustments to the determinations of
Zegg for the indium and lead compounds associated with excitations greater
than 10% eV since the f-sum errors are smaller and therefore less significant

than the KK-sum errors.

Figure 16 shows plots of P ¢g as a function of BE .- The four curves

saturate at maximum values of 0.70, 0.81, 1.03, and 1.12 for LiF, ZnS, InP

and PbTe, respectively (instead of the expected value of unity). The curves

reach within 1% of their maximum values when AE . x > 100 eV.

X

The extent to which measured optical constants for a selected material

satisfy sum rules can be a means for gaining confidence in the data and also a

useful guide for making adjustments to the data. We have emphasized here the
sum rules for Im[-1l/¢(w)] since these are most relevant toc our IMFP

calculation, but there are additional sum rules for other optical parameters

10




[23]. ‘We could use such rules together with assessments of possible artifacts
due to surface impurities and roughness [28] for data analysis and
modification, as has been done with the optical data for Al [29], but such
analyses are beyond the scope of this investigation.

The compounds selected for analysis in Figs. 15 and 16 are examples of
groups of compounds which have qualitatively different errors for the f-sum
and KK-sum rules (Table 1). ZnS is one of the compounds (a group that also
includes Alo03, GaAs, and, tentatively, InSb and SisN, that have large
negative errors in the KK-sum rule (25-40%) and smaller nhegative errors (6-
13%) in the f-sum rule. For these compounds, it is likely that the optical
values of Im[-1/e¢(w)] are less than the correct values over a substantial
photon energy range including the range most important for the IMFP
caleculation, 5-100 eV, as illustrated in Fig. 11 for ZnS. GaP, PbS, and SiC
have intermediate negative errors in the KK-sum rule (7-17%) and smaller
negative errors in the f-sum rule (2-13%); it is likely that the optical
values of Im[-1/¢(w)] for these compounds are also underestimated. LiF is one
of the compounds (a group including InAs, KC£, and NaC#) that have 25-30%
negative errors in the KK-sum rule and negative errors of 1-5% in the f-sum
rule. It is iikely that the optical values of Im[-1/¢(w)] are correct at
relatively high photon energies, including the 5-100 eV range of interest for
our IMFP results, as depicted in Fig. 13 for LiF. PbTe and 810y are the only
compounds for which the KK-sum errors are positivellthe f-sum errors are
negative (6-12%). Here, the optical values of Im{-1/¢(w)] may be
overestimated at low energies, including the 5-100 eV range (Fig. 14), and
slightly underestimated at higher energies. InP is the only compound that has

both a positive f-sum error (12%) and a positive KK-sum error (3%). For this
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compound, the optical values of Im{-1/¢(w)] are probably slightly

overestimated at most energies.

Finally, we show plots of the quantity Mtot2 in Fig. 17 for ZnS, InP,

LiF, and PbTe. This quantity is the square of the dipole matrix element for

all possible inelastic scattering processes and is defined by [17):

2 2 2. DE

Mege = (R/mQS) [ ME% Im{-1/e(AE) |d(AE) (6)

for AE ., = =. The term R in Eq. (6) is the Rydberg energy (13.606 eV),

Equation (6) is of interest for two reasons. First, the plots of Mtot2
versus AEp,y In Fig. 17 for the four compounds indicate clearly the regions of
excitation energy that are most significant in determining the magnitudes of
the IMFPs. The plots of Fig. 17 show that the Mtotz values have reached close
to their maximum values when AE,,, = 300 eV. The details of the increase in
Mtot2 as AEg,y increases from 10 to 100 eV depend on the material (that is,
the energy-loss function), but subsequent increases due to the excitations of
core electrons are relatively small.

The second reason for interest in Eq. (6) is that the value of Mtot2 can
be used to determine the total inelastic scattering cross section Otor Irom
the Bethe equation [11,17]:

2

2
Tior (hwao R/E) Mtot

o 2n(4ctotE/R) (7)

where a, is the Bohr radius (0.529 A) and Crot L8 a complicated function gf
the g-dependence of Im[-1/¢(w,q)}], hé identify the product (4ceqe/R) with our
parameter vy in Eq. (1). Comparison of Egs. (1) and (7) yields

2 -1 -1
5opt -M . 7/28.8 N, (eV - A" (8)
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where ﬂopt is the value of # in Eq. (1) determined from the integration of the
optical values of Im[-1/e(w)], as indicated by Eqs. (6) and (8).

Figure 18 shows a plot of the values of 8 for our group of elements
versus Mtotz/Nv' as suggested by Eq. (8). The plot is linear, as expected,
but the slope is 0.038 = 1/26.3, about 10% greater than expected from Eq. (8).
The dashed line in Fig. 19 is a plot of ﬂopt from Eq. (8). The result that 8
exceeds ﬂopt is not surprising since the Bethe equation is not expected to be
valid unless the electron energy is sufficiently high [17]. A detailed
analysis of the dependence of our calculated IMFPs on energy for Mg, AL, 581,
Hf and Bi [6] indicates that the asymptotic value of 8 in Eq. (1) is being
approached at 2 keV, the maximum energy for our IMFP calculation. It is thus
important that our IMFP predictive formula TPP-2 {Eqs. (2) and (3)] not be
extrapolated to higher energies.

4, Discussion

Our analysis of the optical values of Im[-1/e(w)] for the group of 15
Inorganic compounds has shown significant shortcomings of these data, as
indicated by the sum-rule errors listed in Table 1. We have found that the
discrepancies between the IMFPs calculated from the optical data and the
values predicted by TPP-2 [Eqs. (2) and (3)] are correlated with the sum-rule
errors. Figure 19 shows the RMS errors in the comparison of IMFPs from the
optical data with TPP-2 values plotted versus the average of the errors in the
f-sum and KK-sum rules (Table 1). Although these sum rules emphasize
Im[-1/e(w)] values in energy regions that are higher and lower, respectively,
than the region most important for the IMFP calculation, we consider the
average error for these two sum rules to be a physically reasonable (but

approximate) indication of the likely accuracy of the optical values of
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Im{-1/e{w)]. Although the f-sum rule integration is dominated by the
contributions of core electrons for elements of medium and high atomic number
(as indicated in Fig. 15), the f-sum errors are generally much smaller than
the ps-sum errors (Table 1). As a result, the average errors of the optical
data are mainly determined by errors of the ps-sum rule.

The approximately linear relationship in Fig. 19 is a strong indication
that there are systematic errors in the IMFP values for our compounds due to
inadequacies of the optical data. While we could use information from the sum
rules for Im[-1/¢(w)] and other optical functions [23) to adjust the optical
data, we have chosen not do this, partly because of the amount of work
involved and partly because of the possibility of arbitrary choices that might
have to be made. Instead, we believe that IMFPs obtained from TPP-2 provide
reasonable estimates for these materials. We note that the RMS error in the
use of TPP-2 for calculating IMFPs of the group of 27 elements was 13%. The
scatter of points in Fig. 19 about the correlation line is consistent with the
RMS error in the use of TPP-2 for the group of elements. It is therefore
expected that there will be a similar uncertainty in the use of TPP-2 for
predicting relative IMFPs of inorganic compounds, Other factors which may
influence the absolute accuracy of IMFPs from TPP-2 are discussed elsewhere
(6].

Calculations of IMFPs from TPP-2 require an appropriate choice of
parameters. We have examined the extent to which the calculated IMFPs change
as individual parameters in TPP-2 are varied in physically reasonable ranges
[6]. Figures 20-22 show IMFP versus energy curves for copper and the effects
of varying in turn the bulk density p, the number of valence electrons per

atom N, and the free-electron plasmon energy Ep. Figure 20 shows that
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increases of p lead to a systematic reduction in the IMFPs calculated from
TPP-2 and to some changes in shapes of the IMFP-energy curves for energies
less than 200 eV. An increase in the value of N, from 1 to 11 causes a
decrease in the computed IMFPs, as indicated in Fig. 21, and also to shape
changes in the IMFP-energy curves for E < 200 eV. A change of N, in the range
3 to 15, however, leads to IMFP changes of less than 20%; similar calculations
for Au and Af showed IMFP changes of less than 75% and 25%, respectively [6].
Finally, an increase of Ep in the range 5-30 eV produces an IMFP decrease as
shown in Fig. 22; further increase of Ep leads to a slight IMFP increase.
There are also substantial.changes in shape of the curves for E < 200 V. The
results in Figs. 20-22 and the similar calculations for Af and Au indicate
that the broad minima in the IMFP—energy curves (e.g., as for Cu in Fig. 2)
are associated with generally higher values of p, N,, and Ep than those which
give narrower minima (e.g., as for Mg in Fig. 1).

We now consider whether a simpler or more accurate expression than TPP-
2 might be derived for the prediction of IMFPs. The magnitude of an IMFP
calculated for a material from TPP-2 at some energy greater than 200 eV is

determined largely by the product ﬁEpz which is contained in the leading term

of Eq. (2). Since g = ﬁopt' this product ﬁEp2 can also be expressed az [12]:

2 X
8 Ep2 ~28.8 pu__ /i (ev A-1y (9)

with Mtot2 defined by Eq. (6). The plots of Mtot2 versus AEp.. in Fig. 17
illustrate the importance of electronic excitations in the 5-100 eV range in
determining the value of Mtot2 and thus of ﬁEpz.

The two sum rules [Eqs. (4) and (5b)] used for evaluation of the optical

data involve integrals of frequency moments of the loss function. While these
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integrals have well-defined values, there is not, unfortunately, a well-
defined value for the integral of the loss function itself. That is, the
value of Mtot2 from the integral of Eq. (6) cannot be simply expressed in
terms of other physical properties that depend on electronic excitations.
Since it is not possible to provide a simple analytic expression for Mtotz: it
1s similarly not possible for us to give an expression for ﬁEp2 based on
general physical principles,

The other two terms in Eq. (2) account for deviations from the Bethe
equation that are important in the 50-200 eV energy range. These correction
terms are physically plausible [17,21] but future calculations might give
improvements. It is also possible that future work could give a2 better
physical representaﬁion than Eq. (3) for the dependence of 8, v, C and D on
material parameters. Until future guidance is available, we consider TPP-2 to
be a useful guide for predicting IMPFs. Nevertheless, since our Eq. (3) has
been obtained empirically, it is not reasonable to expect that these
expressions can represent in detail the variations in inelastic-scattering
properties that occur from material to material, particularly for energies
less than 200 eV.

5. Summary

We have calculated IMFPs of 50-2000 eV electrons in 27 elemental solids
and 15 inorganic compounds. Substantial variations in the shapes of the IMFP-
energy curves from material to material have been found for energies less than
200 eV. These variations are associated with detailed differences in the
energy-loss functions amongst the materials.

We have developed a general equation for predicting IMFPs based on the

IMFP values for our group of elements. This equation, designated TPP-2,
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provides a convenient means for estimating IMFPs in other materials and for
expressing the IMFP dependence on electron energy. TPP-2 should not, however,
be used for electron energies and for material parameters outside the ranges
for which it has been developed and tested [6]. The TPP-2 formula represented
the IMFPs calculated for our elements with an average RMS uncertainty of about
13%.

We have used two powerful sum rules to evaluate the optical values of
Im(-1/¢(w)] used in our IMFP calculation. These sum rules were satisfied
within an RMS uncertainty of about 10% for the group of elements but the
uncertainties were much larger for the group of inorganic compounds. We found
that differences between IMFPs calculated for the compounds from the optical
data and values predicted by TPP-2 correlated with average errors of the
optical data as revealed by the sum rules. We therefore believe that IMFPs
calculated from TPP-2 are more reliable than those computed from the deficient
optical data. Our formula TPP-2 is robust and appears to be a useful means
for estimating IMFP values and for determining the IMFP dependences on

material and energy.
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Tablé L.

Errors in the f-sum rule [Eq. (4)] and the KK-sum rule [Eq. (5b)]
for the indicated compounds. Both sums have been evaluated with
AEp % = 10,000 eV. A minus (plus) indicates that the values of
Zegg and Popy were less than (greater than) the expected values.
We were mnot able to obtain reliable values of n(0) for InSb, PhTe,
and Si3N, from Ref. 28; we show limiting values of the KK-sum
error for these compounds that have been obtained by assuming
n'2(0) in Eq. (5b) to be zero. We also show limiting of the f-
sum errors for the indium and lead compounds due to the neglect of
excitations with energies greater than 10% eV in the evaluation of
Eg. 4.

Compound Error in Error in

f-sum rule KK-sum
(%) (%)
Al504 - 6 -25
GaAs -13 -37
GaP - 8 -17
InAs > -5 -31
InP > 12 : 3
InSb > -10 > =40
KC2 -1 -25
LiF -5 -30
NaCZ -5 =32
PbS > -13 -11
PbTe > -12 > 12
sic -2 -7
514Ny, - 8 > -34
5109 - 6 -5
ZnS -7 -19
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Figure Captions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

IMFP values (solid circles) calculated for magnesium as a function
of electron energy. IMFP values are shown for 10-40 eV electrons
to illustrate trends but these values are not considered reliable
(see text)., The solid line is a fit to the IMFP values with the
modified Bethe equation [Eq. (2)}. The dashed line shows IMF?P
values calculated from our predictive formula TPP-2 [Eqs. (2) and
(3)]. Tﬁe_inset shows the low-energy region on an expanded energy
scale.

IMFP results for copperx as a function of electron energy; see
caption to Fig. 1.

IMFP results for ruthenium as a function of electron energy; see
caption to Fig. 1.

IMFP results for rhodium as a function of electron energy; see
caption to Fig. 1.

IMFP results for iridium as a function of electron energy; see
caption to Fig. 1.

IMF? results for gallium phosphide as a function of electron
energy; see caption to Fig. 1.

IMFP results for indium phosphide as a function of electron
energy; see caption to Fig. 1.

IMFP results for lithium fluoride as a function of electron
energy; see caption to Fig. 1.

IMFP results for sodium chloride as a function of electron energy;

see caption to Fig. 1.
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Fig. 10 IMFP results for lead telluride as a function of electron energy;
see caption to Fig. 1.

Fig. 11 Plot of the energy-loss function Im[-1/¢(w)] for ZnS as a function
of electron energy loss fw, as calculated from optical data [6].
The main plot shows the 0-100 eV region where the loss function is
largest. The inset shows the loss function over a wider energy

range (on logarithmic scales).

Fig. 12 Plot of the energy-loss function for InP; see caption to Fig. 11.
Fig. 13 Plot of the energy-loss function for LiF; see caption to Fig. 11,
Fig. 14 Plot of the energy-loss function for PbTe; see caption to Fig, 11.
Fig. 15 Plot of Z,¢¢ from Eq. (4) as a function of AEpay Tor ZnS, InP,

LiF, and PbTe. The plots of Z gf should saturate at the values of
Z as AEp o = w»; Z =12, 46, 64, and 134 for LiF, ZnS, InP, and
PbTe, respectively.

Fig. 16 Plot of P ¢ from Eq. (5) as a function of AE; . for ZnS, InP,
LiF, and PbTe.

Fig. 17 Plot of Mtot2 from Eq. (6) as a function of AE .y for ZnS, InP,
LiF, and PhTe.

Fig. 18 Plot of values of 8 (solid circles) determined from our fits of
Eq. (2) to the IMFPs calculated for our group of elements over the
50-2000 eV range versus Mtotz/Nv where Mtotz for each element has
been evaluated from Eq. (6) with AE .. generally equal to 10,000

eV. The solid line is a least-squares linear fit to the plotted

data and the dashed line is a plot of ﬂopt given by Eq. (8).
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Fig.

. 19

20

.21

22

Plot of the RMS errors in the comparison of IMFPs calculated from
optical data for the group of 15 inorganic compounds with the
values expected from our IMFP predictive formula TPP-2 [Eqs. (2)
(3)] versus the average of the errors in the f-sum andﬁgssum
rules (Table 1). Points for InSb, PbTe, and 85igN, are shown as
open circles; for these compounds the KK-sum errors are known only
as lower limits and thus the negative average optical errors are
over-estimated. Points for the other compounds are shown as solid
circles.

Plots of IMFP versus energy for Cu from TPP-2 (curve with p ~ 8.96
g cm'3) and of evaluations of TPP-2 [Egs. (2) and (3)] with Cu
parameters except that the value of the bulk density p was varied
as shown. The inset shows IMFP values for the 50-200 eV range on
an expanded scale.

Plots of IMFP versus energy for Cu from TPP-2 (curve with N, = 11)
and of evaluations of TPP-2 with Cu parameters except that the
number of electrons per atom N, was varied as shown. The curve
adjacent to the N, = 3 curve is for N, = 5 while the curve
adjacent to the bottom N, = 11 curve is for N, = 15.

Plots of IMFP versus energy for Cu from TPP-2 (curve adjacent to
the bottom curve, with EP = 35.9 eV) and of evaluations of TPP-2
with Cu parameters except that the free-electron plasmon energy

was varied as shown.
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