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Abstract

The interaction between two test charges, the response of a solid to an external field, and the
normal modes of the solid can be determined from a total dielectric function that includes both
electronic and lattice polarizabilities as well as local field effects. In this paper we examine the
relationship between superconductivity and the stability of a solid and derive new sum rules for the
electronic part of the dielectric function. It is also shown that there must be negative eigenvalues
of the total static dielectric function implying the possibility of an attractive interaction between

test charges. An attractive interaction is required for superconductivity.




1 Introduction

The dielectric function is of fundamental importance in understanding many properties of solids.
It describes the response of the solid to an external field, the elementary excitations of the solid,
and the screening in the solid. The total dielectric function includes not only the screening by the
electrons but also the polarizability of the lattice [1]. The presence of a lattice serves to modify the
electron wave functions and consequently the electronic screening, leading to local field effects. In
addition, over-screening by the lattice results in an attractive total pairing interaction which may
lead to superconductivity. In the absence of local field effects, the electron-phonon coupling only
involves the longitudinal phonons [2]. The presence of local field effects allows coupling between
the transverse phonon modes and the electrons through Umklapp processes and enhances the

strength of the attractive electron-electron interaction.

In this paper we study e.'f(l)T, the inverse total dielectric function that describes the electronic
and lattice screening including local field effects. In addition we consider the interaction of two test
charges, VInT = c}éT v, where v is the bare Coulomb interaction. The interaction between the
two test charges is simpler than that between two electrons because of exchange and correlation
interactions with other electrons. A direct derivation of GE(I)T in the random phase approximation
(RPA) has been given by Allen, Cohen and Penn [1]. Their results are in agreement with earlier
work by Maksimov [3], who took a different approach by deriving the total interaction, VinT, and

defining e7&t by €761 = VINT/v-

Although the concept of the total dielectric function has not been a subject of active study,
there are a number of useful applications of this approach. Besides determining the total interac-
tion between two test charges, the inverse dielectric function describes the response of the system
to an external field. Also, ef(l)T has poles at energies corresponding to collective elementary exci-
tations. The poles determine the plasmon and phonon modes [1] of the solid as well as any other
collective modes that might exist. Another important reason for studying er’f\éT is that stability

considerations place restrictions on this function [1], [4].

Finally, a further reason for working with "T‘%)T is that this approach treats the electrons
and ions on an equal footing. Hence, the final results do not depend on an arbitrary division

between the electronic and ionic systems. For example, this approach is appropriate whether the
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ions are treated as pseudopotentials or as bare nuclei and is independent of the division of the
Hamiltonian with regard to electron, phonon, and electron-phonon contributions. In this pPaper

we restrict ourselves primarily to results at zero frequency, i.e., the static dielectric function.

In section 2 we discuss the background and formulation of the theory pertaining to the total
dielectric function, etoT. This function is defined in section 2.A, and related stability conditions
are given. The electronic part of the susceptibility is discussed in section 2.B and the lattice
part in section 2.C. In section 2.D, e»}(l)T is given as well as the electron-phonon coupling and
the dynamical matrix. These quantities result in a natural way when etort is inverted to obtain

€tot- In section 2.E, sum rules involving the electronic part of the dielectric function, €', are

given. These sum rules are a consequence of the existence of a lattice. The best known one

is the acoustic sum rule which is expressed in terms of ee'll. We derive a second sum rule, the
translational sum rule, which has been stated incorrectly in previous literature [1], [5]. Making
use of these two sum rules, we derive sum rules involving ¢ rather than ee—ll. The relationship
between er}éT and BCS theory is discussed in section 2.F. In section 2.G, we argue that for w = 0,
€ToT has one negative eigenvalue for each spatial dimension of the system. A negative eigenvalue
implies the possibility of an attractive screened Coulomb interaction, fE%)T v. We also show
that the frequency-dependent eroT has zeros at the phonon frequencies; in other words there is
an eigenvalue of eror which is zero for w = wg where wg is a phonon frequency. Section 2.H
shows how the stability conditions for the individual electronic and lattice parts of the system are
related to that for the total system. In section 3 analytic results are given for the value of ¢4 in
one dimension for the case @ — 0 where @ is the reduced wave vector. A one-dimensional model
for €q fs introduced in section 4, and numerical results are obtained for er}(l)T as well aé for the
phonon frequencies. The sum rules are used to limit the parameters of the models. Conclusions

of the paper are presented in section 5.




2 Theory and Formulation

The purpose of this section is first to review relevant previous results and then to present new

theory.

A. Definition of Inverse Dielectric Function and Stability Conditions

The inverse dielectric function eil)’r is defined by the change in potential at a point 7 and

time t due to an infinitesimal perturbing potential § VexT(#,t')

t
6§ Vror(r,t) = / dt' / d3r' exor(rs st =) 6 Vexr(r',t') . (1)

The dielectric function erot is related to crf(l)T by

(=2}
/ dt" / &3r" eror(r,r",t —t") egop (" ', ¢ = 1) = S(r—r)é(t-1t) . (2)

A change in the external potential results in a change in the charge density of the system,

6 protr(7,t), related to the susceptibility, x, by
t
5 pron(r,t) = / dt / &' x(r, vt = t') 6 Vixz (', t') 3)
—00

where é proT includes the change in both the electronic charge density and the nuclear charge
density. Equation (3) serves to define the susceptibility x. The change in charge density é proT

is given by the change in the expectation value of the operator
pror(r) = ZY_ 6(r—R) - > 6(r— Ry) (4)
! i

where Ze is the charge of the nuclei which are assumed identical for simplicity, R, is the nuclear
coordinate at the lattice site I. Charge densities are in units of inverse volume, and potentials

have units of energy, not work per unit charge.

Schematically, Eq. (1) is 6 VroT = e,}(l)T 6 Vext, and Eq. (3) is § proT = X § VexT. Because
§ Vror = 6 VexT +v 6 proT Where v is the Coulomb interaction, it follows that efl'-(l)T =14+ vy,
ie.,

2
exor(ry st =) = 8(r—r)6(t-1) + / d3r" F{W x(r" ' t—t) . (5)




It is useful to deal with the Fourier transform of the time. Thus if § Vgxr(7',t') « e~iwt,

- s}

then er}(l)T = erop(f 7 w)and x = x(7,7 ,w). Similarly, eror and e»}éT satisfy
/dar" eror(r, ", w) exor(r", 7\ w) = §(r—1') . (6)

In the case of a homogeneous electron gas, e = ¢ 1(7— #/,t' — t) which can be Fourier

transformed to obtain ¢! = €71(§w).

It is clear from Eq. (1) that €~ is a causal response function for any value of g, while it has
been shown (6] that € is causal only at ¢ = 0. The Kramer-Kronig relations, which hold for causal

response functions, are

2 ®  dw'W
—1/ = - -1
Ree (qw) = 1 + ;P/(; mlmf (g,0') (7a)
2 ®  duw' W'
Re ¢(0,w) = 1 + - P /0 o7 — ot Im €(0,u) (7b)

and since a stable system in its ground state can only absorb energy, Ime(q,w) > 0 and

Ime (g, w) =Im g5 < 0. Settingw = 0in Eq. (7) yields the conditions [7]-[9]

-6—(—(—1_%—6-)— <1 , (8a)
€(0,0) > 1 . (8b)

These conditions can be generalized to the case of a solid with a periodic lattice as discussed by
Car, Tosatti, Baroni, and Leelaprute [4]. In the case of a periodic lattice 53 1(7, 7 ,w) = exgp(7+
RY,7' + R} ,w), so that CE(I)T = e}éT(Q-‘ +G,Q+ @',w), where Cj is a reduced wave vector, and
G, G’ are reciprocal lattice vectors. Equation (1) becomes

) VTOT(Q- + é’w) = E eEéT(Q‘ + é, Q-. + G",w) 6 VEXT(Q + G",w) ’ (9)
Gl
where § VroT(Q + G,w) is the Fourier transform of § Vror(r,1).

It has been shown by Car et al. [4] and verified in reference 1 that the generalization of

Eq. (8a) to the case of a periodic lattice is
'@ <1, (10)

where ¢’ (@) is any eigenvalue of the matrix exy7(@ + G,@ + G',w = 0). In the present case,

Eq. (10) includes the lattice as well as the electronic polarizability whereas Car et al., [4] were
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interested only in the electronic response. Nevertheless, their proof holds for the more general

case.

A violation of the condition in Eq. (10) implies an instability of the combined electronic and
lattice systems. The relationship between this type of instability and an instability in either the
electronic or lattice part of the system is discussed in section 2.H. Equations (8a) and (10) allow
for negative values of €1(¢) and ¢;1(Q) with the consequence that VinT can be attractive and the
system stable, as required for superconductivity. It is expected [1] that near a phase transition

there will be some eigenvalue of exgy that is large and negative.

It can also be shown [1] that the diagonal part of €70y satisfies
or(@+G,d+Gw=0) <1 , (11)

which means that the macroscopic dielectric function, ep(Q, @), satisfies [10], [11]; 1/em(Q, Q) =
e}éT(@, @,w = 0) < 1. Equation (11) is a weaker condition than Eq. (10); if Eq. (10) is satisfied
then so is Eq. (11). Similarly, the generalization of (8b) takes the form

1
>
eror(Q +0,Q 4+ 0,w = 0)

Equations (10) and (12) must be satisfied to ensure the stability of the solid. We have written

1. (12)

the subscript “TOT” on e}éT to emphasize that it is the response of the total system (electrons
plus lattice), rather that just the electronic part €', that obeys (10) and (12). It is shown in
Appendix A that the eigenvalues of €' satisfy (e;il) <1+T, where T, > 0.

m

B. Electronic Part of the Susceptibility

The electronic portion of the susceptibility, xe, and the inverse dielectric function e;'ll have
been derived [10)-[12] in the random phase or mean field approximation for the case of a periodic
lattice. The relationship between the exact expressions for ¢ and x is given by Eq. (5) in the
form €-! = 14 vy where v is the Coulomb interaction. The change in the charge density, 6p,
induced by the external field § Vgxr is given by Eq. (3) as 6p = x & Vgxr. In the mean field
approximation it is assumed that 6§ p ~ x§ (8 VExT + v6p) where x§! is the susceptibility for a

-1
system of electrons which do not interact with each other. Thus x = (1 -v xgl) - x§l, and €




takes the form empe = 1—v x§ where €MF el is the mean field dielectric function. In this case

AR AR A (fr+Qu = fig) Mipqun(G,G")
+ G, G . = y y N
x0 (@ +G,Q+Gw) k§m P T : (13a)

ME-{-Q‘,I,I'(G” é/) - <E+ Q" I Iei(d+@)-? IEI> <l'c‘l |e—i(é+@')~r |E+ Q‘l/> , (13b)

where fi; is the Fermi factor for the state |kl), ek, is the corresponding energy, and ! is a band

index.

It will be convenient to work with the symmetric form of €71; 5! = 1 + v1/2 y v~=1/2 where

v1/2(Q) = /A7 €2/91/Q, and Q is the crystal volume:

41 €2 1 X
2 10+G|

5 xox A 1
G, G,, - =
(Q@+G,Q+ wHQ+@l (14)

SHG+G6G,0+G W) =6 +

For the electronic case (no lattice polarizability) the symmetric form of the dielectric function
in the mean field approximation is

- - = - 47!'62 1 = = = 1
esa(@+G,G + Gw) = bger — ( ) 5 ¢ @400+ Gl 5
o) ig+a ! GG

, (15)
where x§! is given by Eq. (13a) and (13b).

In the random phase approximation at w = 0 the eigenvalues of €5 are positive [4] and a

1

static, attractive electron-electron interaction, ¢~* v, is not possible with only electronic screening.

It should be noted that the G = 0 and G' = 0 components\of eg,el(é, +G,0 + G';w) are
not continuous at the origin. In particular, es_e1(é = O,G’;w) = 6¢,g, which is not the limit of
es,el(é ,0+G; w) as @ — 0. This follows from Eq. (15); for a system of dimension L, the Coulomb
factor is not really infinite at é + G = 0, but rather is of order L. However, the matrix element
in Eq. (13b) is zero for Q + G = 0 because the wave functions are orthogonal. Thus, even in the
limit of very large L, the last term in Eq. (15) is zero for § + G = 0 or Q + G' = 0, whereas it
does not necessarily vanish as Q+G—-00r @+ G' — 0. This fact will be used in deriving the

translational sum rule in section 2.E.

C. Lattice Part of the Susceptibility

The lattice contribution to the susceptibility has been derived in reference 1 using mean

field theory for the case of one atom per unit cell. In this approximation a displaced ion feels
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the average field due to all ions and electrons in their equilibrium states. The result is that
the displaced ion acts like an independent Einstein oscillator with frequency Qo, and the lattice
susceptibility is given by

XE(G+6,0+6w) = N2 @ L i))"’. —(QQE)G,) , (16a)

where N is the number of atoms, Ze is the ionic charge, and
—4me? 2?2 =
M} = ——=—— 3" pror(G) , (16Db)
30 5
where pTOT(G“) is the Fourier transform of the equilibrium total charge density. Equation (16b),
derived in Ref. [1], is valid for the case of a three dimensional lattice with cubic symmetry. For
the one dimensional case (discussed in section 3) the right-hand side of Eq. (16b) is multiplied

by 3. The reader is referred to Section IV of reference 1 for a complete derivation and discussion

of Egs. (16).
It will be useful to write the expression for x§ in another form [1];

x5@+G,@+G\w) = NZ*Y (G +G)a DS s(w) (G + G5 (17a)
a,p

where D° is the displacement-displacement correlation function,

[D° (W) = Mw? bop— K25 (17b)
and .
4re? 22 ~ A p(G)) :
° = - GaGgll — ——= , 17¢
af Q GZ#O 8 ( p(O) ( )

where o, § denote z, y, or z, and p(é) is the electronic charge density form factor.

D. Calculation of c;(l)T

The total dielectric function in the mean field approximation is given by

- - - 47" 62 1 g = = - 1
esror(@ +G,Q + G'\w) = bggr — o 0+G| x°T(@ +G,Q +G'\w) T (18)
where xJ°T = x§' + x&, and x§ and x§ are given by Egs. (13) and (16), respectively. It is Ty,

and not eToT, that is the causal response function and the physical quantity of interest. Equa-

tion (18) can be inverted [1] to obtain e7dy or equivalently Vit = eggp v = v1/2 5ot /2,




e -

Vint(@ + G, @ + Gw) = WWAQ+6) eshor(@ + G, G + G5 w) vV¥(Q + G)

dre? 1 1 = =
= 0 e e (P60
247‘-62 s ~ A s/(A S
+ 2T @+ 6w Dap@ ) ep(@+Ghe)} |, (19)
ap

where GE,}I‘OT denotes the total dielectric function and is given by the quantity in curly brackets.
The quantity cg,il is the inverse of the electronic dielectric matrix €s¢ given by Eq. (15). The
term in (19) involving ‘E,il describes the screening due to the electrons in the solid while the
term proportional to Z2 is the screening due to the lattice polarization. This latter term can be
attractive, and if it is large the total interaction can be negative, i.e., have a negative eigenvalue.

The electron-phonon coupling strength is

@+Gw) = 3 LA +G,d+G"w) (QFE. (20)
Gll

where (Q’-{—\ G) denotes a unit vector. The phonon propagator D is given by
D3(Q,w) = Mw? bup— Kap(@,w) . (21)
where a, 8 denote cartesian components.
The phonon frequencies are the eigenvalues of the dynamical matrix, K aﬁ(é,w),
Mutig = K(@w)ig - (22)

where w and 7jg are eigenvalues and eigenvectors, respectively, of K. The dynamical matrix K is

(13], [14]

2 72
Kep@w) = TS |3 @F ) Gu@+6,G +E50) @0
GG’
- Z Sel(G GI 0) Gﬁ ’ (23)
GG'#0

where S31, is the inverse of S5 Which is the same matrix as esea(@ +G,Q + G',w) except that

the row €(@,§ + G,w) and the column €@ + G, ;w) are deleted. The matrix Ss,el is closely

10




e

related to the matrix involving es for Q = 0 described in the last paragraph of section 2.B. The

matrix D(Q,w) appearing in Eq. (19) can be put in the form
-1
D = E nQ; [Mw2 - M“"éi] 775_7' ’ (24)
3

where 7g; is an eigenvector of K (Q,w), and wéj is the corresponding eigenvalue as determined
from Eq. (22). For w = 0, the dynamical matrix K is Hermitian, and “’622j is positive. Negative
values of w% ; correspond to an unstable lattice. From Eq. (24) it is clear that if a phonon mode
approaches zero, Vint can become large and negative, and an attractive interaction results even

though the system is stable.
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E. Sum Rules

There are two important sum rules for e ! evaluated at w = 0. The first is the acoustic sum
rule which follows from the condition that the lattice acoustic modes go to zero frequency as Q
approaches zero. The second sum rule which we will refer to as the translational sum rule is a
consequence of the periodicity of the lattice. The acoustic sum rule has been derived by Pick

et al. [13]; it can be shown that Eq. (23) can be put in the form (Appendix B)

47re Z? 1

E,}al(Q-‘a é;w)

Kop(@,w) {Z €501 (@, +G;w) (@+G)a

x Y L@, G+ Gwy (QF G
Gl

+ Y [@FG) 554(G,G.G+Cw) (QF G

GG'#0

- G, S5m(G,G%w) Gﬁ]} , (25)

where §~1 is defined after Eq. (23). This expression for K leads directly to the acoustic sum rule
which ensures that the acoustic phonon modes satisfy w(Q) — 0 as @ — 0. The term in Eq. (25)
in the square brackets approaches zero as  — 0 because §~! is analytic. Consequently, K — 0
if

Jm 2 Ga@G+6) (@¥6. = 0, (26)

where €1(@,0+G) = ¢1(@,Q +G;w = 0). This sum rule is satisfied automatically in metals
because of the dependence of € on @, but is non-trivial for insulators as will be discussed in more

detail below.

The translational sum rule was first derived by Keating [5] and rederived in ref. 1. It is
stated incorrectly in both references where it had been assumed that ¢~1(Q, @;0) is continuous
as Q — 0 contrary to our discussion at the end of section 2B. This sum rule is obtained by rigidly
displacing the entire lattice and recognizing that the displaced ions produce a rigid displacement

of the electronic charge density. It is derived in Appendix C.

The resulting sum rule is

> ShET = (1-4D) 6 i oro e
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where p(G) is the electronic form factor. Equation (27) will be referred to as the translational
sum rule. One consequence of the translational sum rule is that off-diagonal matrix elements of
€s,e1 cannot be neglected for either metals or insulators. In the case of the acoustic sum rule this
conclusion only follows for insulators, because metals automatically satisfy this sum rule. For the
exact c.'g"]el both sum rules are satisfied automatically while for models of eg;, the sum rules can
be used to fix the adjustable parameters. It follows directly from Eq. (27) that K2; of Eq. (17c)
is given by
4re? 722

2= —g— 2 GaS854(G.G)G (28)
G,G'#0

which is the second term on the right-hand side of Eq. (23) for K.

The two sum rules can be expressed in terms of €g¢ rather than ‘E,tl and take the following

form which is derived in Appendix D,

Z €s,e1(é,é') (1—@) G, = G, (G#£0) , (29a)
Q-0:) esa@+G) (1—”—(-6—"1)-> Q+G)e = Qu - (29b)
&Zo p(0)

Equation (29) holds only for insulators as is made clear in Appendix D. This form of the sum

rules is useful when dealing with models that define €g¢) instead of 6-5-:31’ as is usually the case.

F. Relationship Between Vit and Superconductivity

As discussed in section 1 the total interaction between two electrons is not strictly er}éT v. This
latter expression describes the interaction between two test charges. Nevertheless, the effects of
vertex corrections and nonlinear effects may be small or take the form of multiplicative corrections
and we assume Vit = €pgt v The matrix element for scattering a Cooper pair from a state k

to k' on the Fermi surface is [1]

Vie = (K' 1,k L Vintl k 1,k 1) = (grwlerdrolone) (30)
where
gk (r) = Ye(r)di(r) (31)
and Vi is related to the BCS interaction Vacs by [15]
- N1(0)Vees = Ny(0)(Viw)rs = =2 (32)

13




where (- --)rs denotes a Fermi surface average, and N;(0) is the density of states at the Fermi

energy for a given spin. The screened Coulomb interaction €' v is given by the first term in
Eq. (19) and corresponds to u, a repulsive interaction, while the attractive electron phonon part
of e{«éT v is given by the second term in Eq. (19) and produces A. Taking account of various
types of renormalization and retardation effects leads to more refined expressions [15] for A and
piie, A=A ~ A1+ Adand p — p* = p/[l+pln(Ep/fwp))], where Er is the Fermi energy,

and hwp is the Debye energy.

In order to evaluate Vi in Eq. (30) the quantity gii(r) is expanded in a Fourier series. The
terms in the expansion corresponding to G # 0 lead to local field effects, and it is these effects

that we focus on.

G. Sign of the Eigenvalues of ¢sToT

It was noted in section 2.A that the eigenvalues of GE}I‘OT(Q + G,Q + G';w = 0) satisfy
CE}TOT,#(Q) < 1. This condition allows for the possibility of negative eigenvalues, and conse-
quently two test charges may experience an attractive interaction. If the test charges have charge
density p given by Eq. (31) then the average total interaction between them is

- 2 —
(Vint) = (ol v/ €5hor v'? lp) = 3 !(P| v!/? |Qaﬂ)| €5101,,(Q) (33)
Q.u

where |@Q, ) is an eigenvector of e‘g}mT corresponding to the eigenvalue e;}rOT’p(Q). Clearly

VINT can be attractive only if at least one of the eigenvalues of GE}I‘OT is negative.
It is proved in Appendix E that in one and three dimensions, at least one eigenvalue of
‘E}rOT(Q + G,G + G') is negative. This result is obtained by proving that

det (GE,ITOT) = (-1 9%2‘(;;—;({‘;)' det (55,11) (34)

where det(A) means the determinant of A, d is the dimension of the space, K is the dynamical
matrix defined in Eq. (23), and K° is given by Eq. (17b) evaluated at w = 0. In the mean field
approximation, det (65,11) > 0. The quantity det(K) > 0 is a condition for the stability of the

lattice, i.e., all the eigenvalues of K must be positive, and det(—K°) > 0. One can write
det (5hor) = II 5horu(@) (35)
I

14




i.e., the determinant of a matrix is the product of its eigenvalues. It follows that if the right-hand
side of Eq. (34) is negative then at least one of the eigenvalues of e's'}mT is negative. This holds
for one or three dimensions. More precisely in one and three dimensions there are an odd number

of negative eigenvalues while in two dimensions there are none or an even number.

In section 4 we find that for a particular one-dimensional model of ¢, a numerical study gives
the result that there is a negative eigenvalue of etor that vanishes at @ = 0. This behavior is
explained as follows. It is shown in Appendix F that

€ 7 G — @ el =
gﬂ s;rot(G,G') (1 p(O)) G, =0 (36)

which is an eigenvalue equation with eigenvalue 0 and eigenvector &, = (1 — p(G')/p(0))G4. This
is one eigenvector, {4, for each dimension. Equation (36) is consistent with the hypothesis that

there is one negative eigenvalue in each dimension that vanishes at Q = 0.

The reason for the existence of negative eigenvalues of €131 can be understood by examining

the case w # 0. It is shown in appendix G that
E GS,TOT(Q + é, é’ +é’?ij) ‘P;,- (Q-‘ + é”wQJ') =0 (37)
GI

where ¢ is given by Eq. (20), wg; is a phonon frequency, and o; denotes the direction of the
phonon polarization vector. In other words, estor has an eigenvalue A,(Q,w) that vanishes
when w = wg;, a phonon frequency. This corresponds to €sTor “having a zero” at the phonon
mode frequency and is analogous to a homogeneous system which has plasmon mode of frequency
wpi given by €(Q,wpr) = 0. Below the curve defined by A,(Q,w) = 0 in w,Q space, we assume
that A,(Q,w) < 0, and consequently, A,(Q,w = 0) < 0; i.e., there is one negative eigenvalue of

es,tot for each spatial dimension in the case w = 0.

H. Stability of the System

The condition for the stability of a purely electronic system is ¢;1(Q) < 1, where €;1(Q) is
an eigenvalue of egil(é +G,0+G w= 0). The condition that the lattice be stable is that the

phonon frequencies be real, ng > 0, where wq; is defined in Eq. (24). From Eq. (19)
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= -

sror(@+G,@+G,0) = G4(@+6G,d+G,0)

2 72
- I S @+ G0 K3HQ) 4@+ G,0) . (39)
af

Making use of Egs. (21), (24), and (38) yields

2
esroty(@) = X vk’ (@) - 4” Z E Z(VI%) @-iig)| ., (39

where |v) and |u) are eigenfunctions of G_S-,}I‘OT and egjﬂ, respectively. The condition GE}FOT,U(Q) <
1 required for stability of the coupled electron-lattice system, can be shown directly from Eq. (39)
to hold if € Q) < 1 and wéj > 0, i.e., the electronic and lattice portions of the system are
separately stable. It also follows from Eq. (39) that eg’}rOT'v(Q) < 1is possible even if ¢;1(Q) > 1
as long as w%j > 0, i.e., even if the electronic portion of the system would be unstable in the
absence of a lattice. Similarly, if ‘E,ITOT,V(Q) < 1 is also possible for some @ even if wg) ; <0
However, if K is a continuous function of ) there will be some value of @ for which w% ; is negative
but small in magnitude and €5ror, < 1 is not possible, as is clear from Eq. (39). Thus, since
stability requires ‘E}IOT,V(Q) < 1 for all @, an instability of the lattice implies the system must

be unstable.

In summary, the total system is necessarily stable if the electron and lattice systems are
individually stable. Furthermore, the total system can be stable if the electronic portion is
individually unstable and the lattice system is stable. However, the total system cannot be stable

if the lattice system is unstable regardless of the stability of the electronic system.
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3 Analytic Results for One Dimension and Q — 0

In section 3 we carry out calculations on a one-dimensional solid in the limit w = 0. It is assumed
that the one-dimensional solid has a one atom basis and that the set of reciprocal lattice vectors
{0,Go, —Go} where Go = 27 /a are the only ones of importance. In this section we investigate
analytic properties as @ — 0 for the mean-field dielectric function (Eq. (13)). In the following
section we present numerical results for a specific one-dimensional model of €sel for general Q.
The dependence of cs,el(é +G,0+G ) for @ — 0 can be determined from the mean-field equation,
Eq. (13), and one obtains

I

Q-0: esa(@,Q) = I%I; + off (40a)
I

sa(@,Q+G) = é‘l-glﬂ + 81(G) (40b)

esa(@+G,Q+G) = 141G, 6¢") + y'G,6) (40c)

where a, 3, and 7 are determined from the @ — 0 limit of Eq. (13) and where I denotes intraband
terms, ! = I’, and II denotes interband terms, ! # ! in Eq. (13). B!(G) and B'(G) are,
respectively, even and odd functions of G, v/(G, G") is an even function of G or G, and v/1(G, G")
is an even function of G and G, i.e., v/{(G,G") = y1(-G,-G").

(a) For the case of an insulator there are no intraband terms, and in the limit Q@ — 0 the

symmetric dielectric matrix takes the form

a f -8
CS,el(Q + G, Q + G,)Q—»O = ﬂ Ya Ve ’ (41)
-B Y Y

where we have omitted the superscript II for convenience. The inverse is given by

=92 -B(rat7) B(rate)

1
Gm@+G,Q+G =0 = 7 | Aratr) emn-§ -f-ar | (42a)

ﬂ('Ya + 7c) _52 —Qa%Y Q% — /82
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A= a(?-7)- 20+ (42b)

Making use of Eq. (23) the dynamical matrix takes the form

_ (8 5 Ou=1=2)
K@ = () 7 G )

If the acoustic phonon mode has zero energy at Q = 0 then

Ya=7e—28 =0 . (44)

The acoustic sum rule, Eq. (26), gives

0 = Yo — Ve — 28
a(')’a - '7c) - 2,32 ’

which is the same requirement. If 3, 4,, and 7. are calculated from first principles the acoustic

(45)

sum rule would be satisfied, however, we here view 7,, 7., and (3, as parameters. Similarly, the
translational sum rule, Eq. (27), yields

_ pG) _ 1
p(O) (Ya — 7c)

(46)

(b) In the case of a simple metal with no interband terms, €g e becomes, for @ — 0,

B b fr)

€5l = ,% Ta Y | - (47)

1% Te Yo )

Simple metals are commonly treated as having no off-diagonal terms for the dielectric function.

However, Eq. (47) shows that this is not strictly correct.

The result for K(Q) from Eq. (8a) is

(70 - 7c) lQ|2
a(Ya — 7e) — 262 ’

so that a metal automatically satisfies the condition that the acoustic mode have zero frequency

at @ = 0.

K@) g = (48)

The translational sum rule takes the form given by Eq. (46) and is not satisfied automatically

even for a metal. It therefore would place restrictions on the parameters of the model.
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(¢) In the general case of a metal where both intraband and interband terms contribute to €S,el

€Sel = l%'ll Yo Y )

" ’ ,
,%p T Ya

where
o = o+dlQP , B =4+4"NQ , 6 = '-p"Q

! !

Ta = Natr . %= A+l
and where I, II refer to intraband and interband, respectively.

The result for K(Q — 0) is

r
K@ g0 = 15 T2- 28" QP

where

+T9)

r
Ti=vw+v , Py=v=-7 , é§=dITp - 2ﬂ'ﬂ'lrz"(ﬂ"ﬂ”)2( 12

The acoustic sum rule takes the form
_ I It 2
O—T[Fz"?ﬂ]lQl ,

which is automatically satisfied as @ — 0. The translational sum rule is

, - PG 1
p(0) Yo =k

)

which has the same form as Eq. (46) for the insulator and the metal.
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4 Johnson Model

A well known model dielectric function for an insulator proposed by Johnson [16] is used to

illuminate some of the preceding concepts. The model takes the following form

Ea@+G0+0) = bga + 22E-G) (Q+G)'(QJ;§') ,
[1+#(@+3@+0m)]

(54)

where a, k, and p(@) may be regarded as parameters with the meaning that €5(0,0) = 1+ a,
Kk measures the extent in real space of the response to an electric field, and p(é) is the electronic
form factor normalized to p(0) = 1. We again restrict ourselves to one dimension and the set of

reciprocal lattice vectors {0, Go, —~Go}, where Gy = 27 /a and a is the lattice constant.

Use of €51 in Eq. (54) for calculating the dynamical matrix K(Q) given by Eq. (23) yields
K@Q) x A+0 (@) (55)

as @ — 0, where A is a linear combination of various Q = 0 matrix elements of €s,el. Furthermore,
use of Eq. (54) in conjunction with the acoustic sum rule, Eq. (26), gives A = 0. Consequently,

the phonon frequency, w(Q) x VK(Q) x Q as Q — 0, as expected for acoustic phonons.

For a model dielectric function like the Johnson model in Eq. (54), the electronic form factors,
p(G), are not given a priori, but rather are adjustable parameters. It is required, of course, that
these form factors be less than or equal to p(0) in order to guarantee that the real-space charge
density, —ep(r), is everywhere negative. Since the form factor appears in Eq. (54) as p(G - G"), it
is necessary to consider five form factors, p(0), p(£Gq), and p(£2Gp), in our truncated reciprocal
space. The normalization p(0) = 1 fixes one of the form factors, and two others are fixed by

inversion symmetry: p(—Gg) = p(Go) and p(—2Go) = p(2Go).

The two remaining form factors, p(Go) and p(2Gy) are also not free to vary. In order to
have a physically reasonable model for a dielectric function, it is necessary that the acoustic and
translational sum rules be obeyed, and these sum rules place constraints on the electronic form

factors.

Because the Johnson model defines €g, and not ‘.-S'.,tl» it is convenient to apply the sum rules
in the forms given by Eqgs. (29) as opposed to Egs. (26) and (27). This convenience becomes a

necessity if more reciprocal lattice vectors are added to the basis. It is simplest to use Eq. (29b)
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first, with the result that p(Go) is a solution to the quadratic equation

1+ 4I€G )
2a

We now apply Eq. (29a) which gives the same result for both G = Gy and G = —Go, namely,

P(Go) (1 - p(Go)) = (56)

o 2a
1+ 177G ~ (14 InGD) p(Go) + ap(2Go) =0 . (57)

This equation is easily solved for p(2Gp).

Taken together, Eqs. (56) and (57) specify the two form factors in terms of two dimensionless
parameters: a and KG3. These two parameters are not freely varying either, but rather are
constrained by the stability requirement addressed in section 2. In particular, acceptable values

of a and kG must give eigenvalues of GE}FOT(Q + G, Q + G’) that satisfy

€sror,.(@) < 1 (58)

for all 4 and @. This constraint plus the requirement that |p(G)| < p(0) (see above) define a

region of acceptable parameters in the two-dimensional parameter space which is shown in Fig. 1.

All dots in this figure mark acceptable parameters, however they are classified into three types.
Blackened squares correspond to parameters that give eigenvalues of f:s:,il which are between 0
and 1 for all Q. This condition is not rigidly required by the theory, and as Fig. 1 shows, it places
a severe constraint on the acceptable region of parameter space. However, it is worth pointing out
that the RPA dielectric function does satisfy this condition. Therefore, a model which violates it
is exhibiting non- RPA-like behavior. It is possible to modify the Johnson model slightly so that

this condition on the eigenvalues of GE,}:I is automatically obeyed, as will be discussed later.

Crosses in Fig. 1 correspond to parameters which give at least one negative eigenvalue of egil,
but still none that are greater than one. This category clearly represents the largest portion of
acceptable parameters in this model. Finally, unblackened squares denote parameters for which
an eigenvalue of ‘E,t»l exceeds one for at least some range of ). It was shown in section 2.H that this
situation is actually allowed for a stable system, however this model suggests (not surprisingly)
that it is rare. Section 2.H also showed that it is not possible to have a stable system if the lattice
is unstable (i.e., the dynamical matrix is not positive). This is borne out by the Johnson model

in that the dynamical matrix is positive for all @ for all acceptable parameters.

It is interesting to see how physical quantities differ in the different regions of acceptable

parameters. Figure 2 shows phonon frequency vs. wave vector for two choices of parameters.
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The units are chosen such that w = K2, where K is the dynamical matrix (or number, since
this is a one-dimensional model) defined in Eq. (23). In Fig. 2(a) and 2(b), the parameters are
a=19,kGj =3.16 and a = 4, KGE = 0.22, respectively. These parameters correspond to crosses
and blackened squares, respectively, in Fig. 1. Both phonon dispersion curves vanish linearly as
Q — 0 as a result of the acoustic sum rule. Figure 2(a) exhibits a higher speed of sound than
Fig. 2(b), which is primarily due to the higher value of a in the former. The dispersion curve in
Fig. 2(b) remains linear throughout the Brillouin zone. This unphysical behavior is caused by the
small value of kG2, which makes the terms quadratic or higher-order in Q much smaller than the
linear term over a large range of Q. Since all the parameters that give only positive eigenvalues of
‘3,11 (i.e., blackened squares in Fig. 1) have small values of kG3, they will all produce unphysical
phonon dispersion curves. We can conclude that this model is necessarily non-RPA-like, since
the only physically reasonable choices of parameters produce electronic dielectric functions with

a negative eigenvalue.

Bragg scattering of waves in crystals results in a flattening of dispersion curves at the boundary
of the Brillouin Zone (BZ). Therefore, the fact that this behavior is not seen in Fig. 2 is cause for
concern. It can be shown, however, that phonon dispersion curves calculated using Eq. (23) do
approach the BZ edge with zero derivative assuming all (infinitely many) reciprocal lattice vectors
are used in the calculation. This result is obtained by showing (a) that Ko5(Q) = Kop(-Q),
and (b) that Kop(@ + G) = Kap(@), if all reciprocal lattice vectors are included. Thus, the
unphysical behavior of Fig. 2 near the BZ edge can be attributed to truncating the reciprocal

space basis.

Figures 3(a) and 3(b) display the @ dependence of the eigenvalues of ¢se and esoT for
the same two sets of parameters as in Fig. 2. By construction one of the eigenvalues of €S,el
in Fig. 3(a) is negative, whereas none are negative in Fig. 3(b). Figure 3 illustrates the result
discussed in section 2.G, namely, that esToT has a negative eigenvalue which vanishes as Q — 0.
In Fig. 3(a) there is also a second negative eigenvalue of €5 10T, but this one does not vanish and
is unrelated to the result of section 2.G. It is more closely related to the behavior of the negative
eigenvalue of €gj, but this relationship has not been investigated. The curves in Fig. 3(b) show
fairly uninteresting dispersion (mainly of quadratic order) which, again, is due to the small value

of KG3.

It is natural to ask whether adding more reciprocal lattice vectors to the basis would make
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the model more flexible; i.e., allowing a larger parameter space for which ‘E}rOT < 1. We have
done calculations for the one-dimensional Johnson model including five G’s, {0, +Gy, +2Go},
and seven G’s, {0, Gy, +2G,, +3Go}, and have found, conversely, that the model becomes less
flexible as the basis increases. That is, the region in parameter space which both satisfies the
sum rules and gives a stable system becomes increasingly small. One explanation is that the
number of constraints increases more rapidly than the number of adjustable parameters as G'’s,
are added. Each time a pair of G-vectors is added to the basis, two new form factors are added
as parameters. For example, in going from {0, £Go} to {0, +G,, +2Go}, the form factors p(3Gy)
and p(4Go) become parameters. However, three new constraints are added. One is from the sum
rule in Eq. (29) for G = 2G) (the G = —2G, equation is the same), which fixes the value of one of
the new form factors. The other two constraints come from the fact that there are two additional
eigenvalues of f.;,}I‘OT which must be less than unity for system stability. This difficulty again

illustrates the significant role of the sum rules.

As stated above, it is possible to modify the Johnson model slightly so that the eigenvalues
of ‘5,:31 are guaranteed to be positive. This is useful if one wishes to avoid un-RPA-like behavior.

If a dielectric function has the form

5@ +G,Q+G)=6ce + fF(Q+G)-p(G-G")-f(Q+G") , (59)

where f is any function, then it is easy to show that (vlesalv) > 0 for any vector |v). In
particular, if |v) is an eigenvector of eg,il, then this shows that all eigenvalues are positive. We
call an electronic dielectric function of this form separable. The RPA dielectric function (Eq. (15)),
for example, is separable. By choosing f to be

fR+G)= m"(\g%é*); (Q@+6) , (60)

the resulting separable dielectric function is very similar to the Johnson dielectric function, and,
in fact, is identical to it along the diagonal. Physical quantities calculated using this electronic

dielectric function behave similarly to those using the Johnson model.
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5 Conclusions

We have studied the total dielectric function, which includes the lattice response as well as the
electronic response of the solid. The focus has been on the possibility of an attractive interaction
between two test charges as is required for superconductivity. A necessary condition for an attrac-
tive interaction is that the total static dielectric function have at least one negative eigenvalue.
We have shown that there are an odd number of negative eigenvalues for one and three spatial
dimensions and zero or an even number for two dimensions. We have also shown that it is highly

plausible that there is one negative eigenvalue for each dimension of the system.

It is also required that the system be stable. The condition for this is that the eigenvalues,
55,}1‘0T, 0 Oof the total inverse dielectric function, must satisfy ‘E,}I‘OT, » < 1. We have shown that
the solid will be stable if the electronic and lattice portions of the system are individually stable;
ie., €g,lcl,n < 1, where egélm are the eigenvalues of the inverse electronic dielectric function, and
the phonon frequencies are real. It is also possible to have a stable system if the electronic portion,
regarded as an isolated system, is unstable provided the lattice portion is stable. However, if the

lattice is unstable then the entire solid must also be unstable.

We have also derived a sum rule, the translational sum rule, that is analogous to the acoustic
sum rule; it also places restrictions on components of the inverse electronic dielectric function.
Unlike the acoustic sum rule, the translational sum rule is important for the case of a metal as
well as an insulator. In addition we have recast the acoustic and translational sum rules in terms
of components of the electronic dielectric function rather than its inverse. This is convenient

because most theories give expressions for the dielectric function, not its inverse.

Finally, we have presented numerical results for a one-dimensional model dielectric function.
The phonon spectrum and the eigenvalues of the total dielectric function are then calculated in
order to make the formalism more concrete as well as to demonstrate the importance of the sum

rules in restricting the parameters of models.

24




Acknowledgments

We would like to thank Andrew M. Rappe for assistance with the proof in Appendix E. S.P.L.
and M.L.C. were supported by the National Science Foundation Grant No. DMR91-20269 and
by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences
Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. S.P.L. was
supported by N.S.F. Grant No. DMR9118414 at Stony Brook.

References

* Present address.
(1] P.B. Allen, M.L. Cohen, and D.R. Penn, Phys. Rev. B38, 2513 (1988).
[2] J.M. Ziman, Electrons and Phonons (Oxford, London, 1960).
[3] E.G. Maksimov, Zh. Eksp. Teor. Fiz. 69, 2236 (1975); [Sov. Phys. - J.E.T.P. 42, 1138 (1976)).
[4] R. Car, E. Tosatti, S. Baroni, and S.L. Leelaprute, Phys. Rev. B24, 985 (1981).
[5] P.N. Keating, Phys. Rev. 187, 1190 (1969).
[6] P.C. Martin, Phys. Rev. 161, 143 (1967).
[7] D.A. Kirzhnits, Usp. Fiz. Nauk. 119, 357 (1976).
[8] O.V. Dolgov, D.A. Kirzhnits, E.G. Maksimov, Rev. Mod. Phys. 53, 81 (1981).

[9] O.V. Dolgov and E.G. Maksimov, Usp. Fiz. Nauk. 138, 95 (1982); [Sov. Phys. — Usp. 25,
688 (1982)).

[10] S.L. Adler, Phys. Rev. 126, 413 (1962).

[11] N. Wiser, Phys. Rev. 129, 62 (1963).

[12] H. Ehrenreich and M.H. Cohen, Phys. Rev. 115, 786 (1959).

[13] R.M. Pick, M.H. Cohen, and R.M. Martin, Phys. Rev. B1, 910 (1970).

(14] L.J. Sham, Phys. Rev. 188, 1431 (1969).

[15] J.R. Schrieffer, Theory of Superconductivity (W.A. Benjamin, New York, 1964).

{16] D.L. Johnson, Phys. Rev. B9, 4475 (1974).

25




Appendix A

The result (e3'), <1+ T, where T, > 0 and (€3")4 is an eigenvalue of €' is proved below.

From Eq. (19),

€510T = €50 + 2 (#% Dag le) (A.1)
af
and D is given by Eq. (21). Let fg,lel,,, and GE}TOT’V be eigenvalues of ‘5,11 and ‘5}1‘0% respectively.
Equation (A.1) may be written as

2

_ _ 1
2w shor, = G4, -3 (A.2)

2-
J QJ

S (ulel) & g
o

where w = 0 in Eq. (21), |v) and |u) are eigenfunctions of eg}rOT and egjﬂ, respectively, |7g;) is
an eigenvector of K, and w? is the corresponding eigenvalue. Using CE}TOT,U < 1 for all v leads
to

2
=14T, . (A.3)

D (ulwh) a-fig;

(2

1

-1

GS,cl,u < 1+Z ;Z"
J 2
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Appendix B

Equation (25) is derived as follows. Following ref. 13 the matrix ¢! can be written in the

(@) (o)
= (B.1)

(‘510,0) (‘Eicma')

form

where (‘5}2) is a 1 x 1 matrix, (ea,lq +G) is a 1 x n matrix where there are n non-zero values of

G, and (eEiG,Q+G,) is a n X n matrix. Use of Eq. (5.11) from Ref. 13 yields

1
~1 = -1 -1 -1
(€Q+G.Q+G’) - (SQ+G,Q+G' + Q6 ;a—lQ GQ,Q+G,) (B.2)

where §=1 is defined immediately after Eq. (23) in our text. Using Eqs. (B.1) and (B.2) in
Eq. (23), and the fact that ¢! is Hermitian yields Eq. (25).
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Appendix C: Derivation of the Translational Sum Rule

To derive the translational sum rule (Eq. 27), suppose that the entire lattice is rigidly trans-
lated by a small amount 7 in the 3 direction. For the present purposes we consider only a
primitive lattice, however the results are easily generalized to a lattice with a basis. The resulting

perturbation in the lattice potential,

V() = ; (C.1)
Z |r - R1|
where Z is the nuclear charge and R is a lattice vector, is given by
1%
VA =V(F-B)- VO =15 . (C:2)

Since the perturbation is (trivially) periodic in the lattice, we may Fourier transform both sides
of Eq. (C.2) to give

V(G) = -iGanV(G) , (C.3)
where G is a vector in the reciprocal lattice. The electronic charge density p(7) will also be rigidly

translated by nﬁ so that, in analogy with Eq. (C.3),

6p(G) = —iGanp(G) . (C4)

The perturbation 6p(G) is a response to the perturbation §V(G), and therefore the two

quantities are related, within linear response theory, by

8p(G) =Y x(G,G) V(G , (C.5)
G
where x is the electronic susceptibility. Combining Egs. (C.3)- (C.5) yields
= dr Ze?
Gsp(G) =3 x(G,G)GV(G) = Z x(G, G —— el ——Gp . (C.6)

G
For reduced wave vector Q = 0, only the G,G’ # 0 components of the response functions are

relevant, and
4me?

GG =bga + 5 e x(G,G" (C.7)

where §3! is related to ¢! as described in the text following Eq. (23). Thus, Eq. (C.6) becomes
p(G) S G, C

.8

where we have made use of the fact that Z = —p(O) (i.e., charge neutrality). Finally, if symmetric

notation is used (see section 2.B), the translational sum rule as given in Eq. (27) results.
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Appendix D: Re-write Sum Rules in Terms of ¢

The acoustic and translational sum rules (Egs. (26) and (27), respectively) are written in
terms of e"s',lel. Since model calculations usually define the dielectric function and not its inverse,

it is convenient to recast the sum rules in terms of €s.1. Before doing this it is useful to express

) (.1

GLQ+G,Q+G) = ( X z ) ’ (D-2)

-1
€s.el and €5 as

n

6.S',el(Q + G’ Q + G') = ( g

and

where P, @, R, and § are 1x1, nx1, 1xn, and nxn arrays, respectively, corresponding to

eS,el(Qa Q)’ €S,el(Q‘*'G’ Q)$ e.S',el(Q’ Q+GI)’ and €S.el(Q+Ga Q+G,)7 (Ga G' "Ié 0), respeCtively° W’
X, Y, and Z are similarly defined. This is the same notation used by Pick, et al. [13] in their

Eq. (3.9).

If we now define two nXx1 vectors |u,) and |cq) such that

= TG; n Cn): = _.,igi_) el
uabi = (@F G and el = (1-£5) (@F G0 (03)

for G; # 0, then it is clear that the acoustic and translational sum rules can be written, in the
limit @ — 0, as
WQa+ (Y|ua) =0 (D.4)

and

57 ua) = lea) (D.5)

respectively. Inverting Eq. (D.5) gives |uy) = S|ca), or

2;‘0 (Gs,el(é, G- (1 - %%;l) .@a) =G, , (G#0) . (D.6)

It is easy to verify (see Eq. (5.10) of Ref. 13) that
(Y|=-W(R|S™! . (D.7)
Substituting this into Eq. (D.4)'and applying the translational sum rule yields
. 7~ -1 T N -
lim, [WQa — W(RIS ua)] = lim [W - (@u~ (Rlea))] =0 . (D-3)
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If the system is metallic, then W — 0 as @ — 0, and Eq. (D.8) contains no additional information.

However, for an insulator, W remains finite as @ — 0, and therefore Eq. (D.8) states that
(Rlea) =1 as Q — 0, or

i) (sa@e+6) (1-28)-@Fon) = @ (D.9)

Equations (D.6) and (D.9) are the sum rules recast in terms of €s ¢.
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Appendix E: Proof of Theorem about Sign of Eigenvalues of €50y

In this Appendix we prove the theorem described in section 2.G (here referred to as Theo-
rem I); namely, that the w = 0 value of GE}POT has an odd number of negative eigenvalues for one
and three spatial dimensions (or, for that matter, any odd number of dimensions) and zero or an
even number of negative eigenvalues for two (or any even number) dimensions. It is sufficient to

prove that
_ det(-K°)
det(K) °

where eE}mT and eg'il are, in general, countably-infinite dimensional matrices labeled by the

det(e5ror) = (1) det(egy) (E.1)

reciprocal lattice vectors, G and G/, and K (the dynamical matrix) and K° are dxd matrices
labeled by d-dimensional Cartesian coordinates. Theorem I then follows from Eq. (E.1). Both
det(K) and det(—K?) are positive because their eigenvalues must all be positive. This follows
from the stability of yhe lattice. Furthermore, within the random phase approximation (RPA),
the eigenvalues of ‘5,}31 are all positive [4], and thus det(egyﬁl) is positive. Therefore, Eq. (E.1)
says that the RPA value of det(eg}rOT) is negative (positive) if d is odd (even), from which we

conclude that eg}mT has an odd (zero or even) number of negative eigenvalues.

The most straightforward approach is to prove Eq. (E.1) for one dimension (d=1) and then
generalize to higher dimensions. We start by defining some convenient notation. Define an nxn
matrix B so that B? = eg,lel (n is the dimension of ‘E,tl) and also an nx1 vector |u) whose ith

component is

lu); = (Q+G:) (E.2)

where G; is the ith reciprocal lattice vector. From these we define another nx1 vector |v) by

|v) = Blu), and, finally, a symmetric nxn matrix N by

N=1I- (4”‘;§Z2) W) K1 (o] (E.3)

where I is the nxn identity matrix. Using these definitions, ‘5}1‘0T and K can be written

succinctly as [see Egs. (19), (21), (23), and (28)]

¢stor = BNB (E.4)

K = <4’”;ZZQ> (o|o) + KO . (E5)
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Taking the determinant of both sides of Eq. (E.4) gives
det(e57ror) = [det(B)]* - det(N) = det(e5Y) - det(N) (E.6)

Therefore, we must examine det(N) in order to prove Eq. (E.1). Using Egs. (E.3) and (E.5) it is
evident that |v) is an eigenvector of N with eigenvalue K°/K. Furthermore, all other eigenvalues
of N are unity. This follows from the fact that all eigenvectors of N are mutually orthogonal

since N is symmetric. Thus, if |w) is an eigenvector of N other than |v), then
Nlw) = o) = A2 oy = juy (E7)

This implies that
_ (%o = _.KO)
det(N) = ( ) 1 1= ( , (E.8)

which, with Eq. (E.6), proves Eq. (E.1) for d=1.

Extending this proof to multiple spatial dimensions introduces the complication of having to
deal with two different vector spaces — the n-dimensional Fourier space in which the dielectric
function is represented and the d-dimensional Cartesian space. In particular, K and K°© are now
dxd matrices and not numbers. We now must define |u) and |v) to be nXxd arrays, where the
component |u),, is

[©)ia = (@ + G)a (E.9)

and Q and G are the ath Cartesian component of § and G;, respectively. The definition |v) =
Bl|u) still holds. With these new definitions of |u) and |v), Eqs. (E.3)~(E.6) remain formally the

same, and the task of proving Eq. (E.1) again reduces to examining det(N).

It is straightforward to show using Eq. (E.3) that
Nlv) = =|v) K~1 (-K®) = —-|v)T , (E.10)

where T is the dxd matrix T = K~ (—K°). Suppose U is the matrix that diagonalizes T.
Multiplying both sides of Eq. (E.10) on the right by U leads to

T
Ny = -]\ U TU = ') , (E.11)
Td
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where |v') = |v) U, and 7y, ..., 74 are the eigenvalues of T. This implies that the columns of |v')
are eigenvectors of N with eigenvalues —7y, ..., —74, respectively. Furthermore, as before, all

other eigenvalues of N are unity. Thus, det(N) is given by

det(N) = (=mq)----- (=7g)+1:--- 1= (1) m-eeee T4
' _ _ det(—K°)
= (-1)*-det(T) = (-1)¢- (Tt(_ff_)—) . (E.12)

This result, with Eq. (E.6), proves Eq. (E.1) and thus proves Theorem I.
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Appendix F

Equation (36) is proved in this appendix. Use of Eq. (17) in Eq. (18) in the limit w = 0 and
Q = 0 gives
5 A 5 A 4re?Z: N A 5
es,tot(G, G) = el(G,G') + w—ch-—— E GG(KO);}; G’ﬁ . (F.1)
aff
Multiplying both sides of Eq. (F.1) by (1 - p(G"/ p(O)) G‘i, and summing over G’ # 0 gives

Y. esror(G,G) (1— p(G)) G, = Y. esa(G,G) (1— p(G)> G

G'#0 (0) G0 (0)
272N GY\ A
+ 4“—9_ Z(Ko)aﬁG Ggo Gﬁ( - %0—))) G, . (F.2)

From Eq. (29a) the first term on the right-hand side of Eq. (F.2) is G,. Making use of Eq. (28)
gives the value —G., for the second term on the right-hand side of Eq. (F.2) which proves Eq. (36).
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Appendix G

It is shown that there is an eigenvalue of €gToT that vanishes at the phonon frequencies. Use
of Eq. (17) in Eq. (18) gives
4 e? 72

€STOT = €50 — —g 3 lua [Mw? — KO3 (ugl (G.1)
af

where €5TOT, €S,el, |4)a, and |u)g are matrices with indices Q+G; eis (n x n) while |u), is
(n x 1) and |u)g is (1 X n). The latter two matrices are defined in Appendix E. Multiplying both
sides of Eq. (G.1) by eg’iﬂu)., gives

estor 5 luhy = lu)y = 3 [w)a (M? - K K@ -K%)  (G2)
afB
where use has been made of Eqs. (23) and (28),
4r e? 72 _ .
Kop(Q) = Q (ttal fs,il lug) + 112/3 . (G.3)
One can write
MW -K@Q) = Y nj(Q) (w*-wd;) ni(Q) (G-4)
k
where 7;(Q) and w); are the eigenfunctions and eigenvalues of K(Q). Use of Eq. (G.4) in (G.2)
gives
esTOT €54 [u)y = D ua) ([sz KT Y Q) (v - why) m(Q)) . (G3)
o J

oy
If v denotes a direction parallel to 7;(Q) then esToT 65,}:1 lu)y = 0 if w? = w%j as stated in

Eq. (37), since @5 = €5 |t)a-
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Figure Captions

Figure 1: Parameters o and kG3 which satisfy the sum rules and the stability requirements for
the truncated, one-dimensional Johnson model (Eq. (54)). Points denoted by blackened
squares give eigenvalues of eg’lel which are all between 0 and 1 for all Q. Crosses imply
that some eigenvalue of ‘E,il is negative, but none are greater than 1, and unblackened
boxes imply that, for some range of @, an eigenvalue of 55,11 exceeds unity. (b) is a higher

resolution plot of the boxed region in (a).

Figure 2: Phonon dispersion curves calculated using the parameters (a) a = 9, kG2 = 3.16 and
(b) @ = 4, KkGE = 0.22. The units of frequency are chosen such that w? = K, where K is the
dynamical matrix (or number in one-dimension) calculated using Eq. (23). Wave vectors

are given in units of Go = 27 /a, where a is the lattice constant.

Figure 3: Eigenvalues of €ge and esToT vs. wave vector calculated using the parameters (a)
a =09, kG = 3.16 and (b) @ = 4, kGZ = 0.22, the same as in Fig. 2. Recall that an
eigenvalue of ¢ is the reciprocal of an eigenvalue of e~1. Wave vectors are given in units of

Go = 27 /a, where a is the lattice constant.
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